CALCULATION AND COMPARATIVE ANALYSIS OF IR SPECTRA OF A NUMBER OF BRASSINOLIDES WITH DIFFERENT SIDE-CHAIN STRUCTURES

V. M. Andrianov and M. V. Korolevich*

UDC 547.455:535.33/34:539.194

Experimental IR spectra and theoretical spectral absorption curves of the practically important biologically active steroid phytohormones (22S, 23S)-24-epibrassinolide, (22S, 23S)-28-homobrassinolide, and homobrassinolide, which have similar chemical structures, were compared and analyzed to establish spectral and structural correlations of them. This enabled an evaluation of the influence of side-chain structural features on the formation of IR spectra and the establishment of connections between their structural differences and the observed changes in the IR spectra in the range 1500-950 cm^{-1}.

Keywords: IR spectroscopy, normal vibration analysis, absolute IR intensities, characteristic frequencies, interpretation of IR spectra, brassinosteroids, brassinolides.

Introduction. Brassinolides and castasterones are biologically active hormones of the phytohormonal steroid (PS) class. They help to improve the quality of plant products, are toxic to rapidly spreading tumor cells, and are considered potential anticancer pharmacological agents [1-4]. This group of steroids numbers greater than 70 compounds [5-7]. The biological activity of these compounds is known to depend substantially on the stereochemical configuration of the C 22 and C 23 atoms and the structure and configuration of the side-chain C 24 alkyl substituent [8]. These could be important to the toxicity of brassinolide and castasterone derivatives for a whole series of cancer cells [9, 10].

IR spectroscopy offers huge possibilities for obtaining information about molecular structures. However, recorded IR spectra of series of PSs have been analyzed only in a few studies [11-13]. Theoretical investigations are needed to establish structure-spectra correlations in practically important biologically active PSs. These include modeling of the molecular structure, calculation of vibrational spectra, and comparative analysis of experimental and calculated IR spectra of structurally similar molecules of this compound class. Previously, vibrational spectra were fully calculated and optical-density spectral curves were modeled by us for the biologically active PSs (22S,23S)-24-epicastasterone [14], 24-epicastasterone [15], homobrassinolide, and (22S,23S)-24-epibrassinolide [16].

The aim of the present work was to compare and analyze IR spectra of natural homobrassinolide and synthetic ($22 \mathrm{~S}, 23 \mathrm{~S}$)-24-epibrassinolide and ($22 \mathrm{~S}, 23 \mathrm{~S}$) 28 -homobrassinolide, which have similar chemical structures, to evaluate the influence of structural differences in the side chains of these molecules on the formation of their IR spectra using total calculation of the frequencies and intensities of normal modes and to model the optical-density spectral curves of them in the crystalline state.

Experimental. The starting geometric parameters of (22S,23S)-28-homobrassinolide and (22S,23S)-24epibrassinolide were taken from x-ray structure analyses [17, 18]; of homobrassinolide, from molecular modeling of its crystal structure. An original combined approach to the analysis of IR spectra of complicated organic compounds that was developed and programmed for studying spectra of carbohydrates was used to calculate the frequencies and intensities of normal modes. It combined a classical analysis of normal modes with quantum-chemical evaluation of absolute intensities corresponding to integrated intensities of IR absorption bands. The algorithm for calculating intensities has been described in detail [19].

[^0]Belarusian State Agrarian Technical University, Minsk, Belarus; email: korolevi@dragon.bas-net.by. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, pp. 513-524, July-August, 2021. Original article submitted April 13, 2021.

Frequencies, shapes, potential-energy distributions (PEDs) of normal modes, and atomic shifts in Cartesian coordinates in each normal mode for calculating absolute intensities of IR absorption bands were calculated using a molecular mechanics (MM) method. The force field developed by us for calculating the frequencies and shapes of normal modes by the MM method for brassinosteroids was published [14]. Optical-density spectral curves corresponding to crystalline synthetic (22S,23S)-24-epibrassinolide, (22S,23S)-28-homobrassinolide, and natural homobrassinolide were modeled based on the results.

Results and Discussion. (22S,23S)-24-Epibrassinolide (I) consists of 82 atoms; (22S,23S)-28-homobrassinolide (II) and homobrassinolide (III), 85 atoms that form two six-membered (A and C), one seven-membered (B), and one fivemembered ring (D) and a bulky side chain. The structural differences of these molecules are localized within the side chains, which have different configurations of the 22 - and 23 -diol groups ($22 \mathrm{~S}, 23 \mathrm{~S}$ in I and II and $22 \mathrm{R}, 23 \mathrm{R}$ in III) and different substituents in (methyl in I and ethyl in II and III) and configurations of the 24-position (24R in I and 24S in II and III). For convenience of recognizing the differences in the configurations of neighboring side-chain C atoms in the 22,-, 23-, and 24-positions, we will use the designations SSR (I), SSS (II), and RRS (III).

(22S,23S)-24-Epibrassinolide

(22S, 23 S)-28-Homobrassinolide

IR spectra of I and III were previously analyzed by comparing experimental and theoretical absorption spectra [16]. Structurally similar II was also included in the analysis in the present work to establish more reliable structurespectra correlations. The analyzed IR spectra were recorded on a NEXUS FTIR spectrometer. Samples of the compounds were ground with dried finely disperse KBr . The resulting powders were compressed under vacuum by the standard method. Theoretical spectra were calculated using quasi-isolated molecules. The effect of intermolecular interactions, in particular intermolecular H-bonds, on the vibrational spectra were not considered. Most attention was paid to the range $1500-950 \mathrm{~cm}^{-1}$, which is often used for analytical purposes.

Many of the numerous normal modes are weak in the IR spectra. However, Fig. 1 shows that the density of vibrational states in this range is rather large. Theoretical spectra are presented as an envelope of Gaussian bands (Fig. 1a-c) and as vertical lines (Fig. 1d-f) showing the positions and intensities of the calculated normal modes. Figure 2 shows the calculated and experimental absorption spectra. Table 1 lists the assignments of the absorption bands of the studied molecules in the analyzed spectral range. A comparison of the theoretical and experimental spectra showed that

Fig. 1. Theoretical IR absorption spectra as Gaussian band envelopes ($\mathrm{a}-\mathrm{c}$) and as vertical lines (d-f) of (22S,23S)-24-epibrassinolide (a, d), (22S, 23S)-28-homobrassinolide (b, e), and homobrassinolide (c, f) in the range $1500-1200 \mathrm{~cm}^{-1}$; numbers denote normal modes.

Fig. 2. Experimental (a-c) and theoretical IR absorption spectra (d-f) of (22S,23S)-24epibrassinolide (a, d), (22S,23S)-28-homobrassinolide (b, e), and homobrassinolide (c, f) in the range $1500-1200 \mathrm{~cm}^{-1}$.
TABLE 1. Experimental (IR) ($v_{\text {exp }}$) and Calculated ($v_{\text {calc }}$) Frequencies (cm^{-1}), Absolute Intensities $A\left(10^{16} \mathrm{~cm}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}\right)$, and PED of Normal Modes of Crystalline (22S,23S)-24-Epibrassinolide (I) [16], (22S,23S)-28-homobrassinolide (II), and Homobrassinolide (III) [16] in the Range 1500-950 cm^{-1}

$v_{\text {exp }}\left(v_{p}\right)$	$v_{\text {calc }}$			A			PED, \%		
	I	II	III	I	II	III	I	II	III
$\begin{gathered} 1467 \\ (1454) \\ 1467 \\ (1454) \\ 1467 \\ (1472) \end{gathered}$	1507	1503	$\begin{aligned} & 1487 \\ & 1477 \end{aligned}$	6	30	6	HC21H 34 CC 21 H 17 CC 23 H 7 CC 12 H 7 CC11H 14 HC 11 H 13 CC 1 H 12 HC 1 H 11 HC 18 H 9 CC18H 9	HC21H 33 CC21H 17 CC11H 15 CC1H 15 HC11H 12 HC1H 11	CC11H 29 HC1H 12 CC1H 12 CC18H 7 HC18H 7 HC19H 34 CC19H 31 HC4H 6 CC4H 5
	1481			24	17	6			
								CC11H 15 CC1H 15 HC11H 12 HC1H 11	HC19H 34 CC19H 31 HC4H 6 CC4H 5
	1470	1472	1473	2	26	8	HC18H 25 CC18H 23 HC1H 6 CC1H 5 CC11H 5 HC12H 5	HC18H 28 CC18H 25 HC1H 5 CC1H 5	HC18H $21 \mathrm{CC} 18 \mathrm{H} 18 \mathrm{HC} 21 \mathrm{H} 11 \mathrm{CC} 21 \mathrm{H} 10 \mathrm{HC1H} 5$
	1462	1460	1472	2	15	2	HC12H 21 CC12H 19 HC18H 9 CC18H 8 HC11H 5	HC 12 H 22 CC 12 H 20 CC 18 H 7 HC 18 H 7 HC 11 H 6CC 11 H 5	HC 28 H 28 C 24 C 28 H 22 CC 22 H 7 CC 24 H 6CC 29 H 5
	1456	1457	1463	38	16	21	HC7H 26 C8C7H 15 O4C7H 7 HC4H 6 CC8H 6	HC27H 42 C 25 C 27 H 39	HC4H 28 CC4H 25 HC19H 12 CC 19 H 7
	1451	1455	1457	21	13	1	HC28H 32 CC 28 H 30 CC 27 H 9 HC 27 H 9	HC19H 20 CC 19 H 18 HC 4 H 11 CC 4 H 10 HC 1 H 7	HC12H 16 CC12H 14 HC21H 11 CC21H 10 HC18H 7 CC18H 6 HC11H 5
	1450	1451	1455	2	110	3	HC4H 32 CC 4 H 27 HC 7 H 7 CCC 5	HC19H 18 CC19H 17 HC4H 12 CC 4 H 10 HC11H 5	HC1H 13 CC1H 11 HC11H 11 CC11H 9 HC12H 7 HC18H 7 CC12H 6
$\begin{gathered} 1445 \\ (1429) \\ 1445 \\ (1430) \\ 1445 \\ (1432) \end{gathered}$	1437	1445	1445	56	65	1	CO5H 13 CC23H 10 CC22H 9 CCC + CCO 9 (s.c.) OCH 8 (s.c.)	HC7H 25 O4C7H 11 C8C7H 11 CC8H 8 HC18H 7	HC27H 41 C25C27H 38
	1435	1437	1436	12	11	6	CO2H 17 CC4H 9 CC3H 9 CC1H 9 O2C3H 7 HC1H 6 CC3O2 5	HC29H 26 CC29H 24 HC26H 15 CC28H 10	HC18H 21 HC19H 10 HC7H 8 O4C7H 6 CC8H 5
	1431	1436	1436	33	84	3	HC18H 18 HC26H 15 CC28H 14	CO2H 19 CC4H 10 CC3H 8 CC1H 9 O2C3H 7 HC1H 6 CC3O2 5	CO2H 12 HC18H 11 CC3H 7 CC1H 6 CC4H 6 HC19H 6 O2C3H 5
	1428	1429	1432	11	57	7	CO6H 13 CCC 8 (s.c.) CC23H 7 HC28H 7 O6CH 6 CC28H 6	$\begin{aligned} & \text { CO6H } 15 \text { CCC } 11 \text { (s.c.) CC24H } 8 \text { O6CH } 7 \text { HC26H } \\ & 7 \text { CC29H } 6 \end{aligned}$	HC19H 15 HC18H 10 HC15H 10 CC15H 10 HC7H 7 O4C7H 5
	1428	1429	1431	3	26	6	HC15H 12 CC 15 H 12 CC 11 H 8	HC15H 17 CC15H 17 HC18H 13	HC19H 24 HC15H 8 CC15H 8 HC7H 6 O4C7H 5
	1427	1425	1430	9	9	9	CC11H 12 CC 1 H 9 HC 15 H 7 CC 15 H 7 HC 1 H 5	CO1H 15 CC 11 H 8 CC 21 H 6	HC18H 16 HC 15 H 10 CC 15 H 10 HC 7 H 10 O4C7H
									$8 \mathrm{HC19H} 6$
	-	-	1426	-	-	2			CC24H 8 CC20H 7 CC22H 6 C23O5H 5 HC21H 6

TABLE 1. (Continued)

$v_{\exp }\left(v_{p}\right)$	$v_{\text {calc }}$			A			PED, \%		
	I	II	III	I	II	III	I	II	III
$\begin{gathered} 1404 \\ (1390) \\ 1404 \\ (1411) \\ 1404 \\ (1420 \end{gathered}$	1424	1422	1422	36	15	13	HC27H 26 CC27H 24 CC28H 10 HC28H 11 CC25H 6	HC21H 18 CC21H $16 \mathrm{CC} 1 \mathrm{H} 9 \mathrm{HC18H} 8$	HC 26 H 13 HC 29 H 11 CC 29 H 10 HC 27 H 7 HC 21 H 7 CC 27 H 6
	1421	1418	1420	11	23	23	HC21H 19 CC21H $17 \mathrm{HC18H} 10 \mathrm{CC} 1 \mathrm{H} 8$	HC19H 34 CC11H 10 CC19H 6 CC1H 6 HC21H 6 CC21H 5	HC27H 15 CC27H 13 HC21H 8 CC21H 6 C23O5H 5
	1415	1413	1418	8	15	5	HC28H 13 HC26H 10 CC28H 6 CC1H 7 CC11H 7 COH 5	HC26H 36 CC26H 21 CC28H 6 HC29H 10 CC29H 9	HC29H 12 HC 27 H 11 CC 29 H 11 CC 27 H 10 HC 26 H 9
	1415	1412	1417	17	33	5	CC11H 10 CC1H 9 HC28H 9 HC26H 6 COH 5	HC19H 23 CC11H 11 CC19H 5 C2O1H 5 CC1H 5	CC1H 17 C2O1H 6 CC2H 6 CC11H 5 HC1H 5 HC19H 5 CCO 5
	1411	1412	1413	19	18	5	HC16H 29 CC16H 26 CCC 6	HC16H 27 CC16H 25 HC19H 6 CCC 6 (s.c.)	CC20H 10 CC24H 10 CC23H 6 C23O5H 5 C22O4H 5 HC21H 5
	1406	1410	1409	4	47	1	HC18H 41 CC18H 11	HC19H 18 CC11H 13 HC18H 8 CC12H 6	HC19H 32 CC 11 H 11 CC19H 7
	1404	1406	1404	15	11	9	HC27H 56 HC 28 H 12 CC 27 H 12	HC18H 31 CC 11 H 9 C 13 C 18 H 8 C 20 C 21 H 5 HC 21 H 5	HC16H 23 CC16H 21 CC14H 6 HC18H 6
	1395	1398	$\begin{aligned} & 1404 \\ & 1402 \end{aligned}$	1	15	$\begin{gathered} 8 \\ 12 \end{gathered}$	HC19H $30 \mathrm{CC11H} 8 \mathrm{CC} 19 \mathrm{H} 8 \mathrm{CC12H} 7$	CO5H 17 CC23H 9 CC20H 6 CO6H 5	HC18H 16 CC11H 14 CC12H 6 HC11H 5 CO5H 14 CC24H 9 CO6H 8 CC20H 6 HC27H 5 CC22H 5 CCC 5
$\begin{array}{\|c\|} \hline 1386 \\ (1373) \\ 1386 \\ (1393) \\ 1385 \\ (1385) \end{array}$	1393	1395	1394	2	95	1	HC27H 39 CC25H 9 HC26H 9 CC27H 7	HC29H 32 HC26H 19 C24C28H 5 C25C26H 5 C28C29H 5	CC14H 28 CCC 5 HC15H 5 CC15H 5 HC16H 5
	1391	1394	1394	34	11	2	CC14H 24 HC19H 6 CC17H 5	CC14H 26 HC15H 5 CCC 5 C 14 C 15 H 5 CC 17 H 5	HC29H 53 HC27H 12 CC29H 11
	1387	1388	1389	46	3	7	CC1H 18 C2O1H 11 HC19H 7 CC11H 6 CC14H 5	CC1H 18 C2O1H 13 CC 11 H 6	HC29H 56 CC 29 H 9 HC 27 H 9 CC 28 H 8
	1385	1388	1386	8	8	39	HC28H 46 HC26H 16 CC 28 H 11	$\begin{aligned} & \mathrm{HC} 29 \mathrm{H} 19 \mathrm{CC} 22 \mathrm{H} 8 \mathrm{CC} 28 \mathrm{H} 8 \mathrm{HC} 27 \mathrm{H} 7 \mathrm{CC} 29 \mathrm{H} \\ & 7 \mathrm{CC} 23 \mathrm{H} 7 \end{aligned}$	CC1H 25 C2O1H 14 CC11H 7 HC1H 5 C3O2H 5 CC2H 5
	1382	1387	1381	3	5	31	HC19H 41 CC19H 13 CC1H 7 CO1H 5	HC27H 40 C 25 C 27 H 11 HC 29 H 11	HC26H 61 C25C26H 16
	1378	1384	1380	29	85	2	HC21H 10 CC23H 8 CC25H 6 CC22H 5 HC27H 5	HC29H 20 CC23H 11 CC22H 9 HC21H 5 C23O6H 5	HC21H 42 CC 21 H 10
	1375	1379	1373	31	8	2	CC4H 25 CC 1 H 8 CC 3 H 6 CC 5 H 5	CC4H $25 \mathrm{CC1H} 8 \mathrm{CC} 3 \mathrm{H} 7 \mathrm{CC} 5 \mathrm{H} 5 \mathrm{HC} 21 \mathrm{H} 5$	CC17H 9 CC 22 H 8 C 25 C 24 H 7 COH 5 (s.c.)
	1373	1376	1371	30	4	4	HC21H $11(\mathrm{O} 4 \mathrm{C} 7 \mathrm{H}+\mathrm{CC} 7 \mathrm{H}) 6 \mathrm{CC} 25 \mathrm{H} 6 \mathrm{CC} 9 \mathrm{H} 5$	HC21H 12 CC 9 H 9 CC 7 H 8 CC 4 H 7	CC4H 16 CC 5 H 13 CC 9 H 6
	1371	1373	1369	75	13	5	HC21H 13 O4C7H 8 CC7H 8 CC17H 7 CC8H 6	HC21H 20 CC9H 8 CC7H 6 CC8H 6 O4C7H 5	CC24H 10 O5CH 6 CO5H 5 CO6H 5 O6CH 5 CC23H 5 CC25H 5 CC20H 5
	1368	1370	1366	7	14	6	CC17H 16 O4C7H 6 CC7H 6 CC14H 5	CC17H 20 CC 14 H 5 CC 16 H 5	CC17H 12 CC 22 H 6 CC 24 H 5 CC 20 H 5 CC 25 H 5
	1364	1362	1363	21	30	7	CC9H 15 CC 12 H 8 CC 17 H 6 HC 21 H 5	CC9H $11 \mathrm{C} 8 \mathrm{C} 7 \mathrm{H} 8 \mathrm{C} 7 \mathrm{C} 8 \mathrm{H} 8 \mathrm{O} 4 \mathrm{C} 7 \mathrm{H} 7 \mathrm{CC} 2 \mathrm{H}^{6}$	CC7H 11 CC9H 9 CC4H 7 CC8H 7 HC7H 5
	1355	1357	1355	81	6	7	CC23H 12 CC 24 H 10 CC 22 H 9 CC 25 H 6 COH 7 (s.c.)	CC23H 14 CC 28 H 14 CC 22 H 5 CC 25 H 5 CC 24 H 5	CC22H 12 CC28H 8 CC25H 6 CC17H 6 C22O4H 5 CC24H 5

TABLE 1. (Continued)

$v_{\text {exp }}\left(v_{p}\right)$	$V_{\text {calc }}$			A			PED, \%		
	I	II	III	I	II	III	I	II	III
$\begin{gathered} 1331 \\ (1337) \\ 1331 \\ (1331) \\ 1327 \\ (1325) \end{gathered}$	$\begin{aligned} & 1348 \\ & 1339 \\ & 1335 \\ & 1327 \\ & 1317 \end{aligned}$	1345 1341 1333 1330 1319	1349 1343 1338 1323 1319	26 42 30 2 18	$\begin{array}{\|c\|} \hline 3 \\ 39 \\ 28 \\ 127 \\ 16 \end{array}$	$\begin{array}{\|c\|} \hline 7 \\ 42 \\ 4 \\ 16 \\ 16 \\ 3 \end{array}$	$\begin{aligned} & \mathrm{CC} 25 \mathrm{H} 15 \mathrm{CC} 23 \mathrm{H} 10 \mathrm{CC} 24 \mathrm{H} 7 \text { O6C23H } 5 \mathrm{COH} \\ & 6 \text { (s.c.) } \\ & \text { CC5H } 7 \text { CC12H } 7 \text { CC2H } 7 \text { CC3H } 5 \mathrm{CC} 9 \mathrm{H} 5 \\ & \text { CC24H } 10 \mathrm{CC} 25 \mathrm{H} 7 \text { CC9H } 5 \text { CC20H } 5 \\ & \text { CC12H } 13 \mathrm{CC} 11 \mathrm{H} 8 \text { CC9H } 6 \text { CC14H } 5 \\ & \text { CC5H } 8 \text { CC16H } 7 \text { CC20H } 7 \end{aligned}$	CC25H 7 CC28H 7 CC20H 6 CC22H 6 OC7H 5 CCC 5 CC5H 9 CC12H 8 CC3H 6 CC2H 5 O1C2H 5 CC25H 14 C29C28H 8 C24C28H 6 CC12H 5 CC12H 13 CC11H 7 CC9H 5 CC28H 5 CC5H 9 CC16H 5 CC20H 5	$\begin{aligned} & \mathrm{C} 7 \mathrm{C} 8 \mathrm{H} 11 \mathrm{C} 8 \mathrm{C} 7 \mathrm{H} 8 \mathrm{O} 4 \mathrm{C} 7 \mathrm{H} 7 \\ & \mathrm{CC} 8 \mathrm{H} 9 \mathrm{CC} 9 \mathrm{H} 8 \mathrm{CC} 12 \mathrm{H} 8 \mathrm{CC} 2 \mathrm{H} 5 \\ & \mathrm{CC} 28 \mathrm{H} 214 \mathrm{CC} 20 \mathrm{H} 10 \mathrm{CC} 23 \mathrm{H} 8 \mathrm{CC} 22 \mathrm{H} 7 \mathrm{CC} 24 \mathrm{H} 5 \\ & \mathrm{CC} 4 \mathrm{H} 7 \mathrm{CC} 12 \mathrm{H} 6 \mathrm{CC} 5 \mathrm{H} 6 \mathrm{C} 1 \mathrm{C} 2 \mathrm{H} 5 \text { O1C2H } 5 \\ & \mathrm{CC} 20 \mathrm{H} 7 \mathrm{CC} 25 \mathrm{H} 6 \mathrm{CC} 22 \mathrm{H} 5 \end{aligned}$
$\begin{gathered} 1319 \\ (1309) \\ 1319 \\ (1307) \\ 1318 \\ (1308) \end{gathered}$	$\begin{aligned} & 1314 \\ & 1309 \\ & 1307 \\ & 1304 \\ & 1300 \end{aligned}$	1313 1308 1306 1304 1301	1313 1308 1307 1303 1296	18 43 33 4 5	12 77 1 7 7 56	11 41 6 9	CC12H 8 CC5H 7 CC15H 7 CC9H 7 CC11H 6 CC16H 5 CC2H 13 C2C3H 10 CC5H 9 O1C2H 6 CO2H 5 O2C3H 5 CC9H 9 CC8H 9 CC15H 8 CC16H 8 CC22H 7 CC16H 12 CC15H 11 CC20H 9 CC22H 5 CC16H 7 CC22H 7 CC24H 7CC8H 6 CC14H 5 CC17H 5 CC20H 5	$\begin{aligned} & \mathrm{CC} 15 \mathrm{H} 7 \text { CC16H } 6 \text { CC22H } 6 \text { CC14H } 5 \mathrm{CC} 5 \mathrm{H} 5 \\ & \mathrm{CC} 12 \mathrm{H} 5 \mathrm{CC} 20 \mathrm{H} 5 \\ & \mathrm{CC} 2 \mathrm{H} 11 \text { CC5H } 6 \text { CC12H } 6 \text { CO2H } 5 \text { C2C3H } 5 \\ & \text { O2C3H } 5 \text { O1C2H } 5 \\ & \text { CC9H } 13 \text { CC8H } 6 \text { CC12H } 6 \text { CC15H } 5 \\ & \\ & \text { CC16H } 15 \text { CC20H } 13 \text { CC15H } 12 \text { CC9H } 5 \\ & \text { CC16H } 8 \text { CC14H } 8 \text { CC8H } 6 \text { CC20H } 6 \text { CC22H } 6 \\ & \text { CC17H } 5 \text { CC23H } \end{aligned}$	CC8H 7 CC14H 6 CC28H 6 CC7H 6 CC23H 5 CC25H 5 CC28H 10 O5C22H 6 CC23H 6 CC25H 6CC20H 5 CC24H 5 CC8H 5 CC2H 16 CC4H 11 CC5H 6 C2C3H 6 O2CH 5 CO2H 5 CC1H 5 CC16H 17 CC15H 14 CC8H 7 CC12H 6 CC5H 10 CC16H 6 CC17H 5
$\begin{gathered} 1275 \\ (1271) \\ 1275 \\ (1273) \\ 1276 \\ (1273) \end{gathered}$	1296 1294 1278 1273 1268	1290 1286 1280 1271 1260	1293 1286 1274 1269 1261 1259	47 11 27 28 72	14 6 5	8 3 7 7 3 9	CC5H 14 CC4H1 10 CC2H 7 CC24H 8 CC25H 8 CC20H 7 CC23H 5 CC1H 11 CC8H 7 CC5H 5 CC16H 5 CC8H 6 CC1H 6 CC25H 5 CC24H 5 OCH 8 (s.c.) CC25H 7 CC20H 6 CC24H 5 CC8H 5	CC5H 20 CC 4 H 10 CC 1 H 8 CC 9 H 6 CCC 6 CC 2 H 5 O 1 C 2 H 5 CC 24 H 9 CC 20 H 8 CC 23 H 5 CC 8 H 5 CC 22 H 5 CC 1 H 13 CC 5 H 7 CC 8 H 10 CC 20 H 7 CC 24 H 7 CC 25 H 5 CC 16 H 5 CC 15 H 13 CC 16 H 8 CCC 8 CC 17 H 7 CC 8 H 7 CC 1 H 7 CC 20 H 6	CCH 11 (s.c.) CCH (skelet.) 10 CC5H 9 CC9H 5 CC9H 11 CC20H 6 CC24H 6 CCH 6 (skel.) CCH 6 (s.c.) CC11H 5 CC25H 12 CCH 9 (skelet.) CC23H 8 CC24H 7 CC15H 6 O5CH 5 CC1H 15 CC5H 8 O1C2H 7 CC3H 6 CC4H 6 CO2H 5 CCH 12 (s.c.) CC15H 11 CC16H 8 CC12H 6 CC17H 5 CC25H 5 CCC 5 CC24H 10 CC25H 10 O6C23H 6 CC23H 5 O5C22H 5 CC17H 5

TABLE 1. (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$v_{\exp }\left(v_{\mathrm{p}}\right)$} \& \multicolumn{3}{|l|}{$\mathrm{V}_{\text {calc }}$} \& \multicolumn{3}{|l|}{A} \& \multicolumn{3}{|l|}{PED, \%}

\hline \& I \& II \& III \& I \& II \& III \& I \& II \& III

\hline $$
\begin{gathered}
1225 \\
(1239) \\
1225 \\
(1238) \\
1225 \\
(1225)
\end{gathered}
$$ \& $$
\begin{aligned}
& 1249 \\
& 1241 \\
& 1240 \\
& 1236 \\
& \\
& 1232 \\
& 1226 \\
& 1218
\end{aligned}
$$ \& $$
\begin{aligned}
& 1249 \\
& 1242 \\
& 1239 \\
& 1236 \\
& 1233 \\
& 1224
\end{aligned}
$$
$$
1218
$$ \& 1248
1245
1239
1233
1225
1223 \& 51
113
14
24
150
9
17 \& 26
23
37
17

38
1
10 \& 87
5
4
1
2
2
7

- \& \begin{tabular}{l}
CC2H 8 CC11H 8 CC20H 6 CC14H 6 CC12H 5

CC1H 7 CC2H 6 CC17H 5 CC8H 5

CC17H 10 CC11H 10 CC15H 7 CC5H 5 CC12H 5 O4C7H 5

CC23H 8 CC20H 8 CC24H 7 O6CH 7 CO6H 6 O5CH 6 CCC 5

CC17H 6 CC11H 6 CC12H 6 CC1H 6 CC5H 5 CC15H 5

CC11H 16 CC15H 10 CC16H 8 CC8H 6

CC3H 23 CC4H 12 C1C2H 7 O1C2H 7 C3O2H 6

 \&

CC2H 7 CC11H 7 CC14H 6 CC12H 5 CC17H 5 CC20H 5

CC1H 7 CC2H 7 CC17H 5

CC17H 10 CC11H 8 CC15H 8 CC24H 8 CC5H 6 CC12H 5

CC23H 10 CC20H 9 CCC 7 CO6H 6 O5CH 6

CC22H 5 O6CH 5

CC17H 7 CC5H 6 CC11H 6 CC12H 6 CC1H 5 CC15H 5

CC11H 18 CC15H 9 CC16H 7

CC3H 24 CC4H 13 C1C2H 7 O1C2H 7 C3O2H 6 CCO 6 CClH 5

 \&

O4C7H 7 CC 6 CCC 5 CC4H 5 CC9H 5 C5C6=O3 5 O4C6=O3 5 CC7H 5

CC11H 6 CC12H 6 CC20H 6 CC14H 6 C17H 5 CC1H 9 CC2H 9 CC3H 6 CC17H 6

CC11H 10 CC17H 10 CC15H 9 CC12H 8 CC16H 6 CC1H 5

CC3H 18 CC4H 7 CC11H 7 C3O2H 6 C1C2H 6 O1C2H 5 CC11H 18 CC15H 8 CC16H 7
\end{tabular}

\hline $$
\begin{gathered}
1182 \\
(1159) \\
1182 \\
(1152) \\
1185 \\
(1180)
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 1188 \\
& 1187 \\
& 1176 \\
& 1162 \\
& 1156 \\
& 1156
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1198 \\
& 1185 \\
& 1180 \\
& 1161 \\
& 1155 \\
& 1151
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1202 \\
& 1183 \\
& 1181 \\
& 1174 \\
& 1159 \\
& 1150
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
3 \\
9 \\
28 \\
14 \\
22
\end{gathered}
$$
\] \& 28

8
6
7
5

15 \& \begin{tabular}{|c}
3

4

4

10

11

5

3

 \&

CC17H 7 CC18H 6 CCC 6 CC4H 6 CC1H 5 CC 12 H 5 CC1H 11 CC4H 10 CC11H 5 CC5H 5 CC19H 5

CC24H 6 CC25H 6 CCC 5

CCH 13 (skelet.) CCH $13+$ OCH 5 (s.c.)

CC12H 9 O4C7H 7 CC7H 8 CCC 5 CC15H 5

CC16H 6 CC7H 6 CC14H 6 CC11H 5 CC18H 5 CCC 5

 \&

C24C28H 14 C 29 C 28 H 11 CC 24 H 7 CC 25 H 7 CCC 6 CC 6

CC4H 15 CCC 7 CC3H 6 CC5H 6 OC3H 5 CC2H 5 CC1H 5

CC4H 8 CCC 6 C10C19H 5 CC15H 5

O4C7H 6 CC12H 5 CCC 5

CC12H 8 O4C7H 7 CC7H 7 CCC 5 CC18H 5

CC11H 6 CC12H 5 CC15H 5 CC16H 5

 \&

C24C28H 11 C29C28H 9 CC25H 9 CCC 7 (s.c.) CC22H 7 CC24H 6

CC7H 7 CC19H 6 CC2H 5 CC5H 5 CC15H 5 CC11H 5

CC1H 20 CC4H 9 O4C7H 8 C10C19H 7 CCC 7

CC2H 5

CCC 8 O4C7H 6 C10C19H 5 CC5H 5

CCH 14(skelet.)CC7H 7 CC22H 6 CCH 6 (s.c.)

CCH 17(skelet.)O4C7H 6 C8C7H 6 CC15H 5
\end{tabular}

\hline $$
\begin{gathered}
1141 \\
(1131) \\
1141 \\
(1132) \\
1143 \\
(1149)
\end{gathered}
$$ \& 1149

1131
1129
1124 \& 1147
1133
1131
1125 \& 1149
1137
1131
1124 \& 16 14 \& 15
27
15
18 \& 3
1
15 \& ```CC15H 9 CC8H 6 CC7H 5 CC17H 6 CC16H 5 CCC 5 CC2H 9 CC3H 8 CC4H 8 CC 7 CCC 7 CCO 6 OC2H 6 COH 5 CC16H 20 CC12H 8 CC12H 7 CC +CO 6 CC 16 H 5 CC 2 H 5 O 1 C 2 H 5``` \& ```
CC8H }8\mathrm{ CC7H }8\mathrm{ CC12H 6 CC11H 5 CC15H 5
CC17H 5
CC28H }24\mathrm{ CC27H 7 CC22H 6 CC23H 5 CC25H 5
CC29H 5
CC3H }9\mathrm{ CC2H 9 CC4H }7\mathrm{ CCC 7 OC2H 6 CCO 6
O2C3H 5
CC12H }8\mathrm{ CC16H }7\mathrm{ CC 7 CC2H }6\mathrm{ O1C2H }

``` & \begin{tabular}{l}
CC11H 7 CC17H 6 CC18H 5 CC14H 5 CCC 5 CC15H 5 CC22H 5 CC28H 20 CCH 17(s.c.) O5CH 5 \\
CCC 11 CCH 10(skelet.)CC3H 8 OC2H 6 CC1H 6 CC2H 5 C2OH 5 CC12H 5 CCH 15(skelet.) CC16H 13 O4C7H 5 CC21H 5 CC28H 5
\end{tabular} \\
\hline
\end{tabular}
TABLE 1. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(v_{\text {exp }}\left(v_{p}\right)\) & \multicolumn{3}{|l|}{\(V_{\text {calc }}\)} & \multicolumn{3}{|l|}{\(A\)} & \multicolumn{3}{|l|}{PED, \%} \\
\hline & 1 & II & III & 1 & II & III & I & II & III \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
1119 \\
(1112) \\
1119 \\
(1104) \\
1126 \\
(1122)
\end{gathered}
\]} & 1118 & 1114 & 1119 & 12 & 31 & 13 & CC16H 9 CC 7 (s.c.) CC26H 6 CC25H 5 CC20H 5 O5CH 5 & CC4H 13 CC3H 5 & \[
\begin{aligned}
& \text { CC12H } 10 \text { CC2H } 9 \text { CC3H } 7 \text { CCO } 7 \text { CC4H } 6 \text { CC } 6 \\
& \text { O2C3H } 5
\end{aligned}
\] \\
\hline & 1112 & 1113 & 3 & 9 & 2 & 4 & delocalized & CC16H 10 CC4H 6 CC22H 5 O5C22H 5 & CC16H 13 O4C7H 11 C8C7H 9 CC12H 7 CC15H 6 \\
\hline & 1111 & 1104 & 1105 & 25 & 86 & 23 & CC4H 12 CC 16 H 9 CC 3 H 5 & CC16H 7 CC4H 6 CC3H 5 CC 15 H 5 & CC4H 17 CC16H 7 CCC 7 \\
\hline & \multirow[t]{2}{*}{1104} & \multirow[t]{2}{*}{1100} & \multirow[t]{2}{*}{1092} & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{CC4H 10 CC 16 H 7 CC 12 H 6 CC 15 H 5 CC 3 H 5} & \multirow[t]{2}{*}{CC28H 14 CCC 13 (s.c.) CC29H 8 CC25H 6 CC24H 5} & \multirow[t]{2}{*}{CC12H 15 CC 4 H 12 CC 16 H} \\
\hline & & & & & & & & & \\
\hline \[
\begin{gathered}
1064 \\
(1074)
\end{gathered}
\] & 1082 & 1081 & 1088 & 8 & 67 & 8 & \[
\begin{aligned}
& (\mathrm{O} 4 \mathrm{C} 7 \mathrm{H}+\mathrm{CC} 7 \mathrm{H}) 7 \mathrm{CC} 16 \mathrm{H} 7 \mathrm{OCH} 7 \text { (s.c.) CC15H } \\
& 6 \mathrm{CCC} 5
\end{aligned}
\] & (O4C7H \(+\mathrm{CC} 7 \mathrm{H}) 12 \mathrm{CC} 25 \mathrm{H} 7 \mathrm{CC} 26 \mathrm{H} 5 \mathrm{CC} 16 \mathrm{H} 5\)
CC 12 H 5 & CCH 14 (s.c.) CC16H 12 CCH 8 (skel.) CCC 5 \\
\hline 1061 & 1079 & 1081 & 1080 & 17 & 1 & 4 & O4C7H 6 CC7H 5 OCH 6 (s.c.) CC16H 5 & \((\mathrm{O} 4 \mathrm{C} 7 \mathrm{H}+\mathrm{CC} 7 \mathrm{H}) 10 \mathrm{CC} 25 \mathrm{H} 9 \mathrm{CC} 26 \mathrm{H} 7 \mathrm{CC} 16 \mathrm{H} 6\) & CCH 20 (s.c.) CC15H 8 CCH 6 (skel.) (CCO+CCC) \\
\hline (1075) & \multirow[t]{2}{*}{1073} & \multirow[t]{2}{*}{1074} & \multirow[t]{2}{*}{1069} & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{CC15H 8 O4C7H 6 CC 2 H 6 O2C3H 5 CC 16 H 5} & \multirow[t]{2}{*}{CC15H 7 CC2H 6 OC7H 6 CCC 6 CC 5 O2C3H 5 CC16H 5} & 6 (s.c.) \\
\hline 1063 & & & & & & & & & CCH 16 (skelet.) CCC 11 O2C3H 6 CC2H 6 CC4H \\
\hline (1086) & 1072 & 1073 & 1063 & 13 & 8 & 2 & CC16H 12 CC 15 H 7 O4C7H 6 & \[
\begin{aligned}
& \text { OC22H } 7 \text { OC23H } 6 \text { OC } 7 \mathrm{H} 6 \mathrm{CC} 21 \mathrm{H} 5 \mathrm{CC} 5+\mathrm{CCO} \\
& 5+\mathrm{CCC} 6 \text { (s.c.) }
\end{aligned}
\] & \[
\begin{aligned}
& 6 \text { CCO } 5 \text { CC } 5 \\
& (\mathrm{CCH} 18 \text { CCC 13) (s.c.) CC15H } 7 \text { CC } 5 \mathrm{CC} 21 \mathrm{H} 5
\end{aligned}
\] \\
\hline & 1068 & 1070 & 1058 & 4 & 6 & 2 & CC26H 9 CC27H 8 CCC 7 (s.c.) CC15H 5 CC16H 5 & CC16H 15 CC15H 8 & O5CH 5 CC 27 H \\
\hline & 1063 & 1062 & 1056 & 4 & 19 & 1 & CC15H \(22 \mathrm{CC16H} 5\) & CC15H \(22 \mathrm{CC16H} 7\) & CC16H 25 CC15H 15 CCH 7 (skelet.) \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1056 \\
& 1045
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l|l}
1055 \\
1054
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1051 \\
& 1047
\end{aligned}
\]} & 3 & 3 & 3 & CC15H 8 CCC 8 O4C7H 7 CC19H 5 & CC15H 12 CC 27 H 6 CC 26 H 6 O4C7H 5 CC 12 H 5 & CC15H 16 CCH 9 (skelet.) CCH 7(s.c.) CC16H 5 \\
\hline & & & & & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{CC21H 11 CCC 8 (s.c.) CC18H 6} & \multirow[t]{2}{*}{C25C26H 8 C25C27H 8 CCC 6} & \multirow[t]{2}{*}{CC 15 H 16 CCH 11 (skelet.)
CC 12 H} \\
\hline & & & & 1 & & & & & \\
\hline & \multirow[t]{2}{*}{1042} & \multirow[t]{2}{*}{1044} & \multirow[t]{2}{*}{-} & \multirow[t]{3}{*}{3} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{CCC 17 CC15H 10 CC18H 8 CC 6 CC16H 6 CC8H 5} & \multirow[t]{2}{*}{CC21H 10 CCC 10 (s.c.) CC18H 5 CC27H 5 CC26H 5} & \multirow[t]{2}{*}{CC 26 H 15 CC 27 H 12 (CCH 13 CCC 7 CC 6 ) (s.c.)
C 24 C 28 H 5} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & - \\
\hline \[
\begin{gathered}
1025 \\
(1003)
\end{gathered}
\] & 1023 & 1035 & 1030 & 2 & 4 & 2 & CCC 9 CC11H 8 CC19H 8 O4C7H 6 CC12H 6 & CCC 15 CC 15 H 10 CC 18 H 8 CC 16 H 6 CC 6 CC 8 H 5 & CCC 16 CCH 10 (skelet.) O4C7H 8 CC15H 7 CC16H 5 CC8H 5 CC18H 5 \\
\hline 1023 & 1009 & 1024 & 1025 & 8 & 8 & 5 & CCC 13 CC 15 H 8 CC 6 CC 17 H 5 & \multirow[t]{3}{*}{CCC 10 CC 11 H 8 CC 19 H 7 O4C7H 5 CC12H 5 CCC 17 CC15H 10 CC 7 CC17H 5} & \multirow[t]{3}{*}{\begin{tabular}{l}
CCH 17 (skelet.) CCH1 11 (s.c.) CCC 5 \\
CC29H 15 CC21H 8 CC27H 8 CC26H 8 CCC 8 \\
(s.c.) CC28H 6
\end{tabular}} \\
\hline (1001) & \multirow[t]{2}{*}{1009} & \multirow[t]{2}{*}{1009} & \multirow[t]{2}{*}{1010} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{CC27H 14 CC26H 12 CC28H 12 CC21H 8 CCC 5 (s.c.)} & & \\
\hline 1027 & & & & & & & & & \\
\hline (1026) & 999 & 998 & 1004 & 16 & 56 & 1 & CC19H 15 CCC 11 CC3H 8 CC 5 CCO 5 & \multirow[t]{2}{*}{CC29H 25 C24C28H 18 CC27H 6 CC26H 6 CC21H 6 CC19H 13 CCC 15 CC3H 8 CC 6} & \multirow[t]{2}{*}{CCC 12 CC15H 10 CCH 9 (skelet.) CC16H 5 CC29H 5 CC 5} \\
\hline & 992 & 995 & 994 & 4 & 14 & 2 & CC28H 16 CC 21 H 13 CCC 9 (s.c.) CC27H 6 & & \\
\hline & \multirow[t]{3}{*}{975} & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{12} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { CC26H } 6 \\
& \text { CC28H } 21 \text { CC27H } 13 \text { CC26H } 11 \text { CCC } 7 \text { (s.c.) } \\
& \text { CC21H } 6
\end{aligned}
\]} & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{C28C29H 16 CC21H 13 C24C28H 7 C29C28H 6} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
TABLE 1. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(v_{\exp }\left(v_{p}\right)\)} & \multicolumn{3}{|l|}{\(\mathrm{v}_{\text {calc }}\)} & \multicolumn{3}{|l|}{A} & \multicolumn{3}{|l|}{PED, \%} \\
\hline & I & II & III & I & II & III & I & II & III \\
\hline \[
\begin{gathered}
964 \\
(954)
\end{gathered}
\] & 954 & 967 & 992 & 7 & 43 & 3 & CC19H 21 CCC 9 CC7H 8 HC19H 6 CC18H 5 & CC18H 12 CC21H 10 CC29H 7 CC15H 6 CC16H 5 CCC 5 & CC19H 13 CCC 11 CC3H 7 CC 5 CC4H 5 \\
\hline 967 & 946 & 958 & 973 & 9 & 10 & 8 & CC18H 14 CC 15 H 12 CC 16 H 9 CC 21 H 9 & CC18H 20 CC 21 H 19 & CC29H 14 CC21H 12 CCC 9 CC 18 H 7 \\
\hline \[
\begin{gathered}
(967) \\
985
\end{gathered}
\] & 935 & 945 & 958 & 1 & 37 & 1 & CC19H \(17 \mathrm{CC} 11 \mathrm{H} 8 \mathrm{CC} 21 \mathrm{H} 6 \mathrm{HC19H} 5\) & CC18H 11 CC15H 9 CC21H 7 CC16H 5 CC27H 5 CC19H 5 & CC18H \(20 \mathrm{CC} 21 \mathrm{H} 14 \mathrm{CC} 15 \mathrm{H} 6 \mathrm{CC16H} 5 \mathrm{CC} 29 \mathrm{H} 5\) \\
\hline (974) & - & 941 & 951 & - & 62 & 4 & - & CC19H 18 CC4H 6 CC27H 5 & CC19H 22 C8C7H 5 CC11H 5 CC 21 H 5 \\
\hline & & & 950 & - & - & 1 & - & - & CCH 12 (skelet.) CC19H 11 CC18H 7 CC15H 6 CC4H 6 CC11H 5 CCC 5 \\
\hline & & & 945 & - & - & 3 & - & - & CC15H 10 CC18H 9 CC21H 8 CC19H 7 CC16H 6 \\
\hline
\end{tabular}
Note. s.c., side chain; frequencies \(v_{p}\) of absorption band maxima of theoretical spectra of I, II, and III are given in parentheses.
the theoretical spectra were in general satisfactorily described by the main and strongest characteristic absorption bands of the examined region. For example, the maximum frequency shift of corresponding \(v_{\text {calc }}\) and \(v_{\text {exp }}\) bands was from \(14 \mathrm{~cm}^{-1}\) (1500-1200 \(\mathrm{cm}^{-1}\) range) to \(23 \mathrm{~cm}^{-1}\left(1200-950 \mathrm{~cm}^{-1}\right.\) ) for I, from 13 to \(30 \mathrm{~cm}^{-1}\) for II, and from 10 to \(23 \mathrm{~cm}^{-1}\) for III.

Table 1 lists the calculated frequencies, PEDs, and absolute intensities of normal modes located in the studied region that contributed most to the intensity of the summed band and the frequencies of band maxima in the theoretical spectra. It can be seen that each band of the experimental spectra had a complicated origin and consisted of several bands of various integrated intensities (the sum of Gaussian bands over the calculated absolute intensities and half-widths set from 8 to \(16 \mathrm{~cm}^{-1}\) ). For example, the strong band with two maxima at 1467 (I and II), 1469 (III), and \(1445 \mathrm{~cm}^{-1}\) in the experimental spectra ( \(1500-1425 \mathrm{~cm}^{-1}\) ) consisted of 15 (I and III) and 18 (II) constituent components.

The high-frequency part of this band with maxima at 1469 (III) and \(1467 \mathrm{~cm}^{-1}\) (I and II) in the studied compounds was formed mostly by bending vibrations of methyl and methylene groups. The low-frequency part with a maximum at \(1445 \mathrm{~cm}^{-1}\) originated in bending vibrations involving methyl and methylene groups and hydroxyls. An analysis of the data in Table 1 also suggested that slight structural differences in the molecules shifted the frequencies of several normal modes of similar shapes. In particular, conformational differences in the terminal part of their side chains affected the frequencies and intensities of normal vibrations with the main contribution to the PED of methyl and methylenes located in just this part of the side chain. For example, the normal mode with the main contribution to the PED from bending of \(\mathrm{C}_{2} 7 \mathrm{H}_{3}\) methyl bonds had a frequency of \(1424 \mathrm{~cm}^{-1}\) in I, \(1457 \mathrm{~cm}^{-1}\) in II, and \(1445 \mathrm{~cm}^{-1}\) in III.

Replacing the \(\mathrm{C} 28 \mathrm{H}_{3}\) methyl (I) in the side-chain C24-position by a \(\mathrm{C} 28 \mathrm{H}_{2} \mathrm{C}_{2} 9 \mathrm{H}_{3}\) ethyl (II and III) led to the appearance (instead of the normal mode with the main contribution to the PED from bending of \({\mathrm{C} 28 \mathrm{H}_{3}}\) methyl bonds with a frequency of \(1451 \mathrm{~cm}^{-1}\) ) of a normal mode with the main contribution to the PED from bending of groups in the
 that are designated 1 and 2. The high-frequency shift [1398 (II), 1402 (III), \(1437 \mathrm{~cm}^{-1}\) (I)] (Fig. 1, line 3) of the normal mode for the O 5 H hydroxyl and C 22 H and C 23 H methyls of the side-chain diol group could be explained by the configuration change of the C24-C28 bond [24S (II and III) and 24R (I)].

A change of the intensity ratio of the spectral maxima was characteristic of the second strong band in the range \(1500-1200 \mathrm{~cm}^{-1}\) with two maxima at 1404,1385 (III), and \(1386 \mathrm{~cm}^{-1}\) (I and II) in the experimental spectra \(\left(1425-1350 \mathrm{~cm}^{-1}\right)\) of the studied molecules. Also, the ratio of the peak intensity changed as compared to peak intensities of close-lying bands in the experimental spectra. This band strengthened with respect to bands with maxima at 1467 (I and II) and 1469 (III) and 1319 (I and II) and \(1318 \mathrm{~cm}^{-1}\) (III) on going from I and II to III. The ratio of peak intensities in these molecules followed an analogous trend in the theoretical spectra (Fig. 2).

An analysis of Table 1 showed that bending vibrations of methyls \(\mathrm{C} 26 \mathrm{H}_{3}, \mathrm{C}_{2} 7 \mathrm{H}_{3}\), and \(\mathrm{C} 29 \mathrm{H}_{3}\) situated in the terminal part of the side chain in III ( 1422 and \(1420 \mathrm{~cm}^{-1}\), Fig. 1, lines 4 and 5) contributed most to the intensity of the high-frequency portion of the band with a maximum at \(1404 \mathrm{~cm}^{-1}\); in II, bending vibrations of methyl \({\mathrm{C} 19 \mathrm{H}_{3} \text { located at the }}^{\text {l }}\), junction of rings \(A\) and \(B\) of the molecular skeleton (1412 and \(1410 \mathrm{~cm}^{-1}\), lines \(4^{\prime}\) and \(5^{\prime}\) ). Highly active bending vibrations of methyl \(\mathrm{C}_{2} 7 \mathrm{H}_{3}\left(1424\right.\) and \(1404 \mathrm{~cm}^{-1}\), lines 1 and 5) and bending vibrations of methylenes \({\mathrm{C} 16 \mathrm{H}_{2}}^{2},{\mathrm{C} 11 \mathrm{H}_{2}}^{2}\), and \(\mathrm{C} 1 \mathrm{H}_{2}\) of the molecular skeleton ( 1415 and \(1411 \mathrm{~cm}^{-1}\), lines \(4^{\prime}\) and \(5^{\prime}\) ) in I contributed noticeably to the high-frequency portion of this band. Normal modes with vibrational energy localized on both atoms incorporated into the molecular skeleton (ring \(A\), \(1386 \mathrm{~cm}^{-1}\), line 6) and in the terminal part of the side chain \(\left(1381 \mathrm{~cm}^{-1}\right.\), line 7) contributed most to the calculated integrated intensity of the low-frequency portion of this band with a maximum at \(1385 \mathrm{~cm}^{-1}\) in III. Conversely, normal modes with the main contribution to the PED of HCH and CCH bending vibrations of ethyl \(\mathrm{C} 28 \mathrm{H}_{2} \mathrm{C}_{2} 9 \mathrm{H}_{3}\) that was immediately adjacent to the diol group (1395 and \(1384 \mathrm{~cm}^{-1}\), lines \(6^{\prime}\) and \(7^{\prime}\) ) had the greatest absolute intensity in the calculated spectrum of II. Normal modes with the main contribution to the PED of HCH and CCH bending vibrations in the calculated spectrum of I both in the molecular skeleton ( 1391 and \(1387 \mathrm{~cm}^{-1}\), lines 6 and 7) and in the diol group and the atomic group immediately adjacent to it ( 1371 and \(1355 \mathrm{~cm}^{-1}\), lines \(6^{\prime}\) and \(7^{\prime}\) ) had the greatest absolute intensities. Because the diol located on C 22 and C23 had different configurations in I and II (22S,23S) and III (22R,23R), it obviously had different effects on the frequencies and intensities of the normal modes in this range. Thus, the main changes in the ratios of both the maximum intensities at 1404 and 1385 (III) and \(1386 \mathrm{~cm}^{-1}\) (I and II) and its intensity and close-lying bands in experimental spectra of the studied molecules were related to the different configurations of the diol and conformations of the side-chain terminal part as this band formed in them.

A third strong band of the experimental spectra in the range \(1500-1200 \mathrm{~cm}^{-1}\) was located in the range \(1350-1300 \mathrm{~cm}^{-1}\); had maxima at 1319 (I and II) and \(1318 \mathrm{~cm}^{-1}\) (III) [at 1309 (I), 1307 (II), and \(1308 \mathrm{~cm}^{-1}\) (III) in the
calculated spectra] and shoulders at \(\sim 1331\) (I and II) and \(1327 \mathrm{~cm}^{-1}\) (III) [1337 (I), 1331 (II), and \(1325 \mathrm{~cm}^{-1}\) (III)] (Fig. 2); and consisted according to the calculations of 12 (I) and 13 (II and III) components. Delocalized CCH bending vibrations (and OCH to a lesser extent) of all methine ( CH ) and methylene \(\left(\mathrm{CH}_{2}\right)\) groups of the molecular skeleton made the main contribution to the formation of this band. These vibrations [1339 and \(1309 \mathrm{~cm}^{-1}\) (I), 1330 and \(1308 \mathrm{~cm}^{-1}\) (II), 1343 and \(1307 \mathrm{~cm}^{-1}\) (III)] (Fig. 1, lines 8 and 9) in rings \(A\) and \(C\) of the molecular skeleton contributed most to the intensity (Table 1). Two weaker bands in this range with maxima at 1275 (I and II) and \(1276 \mathrm{~cm}^{-1}\) (III) [1271 (I), 1273 (II), and 1273 and \(1260 \mathrm{~cm}^{-1}\) (III) in the calculated spectra] and \(1225 \mathrm{~cm}^{-1}\) [1239 (I), 1238 (II), and \(1225 \mathrm{~cm}^{-1}\) (III)] (ranges 1300-1250 and 1250-1200 \(\mathrm{cm}^{-1}\) ) (Fig. 2) consisted according to the calculation of six (I and II) and seven (III) and eight (I and II) and seven band components (III), respectively. Like for the band discussed above, delocalized CCH bending vibrations of methines and methylenes made the main contribution to their formation (Table 1). A change in the intensity ratio of their peak intensities in experimental spectra of the studied molecules, i.e., a decrease in the intensity of the first band on going from III to I and II, was a characteristic feature of these two bands. An analogous trend was observed in the calculated spectra of these molecules (Fig. 2). Table 1 also shows that normal modes in which the vibrational energy was localized on diol groups and neighboring side-chain groups ( \(1259 \mathrm{~cm}^{-1}\), Fig. 1, line 10) contributed most to the integrated intensity of the first band in the calculated spectrum of III; vibrations involving the molecular skeleton [1296 \(\mathrm{cm}^{-1}\) (I), line 10 and \(1290 \mathrm{~cm}^{-1}\) (II), line 10'] and the diol and neighboring side-chain groups [ \(1268 \mathrm{~cm}^{-1}\) (I), line 10'], in I and II.

Delocalized CCH bending vibrations of methine \((\mathrm{CH})\) and methylene groups \(\left(\mathrm{CH}_{2}\right)\) of the molecular skeleton, among which normal modes with frequencies 1248 (III), 1239 and 1233 (II) (Fig. 1, lines 11, 11', and 12'), and 1241 and \(1232 \mathrm{~cm}^{-1}\) (I) (lines 11 and 12) contributed most to the integrated intensity despite the structural differences of these molecules being localized in the side chains, made the main contribution to the formation of the band at \(1250-1200 \mathrm{~cm}^{-1}\) in these molecules. It could be assumed that the change in the intensity ratio of the absorption bands in this range was related to the different configurations of the side-chain diol.

Experimental spectra of the studied compounds in the range \(1200-900 \mathrm{~cm}^{-1}\) consisted of a strong band with maxima at 1182 (I and II) and \(1185 \mathrm{~cm}^{-1}\) (III); a doublet with maxima at 1141 (I and II) and 1143 (III) and 1119 (I and II) and \(1126 \mathrm{~cm}^{-1}\) (III); and a broad absorption band with two clearly resolved maxima at 1064 (I), 1061 (II), and 1063 (III) and 1025 (I), 1023 (II) and \(1027 \mathrm{~cm}^{-1}\) (III) (Fig. 2). The strong band with maxima at 1185 (III) and \(1182 \mathrm{~cm}^{-1}\) (I and II) in the experimental spectrum \(\left(1200-1150 \mathrm{~cm}^{-1}\right)\) consisted according to the calculations for the studied compounds of 11 components, the main contribution to the formation of which came from bending vibrations of CCH and OCH methines and methylenes, CCC bending vibrations in the skeleton and side chain, and \(\mathrm{C}-\mathrm{C}\) stretching vibrations. This band strengthened relative to the absorption band with a maximum at \(\sim 1225 \mathrm{~cm}^{-1}\) on going from III to I and II.

Distinguishing features of this band as compared to those discussed above were a shape change of the vibrations in most normal modes forming it and a more noticeable role of the side chain, in particular, ethyl \(\mathrm{C}_{2} 8 \mathrm{H}_{2}{\mathrm{C} 29 \mathrm{H}_{3}}\). The absolute intensity of the normal mode at \(1198 \mathrm{~cm}^{-1}\) in II increased significantly as compared to the analogous vibration at \(1202 \mathrm{~cm}^{-1}\) in III. Bending vibrations of atomic moieties located in rings \(A\) and \(B\) in III and in rings \(B, C\), and \(D\) in I made the main contribution to its formation. These were normal modes with frequencies 1181 and 1174 (III) and 1162 and \(1156 \mathrm{~cm}^{-1}\) (I). It could be assumed that these changes in the formation of this band were associated with the different diol configurations of side-chain C22 and C23 of I, II, and III and with the different configurations of the C24-C28 bond [R (I) and S (II and III)].

Also, ethyl \(\mathrm{C}_{2} 8 \mathrm{H}_{2} \mathrm{C} 29 \mathrm{H}_{3}\) in II played an important role in the calculations in forming a doublet with maxima at \(\sim 1141\) (I and II) and 1143 (III) and 1119 (I and II) and \(1126 \mathrm{~cm}^{-1}\) (III) in the experimental IR spectra ( \(1150-1100 \mathrm{~cm}^{-1}\) ). Bands with maxima at 1131 and 1112 (I), 1132 and 1104 (II), and 1149 and \(1122 \mathrm{~cm}^{-1}\) (III) in the theoretical spectra corresponded to them (Fig. 2). Bending vibrations of ethyl CC 28 H contributed greatly in addition to CCH and OCH bending vibrations of methines and methylenes of the molecular skeleton to the total intensity of this doublet in II. This affected the intensity ratio of both maxima in this doublet absorption band (Fig. 2).

Experimental spectra of the molecules in the range \(1100-950 \mathrm{~cm}^{-1}\) showed a broad absorption band with two maxima that were strongest in the range \(1500-950 \mathrm{~cm}^{-1}\) at 1064 (I), 1061 (II), and 1063 (III) and 1025 (I), 1023 (II), and \(1027 \mathrm{~cm}^{-1}\) (III) and a weaker band at \(\sim 985\) (III) and a shoulder at \(\sim 964\) (I) and \(967 \mathrm{~cm}^{-1}\) (II) (Fig. 2). According to the calculations, these bands consisted of 20 component bands. An analysis of Table 1 showed that CCH bending vibrations of methyls, CCH and OCH bending vibrations of methines and methylenes, and bending (CCC) and stretching vibrations ( \(\mathrm{C}-\mathrm{C}\) ) of the skeleton and side chain made the main contribution to the formation of these strong maxima [at 1074 (I), 1075 (II), and 1086 (III) and 1003 (I), 1001 (II), and \(1025 \mathrm{~cm}^{-1}\) (III) in the theoretical spectra].

The activities of the \(\mathrm{C} 15 \mathrm{H}_{2}\) and \(\mathrm{C} 16 \mathrm{H}_{2}\) methylenes in five-membered ring \(D\) and the \(\mathrm{C} 7 \mathrm{H}_{2}\) methylene in sevenmembered ring \(B\) were noteworthy. The CCH and OCH bending vibrations involving these groups contributed noticeably to the integrated intensity of experimental bands with maxima near 1064 (I), 1061 (II), and 1063 (III) and 1025 (I), 1023 (II), and \(1027 \mathrm{~cm}^{-1}\) (III). Furthermore, the ethyl (methyl in I) on side-chain C 24 (and the \(\mathrm{C} 24-\mathrm{C} 28\) configuration) had a significant effect on the formation of bands at 1025 (I), 1023 (II), and \(1027 \mathrm{~cm}^{-1}\) (III) in experimental spectra of the studied molecules. For example, the normal mode in II at \(998 \mathrm{~cm}^{-1}\) that made the main contribution to the PED of the bending vibration of the CCH localized in this group had the maximum absolute intensity as compared to normal modes of this frequency range and contributed most to the integrated intensity of the band maximum at \(1001 \mathrm{~cm}^{-1}\) in the theoretical spectrum, which corresponded to the band maximum at \(1023 \mathrm{~cm}^{-1}\) in the experimental spectrum. Normal modes close to it in III ( 1010 and \(994 \mathrm{~cm}^{-1}\) ) with noticeable contributions to the PED of the ethyl CCH bending vibrations contributed less to the integrated intensity of the analogous band \(\left(1027 \mathrm{~cm}^{-1}\right)\). As a result, the intensities of band maxima at \(\sim 1027\) (III) and \(1023 \mathrm{~cm}^{-1}\) (II) changed on going from III to II in the theoretical and experimental spectra of the studied molecules.

Bending vibrations of CCH groups localized in this group and those adjacent to it in I made the main contribution to the PED of normal modes with frequencies 1009,992 , and \(975 \mathrm{~cm}^{-1}\) and contributed noticeably to the integrated intensity of the band maximum at \(1003 \mathrm{~cm}^{-1}\) in the theoretical spectrum, which corresponded to the band with a maximum at \(1025 \mathrm{~cm}^{-1}\) in the experimental spectrum. A weaker band at \(\sim 985 \mathrm{~cm}^{-1}\) in the low-frequency region of this spectral range of III transformed into a shoulder at \(\sim 967 \mathrm{~cm}^{-1}\) in the spectrum of II and at \(\sim 964 \mathrm{~cm}^{-1}\) in that of I (Fig. 2).

According to Table 1, the normal mode \(\left(973 \mathrm{~cm}^{-1}\right)\) with a significant contribution to the PED of the bending vibration of the CC 29 H methyl in the side-chain ethyl contributed noticeably to the integrated intensity of this band in the experimental spectrum of III. However, normal modes of atomic moieties in the molecular skeleton contributed noticeably to the integrated intensity in this range for I and II. Therefore, it could be proposed that the intensity change (transformation into a shoulder) of this absorption band in spectra of I and II was related to the different configurations of the side-chain diol.

Conclusions. A comparative analysis of calculated vibrational spectra of structurally similar PSs allowed a relationship to be found between their structural differences and changes of the IR spectra. It was found that small differences in the molecular structures led to either shape changes of several normal modes with similar frequencies or frequency shifts of several normal modes with similar shapes. As a result, the integrated intensities, shapes, and half-widths of the corresponding absorption bands changed. It was also found that differences in the C 22 and C 23 diol configuration ( \(22 \mathrm{~S}, 23 \mathrm{~S}\) in I and II and \(22 \mathrm{R}, 23 \mathrm{R}\) in III) and the conformation of the terminal part of the side chain in the studied molecules had large effects on the integrated intensities, shapes, and half-widths of absorption bands with maxima near 1404 and 1385 (III), 1386 (I and II), 1276 (III), \(1275 \mathrm{~cm}^{-1}\) (I and II) and 1225, 1143 (III), 1141 (I and II) and 1126 (III), 1119 (I and II) and 1027 (III), 1025 (I), 1023 (II), and \(985 \mathrm{~cm}^{-1}\) in the experimental IR spectra.

\section*{REFERENCES}
1. Y. Zhou, C. Garcia-Prieto, D. A. Carney, R. Xu, H. Pelicano, Y. Kang, W. Yu, C. Lou, S. Kondo, J. Liu, D. M. Harris, Z. Estrov, M. J. Keating, Z. Jin, and P. Huang, J. Natl. Cancer Inst., 97, 1781-1785 (2005).
2. T. Nakata, T. Yamada, S. Taji, H. Ohishi, S. Wada, H. Tokuda, K. Sakuma, and R. Tanaka, Bioorg. Med. Chem., 15, 257-264 (2007).
3. E. Hovenkamp, I. Demonty, J. Plat, D. Lutjohann, R. P. Mensink, and E. A. Trautwein. Prog. Lipid Res., 47, 37-49 (2008).
4. T.-M. Wang, T. Hojo, F.-X. Ran, R.-F. Wang, R.-Q. Wang, H.-B. Chen, J. R. Cui, M. Y. Shang, and S. Q. Cai, J. Nat. Prod., 70, 1429-1433 (2007).
5. V. A. Khripach, V. N. Zhabinskii, and A. E. de Groot, Brassinosteroids: A New Class of Plant Hormones, Academic Press, San Diego, CA (1999).
6. J. L. Nemhauser and J. Chory, J. Exp. Bot., 55, 265-270 (2004).
7. Y. Hu, F. Bao, and J. Li, Plant J., 24, 693-701 (2000).
8. S. Drosihn, A. Porzel, and W. Brandt, J. Mol. Model., 7, 34-42 (2001).
9. J. Malikova, J. Swaczynova, Z. Kolar, and M. Strnad, Phytochemistry, 69, 418-426 (2008).
10. A. Yu. Misharin, A. R. Mehtiev, V. N. Zhabinskii, V. A. Khripach, V. P. Timofeev, and Ya. V. Tkachev, Steroids, 75, 287-294 (2010).
11. N. A. Borisevich, I. V. Skornyakov, V. A. Khripach, G. B. Tolstorozhev, and V. N. Zhabinskii, J. Appl. Spectrosc., 74, 673-680 (2007).
12. N. A. Borisevich, D. K. Buslov, V. N. Zhabinskii, and V. A. Khripach, J. Appl. Spectrosc., 76, 617-622 (2009).
13. N. A. Borisevich and D. K. Buslov, J. Appl. Spectrosc., 77, 491-495 (2010).
14. V. M. Andrianov and M. V. Korolevich, J. Appl. Spectrosc., 75, 771-778 (2008).
15. V. M. Andrianov and M. V. Korolevich, in: Proceedings of the International Scientific Conference "Molecular, Membrane, and Cellular Principles of Biosystem Functioning" [in Russian], June 23-25, 2010, Minsk (2010), Vol. 1, pp. 302-304 (2010).
16. V. M. Andrianov, M. V. Korolevich, and A. A. Velchenko, J. Appl. Spectrosc., 86, No. 6, 965-974 (2019).
17. L. Kutschabsky, G. Adam, and H.-M. Vorbrodt, Z. Chem., 30, 136-145 (1990).
18. L. Kutschabsky and G. Reck, Private Communication to the Cambridge Structural Database, deposition number CCDC 201799 (2003).
19. M. V. Korolevich, Analytical Infrared Spectroscopy of Saccharides, Doctoral Dissertation in Physical-Mathematical Sciences, Minsk (2009).```


[^0]:    *To whom correspondence should be addressed.

