Skip to main content
Log in

Compact Near-Infrared Spectrometer for Quantitative Determination of Wood Composition

  • Published:
Journal of Applied Spectroscopy Aims and scope

A compact desktop near-infrared spectrometer with near-infrared spectrum acquisition software was developed based on fixed grating type fiber optic spectrometer with MEMS technology. The light source stability, baseline stability, instrument signal-to-noise ratio, and dark current drift are four important indicators for the performance test and evaluation of the spectral system. The test results show that the light source reaches a stable state after being warmed up for 2 s. The standard deviation of 100% T-line of 1200–1550 nm instrument is less than 0.0003, and the signal-to-noise ratio is 3000:1. The dark current relative standard deviation fluctuates between 0.0019 and 0.0035. Based on 88 samples of the crushed material of lumber for wood cellulose and lignin contents, the quantitative calibration model was established using multiple scatter correction spectra pretreatment method set up after the correction model of cellulose and lignin. Root mean square errors of calibration set of cellulose and lignin are 0.6096 and 0.9572%, respectively. Root mean square errors of prediction set of cellulose and lignin are 1.2884 and 1.7712%, respectively. The experimental results show that the developed small NIR spectrometer has a stable working state, and the prediction results for cellulose and lignin content based on the calibration model for powdery wood samples verify that the small NIR spectrometer has a high detection accuracy and can be used in the rapid detection of common materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eisenstecken, A. Panarese, P. Robatscher, C. W. Huck, A. Zanella, and M. Oberhuber, Molecules, 20, No. 8, 13603–13619 (2015).

    Article  Google Scholar 

  2. Y. Liu, Z. Xia, L. Yao, Y. Wu, Y. Li, S. Zeng, and H. Li, J. Food Comp. Anal., 84 (2019).

  3. Z. H. Zhang, X. X. Muo, Y. J. Guo, and W. Wang, Spectrosc. Spectr. Anal., 31, No. 7, 1975–1979 (2011).

    Google Scholar 

  4. J. H. Qu, D. Liu, J. H. Cheng, D. W. Sun, J. Ma, H. B. Pu, and X. A. Zeng, Crit. Rev. Food Sci., 55, No. 13, 1939–1954 (2015).

    Article  Google Scholar 

  5. B. Baca-Bocanegra, J. M. Hernandez-Hierro, J. Nogales-Bueno, and F. J. Heredia, Talanta, 192, 353–359 (2019).

    Article  Google Scholar 

  6. K. He, H. Cheng, W. Du, and F. Qian, Chem. Intel. Lab. Syst., 134, 79–88 (2014).

    Article  Google Scholar 

  7. L. J. Xie, A. C. Wang, H. R. Xu, X. P. Fu, and Y. B. Ying, T. Asab., 59, No. 2, 399–419 (2016).

    Article  Google Scholar 

  8. Q. Wen, H. J. Lei, J. Huang, F. Yu, L. K. Huang, Z. Zhang, D. L. Li, Y. C. Peng, and Z. Y. Wen, Appl. Opt., 58, No. 17, 4642–4646 (2019).

    Article  ADS  Google Scholar 

  9. M. Rani, C. Marchesi, S. Federici, G. Rovelli, I. Alessandri, I. Vassalini, S. Ducoli, L. Borgese, A. Zacco, F. Bilo, E. Bontempi, and L. E. Depero, Materials (Basel), 12, No. 17 (2019).

  10. M. Blanco and I. Villarroya, Trac-Trend Anal. Chem., 21, No. 4, 240–250 (2002).

    Article  Google Scholar 

  11. A. Sakudo, Clin. Chim. Acta, 455, 181–188 (2016).

    Article  Google Scholar 

  12. X. Y. Xiang, Z. Y. Wen, Z. C. Long, M. J. Hong, Y. Q. Liang, and Y. Xu, Spectrosc. Spectr. Anal., 29, No. 8, 2286–2290 (2009).

    Google Scholar 

  13. N. Odisio, M. Calabrese, A. Idone, N. Seris, L. Appolonia, and J. M. Christille, Eur. Phys. J. Plus, 134, No. 2, 16 (2019).

    Article  Google Scholar 

  14. Z. Xiong, F. Pfeifer, and H. W. Siesler, Appl. Spectrosc., 70, No. 4, 635–644 (2016).

    Article  ADS  Google Scholar 

  15. C. F. Zhou, G. T. Han, S. W. Gao, M. Y. Xing, Y. Song, and W. Jiang, BioResources, 13, No. 3, 6122–6132 (2018).

    Google Scholar 

  16. Y. Horikawa, S. Hirano, A. Mihashi, Y. Kobayashi, S. C. Zhai, and J. Sugiyama, Appl. Biochem. Biotechnol., 188, No. 4, 1066–1076 (2019).

    Article  Google Scholar 

  17. D. Mauruschat, B. Plinke, J. Aderhold, J. Gunschera, P. Meinlschmidt, and T. Salthammer, Wood Sci. Technol., 50, No. 2, 313–331 (2016).

    Article  Google Scholar 

  18. O. Elle, R. Richter, M. Vohland, and A. Weigelt, Sci. Rep., 9, 11 (2019).

    Article  Google Scholar 

  19. X. L. Jin, X. L. Chen, C. H. Shi, M. Li, Y. J. Guan, C. Y. Yu, T. Yamada, E. J. Sacks, and J. H. Peng, Bioresour. Technol., 241, 603–609 (2017).

    Article  Google Scholar 

  20. Y. H. Yun, H. D. Li, B. C. Deng, and D.-S. Cao, TrAC Trend. Anal. Chem., 113, 102–115 (2019).

    Article  Google Scholar 

  21. H. Li, J. X. Wang, Z. N. Xing, and G. Shen, Spectrosc. Spectr. Anal., 31, No. 2, 362–365 (2011).

    Google Scholar 

  22. A. Rinnan, F. V. D. Berg, and S. B. Engelsen, TrAC Trend. Anal. Chem., 28, No. 10, 1201–1222 (2009).

    Article  Google Scholar 

  23. P. A. M. Nascimento, L. C. D. Carvalho, L. C. C. Júnior, F. M. V. Pereira, and G. H. D. A. Teixeira, Postharvest Biol. Technol., 111, 345–351 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Qi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, p. 340, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Xiong, Z., Tang, H. et al. Compact Near-Infrared Spectrometer for Quantitative Determination of Wood Composition. J Appl Spectrosc 88, 461–467 (2021). https://doi.org/10.1007/s10812-021-01194-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01194-4

Keywords

Navigation