Skip to main content
Log in

Separation of Overlapping Spectral Lines Using the Tikhonov Regularization Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

An algorithm for separating overlapping spectral components using the Tikhonov weighted regularization method is proposed. Use of the weighting function allows one to significantly reduce the regularization parameters and separate closely spaced spectral lines. The problem of the appearance of spurious oscillations in a sparse solution is solved by an iterative algorithm for correcting the main matrix. An a posteriori minimum threshold algorithm is used to determine the regularization parameter that provides the maximum resolution of the method. Use of the algorithm fundamentally improves the quality of spectra processing and increases the information content of the spectroscopic methods. The efficiency of the proposed algorithm is shown using processing of model and experimental Mössbauer spectra as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hong, J. J. A. van Asten, S. R. Rankouhi, J.-W. Thielen, and D. G. Norris, J. Magn. Reson., 304, 53–61 (2019); https://doi.org/https://doi.org/10.1016/j.jmr.2019.05.002.

  2. V. Fernandez, D. Kiani, N. Fairley, F.-X. Felpin, and J. Baltrusaitis, Appl. Surf. Sci., 505, 143841 (2020), https://doi.org/https://doi.org/10.1016/j.apsusc.2019.143841.

  3. F. Ambrosino, Appl. Radiat. Isot., 159, 109090 (2020), https://doi.org/https://doi.org/10.1016/j.apradiso.2020.109090.

  4. J. M. Borrego, A. Conde, V. A. Pena-Rodriguez, and J. M. Greneche, Hyperfine Interact., 131, 67–82 (2000), https://doi.org/https://doi.org/10.1023/A:1010858927701.

  5. N. V. Baidakova, N. I. Chernykh, V. M. Koloskov, and Y. N. Subbotin, Ural Math. J., 3, No. 2, 33–39 (2017), http://dx.doi.org//https://doi.org/10.15826/umj.2017.2.005.

  6. F. Yue, Cheng Chen, Z. Yan, Chen Chen, Z. Guo, Z. Zhang, Z. Chen, F. Zhang, and X. Lv, Photodiagn. Photodyn. Ther., 32, 101923 (2020), https://doi.org/https://doi.org/10.1016/j.pdpdt.2020.101923.

  7. E. Juszynska-Galazka, N. Osiecka, and A. Budziak, Vib. Spectrosc., 92, 62–69 (2017), https://doi.org/https://doi.org/10.1016/j.vibspec.2017.05.004.

  8. P. Jutaporn, M. D. Armstrong, and O. Coronell, Water Res., 172, 115460 (2020), https://doi.org/https://doi.org/10.1016/j.watres.2019.115460.

  9. L. Liu, Y. Cheng, X. Sun, and F. Pi, Spectrochim. Acta, Part A, 197, 153–158 (2018), https://doi.org/https://doi.org/10.1016/j.saa.2018.01.022.

  10. J. Yang, X. Wang, R. Wang, and H. Wang, Geoderma, 380, 114616 (2020), https://doi.org/https://doi.org/10.1016/j.geoderma.2020.114616.

  11. N. Hakimi, A. Jodeiri, M. Mirbagheri, and S.K. Setarehdan, Comput. Biol. Med., 121, 103810 (2020), https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.103810.

  12. Z. Shafahi, S. Sina, and R. Faghihi, Radiat. Phys. Chem., 166, 108437 (2020), https://doi.org/https://doi.org/10.1016/j.radphyschem.2019.108437.

  13. A. L. Gavrilyuk, D. A. Osinkin, and D. I. Bronin, Electrochim. Acta, 354, 136683 (2020), https://doi.org/https://doi.org/10.1016/j.electacta.2020.136683.

  14. L. F. Ibanez and G. Jeschke, J. Magn. Reson., 300, 28–40 (2019), https://doi.org/https://doi.org/10.1016/j.jmr.2019.01.008.

  15. T. H. Edwards and S. Stoll, J. Magn. Reson., 288, 58–68 (2018), http://doi.org/https://doi.org/10.1016/j.jmr.2018.01.021.

  16. A. L. Ageev, M. E. Korshunov, T. Ye. Reich, T. Reich, and H. Moll, J. Inverse Ill-Posed Probl., 15, 767–783 (2007), https://doi.org/https://doi.org/10.1515/jiip.2007.041.

  17. S. Morigi, L. Reichel, and F. Sgallari, Numer. Algorithms, 43, 197–213 (2006), http://doi.org/https://doi.org/10.1007/s11075-006-9053-3.

  18. Zh. Zh. Bai, A. Buccini, K. Hayamic, and L. Reichel, J. Comput. Appl. Math., 319, 1–13 (2017), http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.12.023.

  19. A. Buccini, Appl. Numer. Math., 116, 64–81 (2017), http://dx.doi.org/https://doi.org/10.1016/j.apnum.2016.07.009.

  20. D. Bianchi, A. Buccini, M. Donatelli, and S. Serra-Capizzano, Inverse Probl., 31, 055005 (2015), https://doi.org/https://doi.org/10.1088/0266-5611/31/5/055005.

  21. G. K. Wertheim, Mössbauer Effect: Principles and Applications, Academic Press (2013).

  22. B. K. Teo, EXAFS: Basic Principles and Data Analysis, Springer (1986).

  23. J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division Perkin-Elmer Corporation (1992).

  24. T. Carlson, Photoelectron and Auger Spectroscopy, Springer US (1975), https://www.springer.com/gp/book/9781475701203.

  25. V. Sizikov and D. Sidorov, Appl. Spectrosc., 71, No. 7, 1640–1651 (2017), https://doi.org/https://doi.org/10.1177/0003702817694181.

  26. V. P. Gladkov, V. A. Kashcheev, A. Kh. Kuskov, and V. I. Petrov, J. Appl. Spectrosc., 71, No. 5, 731–735 (2004), https://doi.org/https://doi.org/10.1023/B:JAPS.0000049636.15453.0c.

  27. Yu. A. Babanov, O. M. Nemtsova, I. Yu. Kamensky, and S. S. Mikhailova, J. Electron. Spectrosc. Relat. Phenom., 182, No. 3, 90–96 (2010), https://doi.org/https://doi.org/10.1016/j.elspec.2010.07.008.

  28. G. D. Reddy, Appl. Math. Computation, 347, 464–476 (2019), https://doi.org/https://doi.org/10.1016/j.amc.2018.11.015.

  29. O. M. Nemtsova and G. N. Konygin, J. Appl. Spectrosc., 85, 931–935 (2018), https://doi.org/https://doi.org/10.1007/s10812-018-0741-2.

  30. V. E. Porsev, O. M. Nemtsova, and G. N. Konygin, Khim. Fiz. Mezoskopiya, 21, No. 4, 514–524 (2019), https://doi.org/https://doi.org/10.15350/17270529.2019.4.54.

  31. A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems, Winston & Sons, Washington (1977).

    MATH  Google Scholar 

  32. K. Pearson, London, Edinburgh Dublin Philos. Mag. J. Sci., 50, No. 5, 157–175 (1900).

  33. J. Prakash, D. Sanny, S. K. Kalva, M. Pramanik, and Ph. K. Yalavarthy, IEEE Trans. Med. Imaging, 38, No. 8, 1935–1947 (2019), http://doi.org/https://doi.org/10.1109/TMI.2018.2889314.

  34. B. Qiao, Junjiang Liu, Jinxin Liu, Zh. Yang, and X. Chen, Mech. Syst. Signal Process., 126, 341–367 (2019), https://doi.org/https://doi.org/10.1016/j.ymssp.2019.02.039.

  35. B. W. Rust and D. P. O'Leary, Inverse Probl., 24, 034005 (2008), http://doi:https://doi.org/10.1088/0266-5611/24/3/034005.

  36. L. Reichel, Numer. Algorithms, 63, 65–87 (2013), http://doi.org/https://doi.org/10.1007/s11075-012-9612-8.

  37. G. N. Konygin, E. P. Elsukov, and V. E. Porsev, Phys. Met. Metallogr., 96, No. 3, 298–304 (2003).

    Google Scholar 

  38. A. K. Arzhnikov, L. V. Dobysheva, G. N. Konygin, and E. P. Elsukov, Phys. Solid State, 47, No. 11, 2063–2071 (2005), https://doi.org/https://doi.org/10.1134/1.2131146.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Nemtsova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, pp. 315–324, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemtsova, O.M., Konygin, G.N. & Porsev, V.E. Separation of Overlapping Spectral Lines Using the Tikhonov Regularization Method. J Appl Spectrosc 88, 373–381 (2021). https://doi.org/10.1007/s10812-021-01185-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01185-5

Keywords

Navigation