Skip to main content
Log in

Fluorescence Spectrometry of the Interaction of Multi-Walled Carbon Nanotubes with Catalase

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction of multi-walled carbon nanotubes (MWCNTs) with catalase is investigated using fluorescence and circular dichroism spectroscopic techniques. The results of the fluorescence experiments suggest that MWCNTs quench the intrinsic fluorescence of catalase via a static quenching mechanism. The circular dichroism spectral results reveal the unfolding of catalase with a significant decrease in the α-helix content in the presence of MWCNTs, which indicates that the conformation of catalase is changed in the binding process, thereby remarkably decreasing its activity. The binding constants and the number of binding sites of the MWCNT to the catalase are calculated at different temperatures. The thermodynamic parameters, such as the changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), are calculated using thermodynamic equations. The fact that all negative values of ΔG, ΔH, and ΔS are obtained suggests that the interaction of the MWCNTs with catalase is spontaneous, and that hydrogen bonding and van der Waals interactions play an important role in the binding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, F. Zhang, and D. Zhao, Nano Today, 8, No. 6, 643–676 (2013).

    Article  Google Scholar 

  2. C. Cha, S. R. Shin, N. Annabi, M. R. Dokmeci, and A. Khademhosseini, ACS Nano, 7, No. 4, 2891–2897 (2013).

    Article  Google Scholar 

  3. K. Song, Y. Zhang, J. Meng, E. C. Green, N. Tajaddod, H. Li, and M. L. Minus, Materials, 6, No. 6, 2543–2577 (2013).

    Article  Google Scholar 

  4. B. T. Zhang, X. Zheng, H. F. Li, and J. M. Lin, Anal. Chim. Acta, 784, 1–17 (2013).

    Article  ADS  Google Scholar 

  5. S. Park, M. Vosguerichian, and Z. Bao, Nanoscale, 5, No. 5, 1727–1752 (2013).

    Article  ADS  Google Scholar 

  6. S. Y. Madani, A. Mandel, and A. M. Seifalian, Nano Rev., 4, 21521 (2013).

    Google Scholar 

  7. J. E. Kim, S. H. Kang, Y. Moon, J. J. Chae, A. Y. Lee, J. H. Lee, K. N. Yu, D. H. Jeong, M. Choi, and M. H. Cho, Chem. Res. Toxicol., 27, No. 2, 290–303 (2014).

    Article  Google Scholar 

  8. Y. Liu, Y. Zhao, B. Sun, and C. Chen, Acc. Chem. Res., 46, No. 3, 702–713 (2013).

    Article  Google Scholar 

  9. J. Du, S. Wang, H. You, and X. Zhao, Environ. Toxicol. Pharmacol., 36, No. 2, 451–462 (2013).

    Article  Google Scholar 

  10. R. Kumar and T. K. Banerjee, Clean-Soil Air Water, 41, No. 9999, 1–6 (2013).

    Google Scholar 

  11. K. K. Awasthi, P. J. John, A. Awasthi, and K. Awasthi, Micron, 44, 359–364 (2013).

    Article  Google Scholar 

  12. R. K. Srivastava, A. B. Pant, M. P. Kashyap, V. Kumar, M. Lohani, L. Jonas, and Q. Rahman, Nanotoxicology, 5, No. 2, 195–207 (2011).

    Article  Google Scholar 

  13. L. Whitmore and B. A. Wallace, Biopolymers, 89, No. 5, 392–400 (2008).

    Article  Google Scholar 

  14. J. G. Lees, A. J. Miles, F. Wien, and B. A. Wallace, Bioinformatics, 22, No. 16, 1955–1962 (2006).

    Article  Google Scholar 

  15. C. Zhang, S. Luo, and W. Chen, Talanta, 113, 142–147 (2013).

    Article  Google Scholar 

  16. L. Canesi, R. Fabbri, G. Gallo, D. Vallotto, A. Marcomini, and G. Pojana, Aquat. Toxicol., 100, No. 2, 168–177 (2010).

    Article  Google Scholar 

  17. M. Hossain, A. Y. Khan, and G. S. Kumar, J. Chem. Thermodyn., 47, 90–99 (2012).

    Article  Google Scholar 

  18. Y. Fan, S. Zhang, Q. Wang, J. Li, H. Fan, and D. Shan, Appl. Spectrosc., 67, No. 6, 648–655 (2013).

    Article  ADS  Google Scholar 

  19. J. Zhang, S. Zhuang, C. Tong, and W. Liu, J. Agric. Food Chem., 61, No. 30, 7203–7211 (2013).

    Article  Google Scholar 

  20. Y. C. Fan, X. Y. Gong, J. Li, L. Zhang, and C. J. Sun, Spectrosc. Lett., 46, No. 4, 257–263 (2013).

    Article  ADS  Google Scholar 

  21. Y. Z. Zhang, J. Zhang, F. F. Li, X. Xiang, A. Q. Ren, and Y. Liu, Mol. Biol. Rep., 38, No. 4, 2445–2453 (2011).

    Article  Google Scholar 

  22. Y. Fan, S. Zhang, Q. Wang, J. Li, H. Fan, and D. Shan, Spectrochim. Acta, A, 105, 297–303 (2013).

    Article  ADS  Google Scholar 

  23. P. D. Ross and S. Subramanian, Biochemistry, 20, No. 11, 3096–3102 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Cai.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 5, pp. 723–728, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Li, Y., Cai, H. et al. Fluorescence Spectrometry of the Interaction of Multi-Walled Carbon Nanotubes with Catalase. J Appl Spectrosc 81, 795–800 (2014). https://doi.org/10.1007/s10812-014-0016-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-0016-5

Keywords

Navigation