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Abstract
Phycocyanin is an interesting alternative to synthetic food colorants. Various methods to obtain phycocyanin from Arthrospira 
(Spirulina) biomass have been described in the literature, including ultrasonication, glass bead extraction and freeze-thawing. 
In this study, three optimized procedures were implemented to assess their efficacy in obtaining phycocyanin from Arthrospira 
maxima biomass, facilitating a comparative analysis of their effectiveness. After harvesting the biomass, extraction processes 
were conducted utilizing ultrasonication followed by flocculation with chitosan in various organic acid solutions, as well as 
glass bead extraction and freeze-thawing techniques, each followed by centrifugation. The obtained extracts were analyzed 
spectrophotometrically across the wavelength range of 280 to 800 nm. The freeze-thawing method yielded the highest C-PC 
contents at 17.03 ± 0.53%, followed closely by the ultrasonication method at 15.21 ± 0.41%. The highest purity of 2.02 ± 
0.01 was attained through ultrasonication and subsequent flocculation with chitosan in acetic acid. Conversely, employing 
chitosan dissolved in citric or lactic acid for flocculation resulted in greenish extracts containing high amounts of chlorophyll.
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Introduction

In recent years consumer awareness of the potential risks 
posed by certain food additives has increased. This is par-
ticularly evident in the case of synthetic food colorants, as 
several of these dyes have been shown to elevate the risk of 
developing cancer or immunological diseases (Martelli et al. 
2014). Consequently, laws prohibit the use of known harm-
ful substances in food production. However, other synthetic 
food dyes remain available for industrial purposes due to 
their cost-effectiveness, high efficacy, reliability, and chemi-
cal stability (Chen et al. 1998). Specifically concerning blue 
food colorants, the industry faces a shortage of alternatives 
to synthetic dyes (Newsome et al. 2014).

One alternative could be phycocyanin (PC), a protein 
found in cyanobacteria (C-PC) and Rhodophyta (R-PC), 
where it plays a major role in photosynthesis as an 

accessory pigment of bright cobalt-blue color (Horváth 
et al. 2013; Singh et al. 2015). The PC molecule consists 
of two subunits, α (ca. 19 kDa) and β (ca. 21 kDa). Within 
the cell, the PC mostly occurs in its trimeric (αβ)3 or hexa-
meric (αβ)6 form, displaying a ring-like structure of one 
ring (trimer) or two stacked rings (hexamer) (Abalde et al. 
1998). PC is hydrophilic and belongs to the group of phy-
cobiliproteins (PBP). The bright blue color of PC is due 
to the covalently bound chromophore phycocyanobilin 
(PCB), a tetrapyrrole derivative attached to the apopro-
tein by thioether bounds at the  84th amino acid in both 
the α and the β subunit. Additionally, a third PCB group 
is attached to the  155th amino acid of the β subunit. The 
amino acid sequence of PC mostly forms helical areas, 
displaying a topological structure similar to the heme 
group in the myoglobin molecule (Stec et al. 1999). In 
cyanobacteria, C-PC hexamers are part of the so-called 
phycobilisomes (PBS). These PBS are protein structures 
with antenna-like protein stacks consisting of C-PC and 
phycoerythrin (PE), another PBP of reddish color. The 
antennas are attached to a third light-blue PBP, allophy-
cocyanin (APC), which itself is attached to photosystem 
II within the thylakoid membrane of cyanobacteria and 
eukaryotic chloroplasts. These PBS enable the utilization 
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of light energy by electron transfer for the photosystem 
II, making it possible for the cyanobacterium to perform 
photosynthesis (Samsonoff and MacColl 2001; Singh et al. 
2015). Moreover, it also has been demonstrated that pho-
tosystem I is also provided with energy from phycobilins 
(Mullineaux 2008; Singh et al. 2015).

In addition to its use as a food colorant, phycocyanin (PC) 
is recognized for its antioxidative capacity and is therefore 
a subject of ongoing research. The incorporation of phy-
cocyanin into a mayonnaise product enhanced its antioxi-
dative capacity, qualifying the resulting product as a func-
tional food (Khorsand et al. 2021). Studies investigating the 
impact of C-PC in the diet of European seabass under heat 
stress conditions have demonstrated its ability to enhance the 
fish's resistance to heat stress (Islam et al. 2021). Similarly, 
research on Nile tilapia subjected to heat stress has yielded 
comparable findings, albeit with a much higher dosage of 
C-PC per kilogram of feed used in the experiment (El-Araby 
et al. 2022). Furthermore, the beneficial effects of supple-
menting feed with C-PC have been observed in mammals, 
particularly rabbits (Abdelnour et al. 2020).

The majority of phycocyanin (PC) for industrial demand 
is typically extracted from cyanobacteria, specifically 
Arthrospira platensis or Arthrospira maxima, commonly 
referred to as Spirulina (Eriksen 2008; Sekar and Chan-
dramohan 2008; Moraes et al. 2011). Like all cyanobacteria, 
Spirulina performs oxygenic photosynthesis to obtain energy 
for the synthesis of sugar molecules. Spirulina consists of 
unicellular species that collectively form long helically-
shaped filaments (Tomaselli 1997). For optimal growth, 
Spirulina requires a temperature between 30 and 35°C, and 
a pH between 9 and 11 (Usharani et al. 2012). The natural 
habitats of Spirulina are tropical or subtropical water bod-
ies with high concentrations of carbonates and bicarbonates 
(Rajasekaran et al. 2016). The beneficial value of Spir-
ulina for human nutrition is contributed by the high protein 
content of 55-70 % by reference to the dry matter content 
(Oliveira et al. 1999; Babadzhanov et al. 2004; Aouir et al. 
2017). Besides, Spirulina is rich in polysaccharides, unsatu-
rated fatty acids, vitamins, minerals and antioxidative sub-
stances like C-PC (Rajasekaran et al. 2016; Jung et al. 2019). 
It is also assumed, that the intake of large amounts of intact 
bacteria cells has a positive impact on the competence of the 
immune system and displays anti-inflammatory, antioxida-
tive, and anti-carcinogenic properties (Hayashi et al. 2006; 
Eriksen 2008). That makes the cyanobacterium itself a valu-
able food for human nutrition. The United States Food and 
Drug Administration allowed the use of Spirulina products 
in 2013 for various food categories like bakery products, 
ice cream, beverages, and chewing gums (FDA 2013). The 
market volume for Spirulina products in 2016 was estimated 
to be 700 million US dollars and predicted to reach 2 billion 
US dollars by 2026 (Soni et al. 2021).

For the extraction of phycocyanin, various methods have 
been described, including freeze-thawing (Doke 2005; 
Prabhath et al. 2019; Tan et al. 2020), glass bead extrac-
tion (Moraes et al. 2011), and ultrasonication (Furuki et al. 
2003). A common problem in C-PC extraction is the pres-
ence of chlorophyll in the extract (Doke 2005; Günerken 
et al. 2015; Li et al. 2020). In this study, three different 
extraction methods were compared to evaluate the C-PC 
yield, purity, and selectivity obtained by these methods. 
Fresh biomass harvested from one single culture was used 
to perform all three extractions simultaneously. Freeze-thaw-
ing and glass bead disruption were performed followed by 
centrifugation. As an interesting alternative, ultrasonication 
and subsequent flocculation with chitosan-acid solution was 
established. This method offers the advantage of replacing 
the expensive centrifugation step with flocculation, which 
can be more easily scaled up.

Materials and methods

Spirulina cultivation

Arthrospia maxima UTEX 2342 (purchased from Culture 
Collection of Algae, University of Texas, Austin, USA). It 
was cultivated in a 10 L algabag (algatec GbR, Germany) 
in half-concentrated Spirulina medium (by Culture Collec-
tion of Algae Göttingen, Germany, version of March 2007) 
at 25°C for 33 days. The culture was aerated and the light 
intensity was set at 63 µmol photons  m-2  s-1 emitted by 
VALOYA C75 DIM spectrum AP67 (Valoya Ltd, Finland). 
Biomass increase was measured using photometric absorp-
tion measurement at 800 nm  (OD800).

Biomass harvesting

The biomass was harvested during the exponential growth 
phase at  OD800 = 1.32 and concentrated by filtering through 
a 40 µm mesh tissue. The concentrated biomass was then 
washed twice by adding deionized water in 50 mL tubes (1:2 
w/v), thoroughly shaken, centrifuged (3,500 rpm, 10 min), 
and the supernatant was discarded. The washed biomass was 
stored at 4°C for 18 h. Subsequently, the dry matter content 
was measured thermo-gravimetrically and the biomass was 
used for C-PC extraction. In total, 28.83 g of wet biomass 
with a dry matter content of 12.58 % were obtained and used 
for the three different extraction procedures described below.

Ultrasonication‑assisted extraction

For cell lysis and C-PC extraction using ultrasonication, 
15 g of the harvested biomass were mixed with 135 g of 
deionized water (1:10, w/w) to adjust the dry matter content 
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to 1.26 %. The cell suspension was then processed using a 
UP100H ultrasonic processor with MS7D sonotrode (0,8 s 
interval, 100 % intensity) and D7K flow-through cell (Hiels-
cher Ultrasonics GmbH, Germany). The processing was 
carried out using a peristaltic pump (100 mL  s-1) and ultra-
sonicated for 27 min (equivalent to 18 flow-through cycles). 
After confirming successful cell disruption by microscopy, 
the cell suspension was divided into 3 subsamples, each with 
a volume of 50 mL, and stored at 4°C for 1 h. Each sub-
sample was then mixed with 5 g of a 1 % chitosan Heppix 
AS solution (Separ Chemie GmbH, Germany). The chitosan 
was dissolved beforehand in either acetic acid, citric acid, or 
lactic acid (10 % acid concentration each). After adding the 
different chitosan-acid solutions, all three subsamples were 
stirred for 10 min at 80 rpm and then filtered with a 60 µm 
plankton sieve. The resulting filtrates were considered the 
C-PC extracts, and the pH and absorption spectrum were 
measured.

Freeze‑thawing

The remaining biomass (10 g) was mixed with 40 mL  CaCl2 
solution (10 g  L-1). An aliquot of 2 mL was taken and used 
for glass bead extraction (as described in the next chapter). 
The remaining cell suspension was divided into several 
micro reaction tubes and frozen at -80°C. After 18 h, the cell 
suspension was thawed at room temperature for 4 h and then 
refrozen at -80°C. After another 20 h, the cell suspension 
was thawed for 4 h and then centrifuged (10,000 rpm, 30 
min, 4°C). The supernatants were measured photometrically.

Glass bead extraction

A 2 mL aliquot of the cell suspension in  CaCl2 solution 
(10 g  L-1), as mentioned before, was used for glass bead 
extraction. For every replicate, 500 µL of the cell suspension 
was pipetted into a micro reaction tube already filled with 
500 mg of glass beads (Ø 0.25 – 0.5 mm; Verder Scien-
tific GmbH & Co. KG, Germany). The micro reaction tubes 
were applied to a bead mill (Retsch bead mill MM301; Ver-
der Scientific) and underwent cell lysis using 4 disruption 
cycles with 30 Hz for 25 s each with 30 s of cooling phase 
in between. After disruption, the samples where kept on ice 
and then centrifuged (10,000 rpm, 30 min, 4°C). The bluish 
supernatants were measured photometrically.

Photometric analysis
The C-PC concentration and purity were determined by 
measuring the absorption spectrum from 280 to 800 nm 
using a Genesys 50 UV/VIS spectrophotometer (Thermo-
Fisher Scientific Inc., USA). Prior to measurement, the 
extracts were appropriately diluted with deionized water to 

ensure they fell within the linear measuring range. Concen-
trations and purities were calculated using equations origi-
nally proposed by Bennett and Bogorad (1973):

where CC-PC is C-PC concentration in the extract; Ax is 
absorption of the final extract at the wavelength x; purityC-PC 
is the purity of the C-PC in the extract calculated as the 
ratio of absorptions at 620 nm and 280 nm. C-PC content 
is expressed as percentage (w/w) (representing gram C-PC 
per 100 gram dry matter). The selectivity as the ratio of the 
absorption at 620 nm and 680 nm was elected as an indica-
tor to evaluate the presence of undesired chlorophyll a in 
the extract.

where AX is absorption of the final extract at the wavelength 
X.

The mean absorption spectra of all five extracts were 
generated by calculating the arithmetic mean of the meas-
ured wavelengths for each extract. Subsequently, the 
five mean absorption spectra were normalized by setting 
the absorption at 620 nm as 1 (equivalent to 100 %) and 
assigning relative values to all other absorptions based on 
this reference point. To achieve this, the lowest measured 
absorption was subtracted from every absorption in the 
spectrum. Then, each of these values was multiplied by the 
reciprocal of the absorption at 620 nm (after subtracting 
the lowest measured absorption).

Statistical analysis

The glass bead extraction as well as the freeze-thawing 
extraction were conducted as separate triplicates (n=3). 
The three results were utilized to compute the arithme-
tic mean (x ̄) and standard deviation (SD). Conversely, 
the ultrasonication-assisted extraction was not performed 
in separate triplicates. Instead, the cell suspension was 
prepared in a single batch. Subsequent to cell disruption, 
this suspension was divided into three subsamples, and 
each was treated with a different chitosan-acid solution 
for flocculation. The extract resulting from each of the 
three different treatments was measured three times (n=3). 
Following measurement, the three results for each extract 
were used to calculate the arithmetic mean (x ̄) and stand-
ard deviation (SD).

(1) cC−PC
[

mg ⋅ mL−1
]

=
A
620

− 0.474 ∗ A
650

5.34

(2) purityC−PC[−] =
A
620

A
280

(3) selectivity [−] =
A
620

A
680
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Results

The five resulting C-PC extracts (ultrasonication with chi-
tosan-acetic acid, chitosan-citric acid, and chitosan-lactic 
acid flocculation solution, glass bead extraction, and freeze 
thawing) were analyzed spectrophotometrically. The dry 
matter content of the initial biomass (washed and concen-
trated) was 12.58 ± 0.84 %. The total yield of dry matter 
from the culture was 0.76 g  L-1. For the ultrasonication-
assisted extraction, the dry matter content of the cell suspen-
sion was adjusted to 1.26 % with deionized water. For both 
glass bead extraction and freeze-thawing extraction, the dry 
matter content was adjusted to approximately 2.5 % with 
 CaCl2 solution.

The C-PC concentrations of the five different extracts 
were: 5.11 ± 0.16 mg  mL-1 (freeze-thawing), 2.98 ± 0.20 
mg  mL-1 (glass bead extraction), 2.23 ± 0.06 mg  mL-1 
(ultrasonication and subsequent chitosan-acetic acid floc-
culation), 1.17 ± 0.08 mg  mL-1 (ultrasonication and subse-
quent chitosan-citric acid flocculation), and 1.48 ± 0.02 mg 
 mL-1 (ultrasonication with subsequent chitosan-lactic acid 
flocculation). The highest purity of C-PC was observed in 
the ultrasonicated sample with subsequent chitosan-acetic 
acid flocculation (2.02 ± 0.01) and the freeze-thawed sam-
ple (1.94 ± 0.01). The lowest purity was found in the ultra-
sonicated samples followed by chitosan-citric and lactic acid 
flocculation (1.00 ± 0.06 and 1.28 ± 0.06, respectively). The 
extract obtained by glass bead extraction and centrifuga-
tion had a purity of 1.58 ± 0.01. C-PC concentration and 
purity of the five final extracts are displayed in Fig. 1. With 
regard to the dry matter content used for the different extrac-
tion methods, the highest C-PC content was 17.03 ± 0.53 % 
for the freeze-thawed samples, followed by ultrasonication 

with subsequent chitosan-acetic acid flocculation (15.21 ± 
0.41 %). The C-PC content was lower for glass bead extrac-
tion (10.92 ± 0.74 %) and for the ultrasonication followed 
by chitosan-lactic acid flocculation (10.11 ± 0.13 %) and 
chitosan-citric acid flocculation (8.02 ± 0.58 %). The results 
are presented in Fig. 2.

The normalized absorption spectra of the five different 
extracts (Fig. 3) all showed a distinct peak with maximum 
absorption at 620 nm (ultrasonication with flocculation) 
or 616 nm (glass bead extraction and freeze-thawing). The 
ultrasonicated samples with flocculated with chitosan-citric 
and lactic acid solution additionally showed higher absorp-
tion in the area from 280 nm to 480 nm and around 680 
nm. The glass bead extracted and the freeze-thawed samples 
displayed a marginal higher absorbance at around 650 nm.

The ratio of the absorption of 620 nm to 680 nm used as 
an indicator for the selectivity of the extraction method was 
highest for freeze-thawing (27) and glass bead extraction 
(22) (Fig. 4). The bluish extract of the ultrasonicated sam-
ple treated with chitosan-acetic acid solution had a ratio of 
around 15. The ultrasonicated samples treated with chitosan-
citric and lactic acid flocculation had values of ca. 4 and 2, 
respectively.

The final pH of the ultrasonicated extracts was 4.03 
(for chitosan-acetic acid flocculation), 3.14 (for chitosan-
citric acid flocculation), 3.02 (for chitosan-lactic acid floc-
culation). The pH of the extract obtained by bead mill 
extraction was 7.14, while the freeze-thawing extract 
had a pH of 6.49. The freeze-thawed extract, the extract 
from glass bead extraction and the one from ultrasonica-
tion using chitosan-acetic acid solution for flocculation 
exhibited an intense bluish colour (‘cobalt blue’), while 

Fig. 1  C-PC concentration and purity of extracts obtained from A. 
maxima by different extraction methods: ultrasonication followed by 
flocculation with chitosan in acetic acid (A), citric acid (B), lactic 
acid (C); glass bead extraction followed by centrifugation (D); freeze-
thawing followed by centrifugation (E); values display the arithmetic 
mean of the triplicates (n=3); error bars show the standard deviations

Fig. 2  C-PC contents of A. maxima biomass obtained by different 
extraction methods: ultrasonication followed by flocculation with 
chitosan in acetic acid (A), citric acid (B), lactic acid (C); glass bead 
extraction followed by centrifugation (D); freeze-thawing followed by 
centrifugation (E); values display the arithmetic mean of the tripli-
cates (n=3); error bars show the standard deviations
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the ultrasonicated samples with citric and lactic acid-
containing flocculation solution displayed a more green-
ish proportion (‘aqua green’) in their color composition 
(Fig. 5).

Discussion

While A. platensis is well known for its C-PC content and 
has been the subject of various studies regarding extrac-
tion methods, publications on the extraction of C-PC from 
A. maxima are less numerous. However, at the cellular 
level, both, A. platensis and A. maxima exhibit remarkable 

similarity, despite minor differences in cell morphology and 
the trichomes have been described (Tomaselli 1997). The 
chemical composition of both species is also very similar 
with respect to protein, carbohydrate, and lipid content, as 
well as the fatty acid composition. Contrarily, A. maxima 
demonstrated a better growth when culturing temperature 
was chosen to be between 20 and 40°C. At optimal cultur-
ing temperature of 30°C, the protein content in A. maxima 
was slightly higher than in A. platensis, while not varying 
significantly at other temperatures (Oliveira et al. 1999).

CPC concentration and content

The freeze-thawing method, which has been described as 
one of the most effective and simplest methods for C-PC 
extraction (Tan et al. 2020), provided the highest C-PC con-
centration (5.11 mg  mL-1) in this study. This value exceeds 
most reported values for C-PC concentration in literature for 
C-PC extracts from A. maxima (Nisticò et al. 2022) and A. 
platensis (Silveira et al. 2007; Moraes et al. 2011; Aoki et al. 
2021). For glass bead extraction, conducted with the same 
biomass concentration as the freeze-thawing extraction, the 
C-PC concentration was found to be 2.98 mg  mL-1. The 
lower C-PC concentration in the glass bead extracts (approx-
imately 60% compared to freeze-thawing approach) can be 
attributed to less effective cell disruption. The ultrasonica-
tion method, which utilized lower biomass concentrations, 
led to extracts with C-PC concentrations ranging from 2.23 
to 1.17 mg  mL-1. The C-PC concentration in the resulting 
extract is strongly influenced by the dry matter concentration 
used, while the C-PC yield per dry matter is not. However, 
Tan et al (2020) stated that in freeze-thawing extraction, 
even a dry matter contents of 4 % can lead to reduced C-PC 
contents compared to 0.5 and 2 %, which gave higher C-PC 
contents not significantly differing among each other. Initial 
dry matter contents of more than 8 % were shown to result 
in high concentrated cell suspensions in which extractant 
efficiency is reduced (Silveira et al. 2007).

In this study the freeze-thawing method obtained the 
highest C-PC content (17.03 %) indicating the most effective 
extraction procedure. This was followed by the ultrasonica-
tion method combined with flocculation using chitosan in 
acetic acid (15.21 %). These values exceed those reported in 
most other publications for C-PC extraction from A. platen-
sis using various methods and for extraction from A. maxima 
via stirring for 24 h (Nisticò et al. 2022). A comparison of 
the results from this study with those from other publica-
tions can be found in Tab. 1. In all of these publications, 
deionized water or sodium phosphate buffers were used for 
C-PC extraction. However, in this study, a calcium chloride 
solution was used because previous experiments (results not 
shown) demonstrated its superiority over other extractants 
(deionized water, phosphate buffers). Therefore, the high 

Fig. 3  Normalized absorption spectra of C-PC extracts obtained from 
A. maxima by different extraction methods: ultrasonication followed 
by flocculation with chitosan in acetic acid (A), citric acid (B), lactic 
acid (C); glass bead extraction followed by centrifugation (D); freeze-
thawing followed by centrifugation (E)

Fig. 4  Ratio of absorption at 620 nm  (A620) to absorption at 680 nm 
 (A680) as an indicator for the selectivity of C-PC extracts obtained 
from A. maxima by different extraction methods: ultrasonication fol-
lowed by flocculation with chitosan in acetic acid (A), citric acid (B), 
lactic acid (C); glass bead extraction followed by centrifugation (D); 
freeze-thawing followed by centrifugation (E); values display the 
 A620/  A680-values of the normalized spectra
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C-PC contents obtained via freeze-thawing can be partially 
attributed to the choice of extractant. This contrasts with 
the results on the efficiency of different extractants, which 
found no significant differences between sodium chloride 
solution, calcium chloride solution, deionized water, and 
phosphate buffer (pH 7) in terms of the C-PC concentration 
obtained (Silveira et al. 2007). Interestingly, Tan et al. (2020) 
who also employed the freeze-thawing extraction method, 
reported a similar C-PC content of 17.28 % (and also a simi-
lar purity). However, Ruiz-Domínguez et al. (2019) using 
spray-dried A. maxima powder demonstrated that less com-
mon cell disruption methods such as high-pressure homog-
enization and microwaving, but also freeze-thawing, could 
result in even higher C-PC contents of 29.2 %, 21.1%, and 
22.6 %, respectively. This is more than the assumed average 
C-PC content of 14-20 % in Spirulina dry matter (Ali and 
Saleh 2012; Vernès et al. 2015), indicating that both, the 
high efficiency of the extraction methods and a high pro-
tein or C-PC content of the Spirulina cells due to the strain 
characteristics or the optimization of culturing conditions 
contributed to the high C-PC contents. For A. platensis, even 
simple cell lysis in deionized water could result in a higher 
C-PC content of 21.1 % (Aoki et al. 2021) using A. platensis 
NIES-39 strain and SOT medium for cultivation.

The wide range of results reported in literature and this 
study cannot be solely attributed to the different extrac-
tion methods employed, but rather to variations in protein 
content within the cells. The protein content of A. platensis 
typically ranges from 55 to 70 % of dry matter (Oliveira 
et al. 1999; Babadzhanov et al. 2004; Aouir et al. 2017). 
The C-PC content in A. platensis has been reported to 
lie between 14 % (Ali and Saleh 2012) and 20 % (Vernès 
et al. 2015) of dry matter, indicating that more than 20 % 

of the entire proteome in this cyanobacterium is contrib-
uted by C-PC. On the other hand, the chemical composi-
tion of Spirulina is strongly dependent on the culturing 
conditions used to grow the biomass (Oliveira et al. 1999; 
Olguín et al. 2001; Markou et al. 2012; Marrez et al. 2014). 
For instance, the protein content in A. maxima has been 
shown to increase at lower temperatures (20-30°C) during 
cultivation, while higher temperatures lead to an increase 
in carbohydrate content of the cells (Oliveira et al. 1999). 
The choice of culture medium also influences the protein 
content, with the BG-11 medium resulting in higher protein 
amounts in the biomass compared to modified BG-11 and 
Zarrouk Medium (Marrez et al. 2014). Standardized media 
often yield higher protein contents in the final biomass than 
media utilizing secondary raw materials, likely due to the 
lack of accessible nitrogen, leading to nitrogen deficiency 
in the cells when cultivated with non-standardized media 
(Olguín et al. 2001; Marrez et al. 2014). Additionally, the 
various available strains display a wide variety in chemical 
composition which can be attributed to their natural habitat 
(Aouir et al. 2017). The protein content of Spirulina cells 
also depends on the light intensity applied during cultiva-
tion. Studies have shown that reduced illumination con-
tributed to higher protein contents in A. platensis (Olguín 
et al. 2001; Markou et al. 2012). Varying culture conditions 
make the comparability of different extraction methods 
published in literature difficult.

Purity

The extract obtained by ultrasonication with subsequent chi-
tosan-acetic acid flocculation displayed the highest purity with 
2.02. Second highest purity was found in the freeze-thawed 

Fig. 5  Photograph of C-PC 
extracts obtained from A. 
maxima by different extrac-
tion methods. Extracts are not 
diluted
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extract (1.94). These values are higher than in most other pub-
lications for C-PC from A. maxima (Nisticò et al. 2022) and 
A. platensis (Doke 2005; Silveira et al. 2007; Martínez et al. 
2017; Prabhath et al. 2019; Aoki et al. 2021). Higher values 
for the purity can be achieved by further purification with 
ammonium sulphate precipitation, dialysis or additional fil-
tration steps (Athiyappan et al. 2024). A purification method 
combining ammonium sulphate precipitation and reversed 
phase high-performance liquid chromatography was shown to 
increase the purity of a C-PC extract from 0.89 to 4.35 (Zhou 
et al. 2024). Amarante et al. (2020) used ion exchange chro-
matography with pH gradient elution to obtain C-PC extracts 
with purities of 4.2 and 3.5. An increase in purity can affect 
the bioactive properties of the phycocyanin. Zhou et al. (2024) 
have demonstrated that analytical grade C-PC shows higher 
antioxidative capacity, anti-inflammatory activity and emul-
sifying activity compared to the food-grade crude extract. In 
general, purity values of higher than 0.7 are considered food 
grade and a purity values of more than 4.0 are considered 
analytical grade (Rito-Palomares et al. 2001). Therefore, all 
the extracts obtained in this study are food grade.

Since the purity is defined as the ratio between phyco-
cyanin  (A620) and aromatic amino acids  (A280), a lower 
purity indicates a relatively increased contaminant protein 
concentration in the extract. This can be the consequence 
of a higher degree of cell disruption corresponding to 
a lower selectivity of the whole extraction method due 

to the division of particles that otherwise would be eas-
ily separated from the extract (Furuki et al. 2003). Also, 
nucleotides and nucleic acids contribute to the absorption 
at 280 nm (Voet et al. 1963). Compared to incubation in 
deionized water, the extraction of C-PC by ultrasonica-
tion was demonstrated to rapidly decrease the purity value 
of the resulting extract. The purity also decreased when 
ultrasonication lasted for longer than 20 min which is 
assumed to be the consequence of the release of proteins 
from cell organelles (Tavakoli et al. 2021). Furthermore, 
the pH influencing the water-solubility of disintegrated 
cell proteins can contribute to a varying C-PC purity. In 
fact, protein isolates from A. platensis were shown to have 
their lowest solubility at a pH of 3 corresponding to the 
isoelectric point of the protein isolate (Devi et al. 1981). 
The solubility of the proteins is increasing when pH is 
decreased (pH 2) and also when the pH is increased (pH 
4-10) (Benelhadj et al. 2016). This is, more or less, in 
accordance with the purities found in this study, where 
the extract obtained by ultrasonication with chitosan-
acetic acid flocculation (pH 4.03) had the highest purity, 
followed by the freeze-thawed extract (pH 6.49), and the 
bead milled extract (pH 7.14) showing the lowest purity of 
the three bluish extracts. The two ultrasonicated extracts 
with citric acid and lactic acid containing flocculation 
solution had pH values close to the isoelectric point of 
spirulina protein isolate (3.14 and 3.02, respectively), but 
lower purities. Since the C-PC concentration of these two 

Table 1  Overview of various results for C-PC extraction in other publications compared to the results from this study 

Shown are the used organism, the extraction method, the C-PC concentration  (cC-PC), the purity, and the C-PC content
HPH high pressure homogenization, UF ultrafiltration

Organism Extraction method cC-PC [mg  mL-1] Purity [-] C-PC content [%] Source

A. maxima HPH - - 29.2 Ruiz-Domínguez et al. (2019)
A. maxima microwaving - - 21.5 Ruiz-Domínguez et al. (2019)
A. maxima Freeze-thawing 5.11 1,94 17.03 this study
A. maxima Sonication and flocculation 2.23 2,02 15.21 this study
A. maxima Glass bead extraction 2.98 1,58 10.92 this study
A. maxima Stirring for 24 h (before UF) 0.23 0,74 11.6 Nisticò et al. (2022)
A. platensis Lysis in deionized water 0.16 1.76 21.1 Aoki et al. 2021
Arthrospira sp Freeze-thawing - 1.95 17.28 Tan et al. (2020)
A. platensis Pulsed electric fields - 0.51 15.19 Martínez et al. (2017)
A. platensis Ultrasonication + HPH - 0.89 13.59 Zhou et al. (2024)
A. platensis Freeze-thawing - 1.06 13.19 Prabhath et al. (2019)
A. platensis Stirring at 35°C for 48 h 3.97 0.80 9.93 Minchev et al. (2020)
A. platensis Pulsed electric fields - - 8.52 Jaeschke et al. (2019)
A. platensis ultrasonication - - 6.00 Furuki et al. (2003)
Arthrospia sp Freeze-thawing - 1.34 8.63 Doke (2005)
Arthrospira sp Air drying - 1.80 8.00 Doke (2005)
A. platensis Rotary shaker for 4 h 3.68 0.46 4.60 Silveira et al. (2007)
A. platensis sonication + glass beads 0.21 - 4.38 Moraes et al. (2011)
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extracts was also lower compared to the extract obtained 
by ultrasonication and flocculated with chitosan-ace-
tic acid solution, the pH of the final extract apparently 
affected the C-PC stability causing it to denaturize. The 
maximum stability for C-PC lies between pH 5 and 7.5 
(Sarada et al. 1999; Chaiklahan et al. 2012). At pH 4, a 
slight and at pH 3, a massive decrease of C-PC concentra-
tion could be observed. This is attributed to unfolding of 
the protein structure leading to precipitation (Wu et al. 
2016). A change in the protein conformation by proteo-
lytic digestion of C-PC was demonstrated to decrease the 
absorption at 620 nm while simultaneously increasing the 
absorption in the UV range (with a peak at 350 nm) which 
is associated with the folding of the PCB chromophores 
(Debreczeny et  al. 1989). This can explain the higher 
absorption in the area of 280 to 380 nm for the ultrasoni-
cated samples as a result of degradation due to the low pH.

The method used to separate the extract from the cell 
debris can also contribute to different purity values of the 
extract. The ultrasonicated samples were processed by 
chitosan flocculation and filtration instead of centrifuga-
tion. Based on the methodology, the final extract may con-
tain residues of chitosan. Since chitosan is a well-known 
coagulating agent due to its high number of charged amino 
acid groups, it can bind proteins and flocculate them out 
of the extract (Li et al. 1992). This has maybe furtherly 
contributed to the high purity of the ultrasonicated extract 
with chitosan-acetic acid flocculation. In this case, the low 
purity for the ultrasonicated samples containing citric acid 
and lactic acid is rather implicated by the decrease in C-PC 
concentration due to the low pH than the increase of pro-
tein concentration. However, the presence of chitosan in 
the extract can also cause practical problems for the fur-
ther processing in cosmetic or food industry (unwanted 
flocculation or chemical reactions). Concerning the food 
legislations, at least the use of chitosan originating from 
shrimp shells could be problematic. On the other hand, 
the chitosan from the white button mushroom (Agaricus 
bisporus) has already been classified GRAS (generally 
recognized as safe) for certain applications in food indus-
try by the FDA (FDA 2022). For Europe, Chitosan extracts 
from fungi (A. bisporus or Aspergillus niger) have been 
authorized as food supplements by the European Commis-
sion (EC 2017).

Selectivity

In previous extraction experiments (results not shown), the 
quality was often reduced by the presence of chlorophyll a 
resulting in a greenish or greyish color of the extract. There-
fore, an indicator to display the ratio of C-PC and chloro-
phyll a using the ratio of absorptions at 620 nm (absorption 

maximum of C-PC) and at 680 nm (an absorption maximum 
of chlorophyll a) was established in this study. This  A620/
A680-ratio, that was considered the selectivity, was highest 
for the extracts obtained by freeze-thawing and glass bead 
extraction (27 and 22, respectively). The selectivity for the 
ultrasonicated extracts was lower than 20 in all three samples 
(flocculation with chitosan dissolved in acetic acid, citric 
acid, and lactic acid).

Excessive cell disruption can cause higher proportions of 
unwanted substances in the final extract, since the increased 
degree of cell constituent destruction leads to the solution 
of substances that are aimed to be separated from the extract 
with the solid parts (Furuki et al. 2003). There are extrac-
tion methods that have already been shown to reduce the 
abundance of chlorophyll a in C-PC extracts from A. plat-
ensis, e.g. pulsed electric fields treatment (PEF) (Jaeschke 
et al. 2019; Li et al. 2020) or high-pressure processing (HPP) 
(Li et al. 2020) when compared to ultrasonication. In com-
parison to homogenisation of the biomass with mortar and 
pestle, the freeze-thawing method yielded C-PC extracts 
with lower chlorophyll contents (Sarada et al. 1999), indi-
cating, that rough physical methods show lower selectivity. 
On the other hand, bead milling is associated with a reduced 
selectivity, due to the formation of small cell debris parti-
cles (Günerken et al. 2015). Contrary to this, the glass bead 
extracts in this study, showed a high selectivity compared to 
the ultrasonicated samples, which can best be observed look-
ing at the normalized absorption spectres. But regarding the 
low C-PC content of 10,92 % obtained in this experiment, a 
non-completed cell disruption can contribute to a selectivity 
higher than expectable. Acid extraction also was described 
to result in C-PC extracts with significant amounts of chlo-
rophyll (Doke 2005). This is supported by the fact, that the 
ultrasonicated extracts with low pH values (ranging from 3 
- 4) showed the highest chlorophyll a contamination in this 
study. Furthermore, the used extraction solution has an influ-
ence on the chlorophyll concentration in the final extract. 
Sodium chloride solutions with concentrations of more than 
5 g  L-1 were shown to significantly reduce the chlorophyll 
concentration in C-PC extracts compared to less concen-
trated NaCl-solutions and deionized water (Li et al. 2020). 
In this study, freeze-thawing and glass bead extraction were 
carried out using calcium chloride (10 g  L-1), which is in 
accordance to the findings mentioned before. Moreover, the 
addition of 1.5 % calcium chloride to a phosphate buffer was 
demonstrated to increase the C-PC yield and purity while 
reducing the greenish coloration of the extract (Lijassi et al. 
2024). The ultrasonicated samples had lower selectivity val-
ues than the extracts yielded with freeze-thawing and glass 
beads. Because of the subsequent flocculation with chitosan 
as part of the extraction procedure, calcium chloride solu-
tion was not suitable as the extractant. Instead, deionized 
water was used for the ultrasonication, and can therefore 
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explain the lower selectivity. The separation technique can 
also contribute to lower selectivity, since the ultrasonication 
was carried out accompanied by subsequent flocculation and 
filtration, while for freeze-thawing and glass bead extraction 
centrifugation was applied. However, previous experiments, 
that are not shown in this study, showed, that centrifugation 
of the ultrasonicated samples resulted in green-brownish 
extracts indicating a failed separation of extract and cell 
debris.

Actually, the contamination of C-PC extracts with high 
amounts of chlorophyll can bias the calculation of C-PC 
concentration, because the absorption of chlorophyll can 
interfere with the absorption of phycocyanin and allophy-
cocyanin (Yacobi et al. 2015). Therefore, some publications 
have suggested the adaption of the common formula for the 
calculation of the C-PC concentration taking the potential 
presence of chlorophyll a in the final extract into account 
(Lauceri et al. 2017; Fabre et al. 2022). However, this bias 
only applies for less concentrated C-PC extracts (Yacobi 
et al. 2015; Lauceri et al. 2017). In literature, the adaption 
of the formula apparently has as yet not prevailed.

Conclusion

With the freeze-thawing method, C-PC extracts with very 
high C-PC concentrations and purities can be achieved. 
However, the repeated freeze-thawing method is very time- 
and energy-consuming for high biomass throughputs and 
therefore not suitable for industrial applications. Moreover, 
the final extracts contain large amounts of calcium chlo-
ride, which, depending on the further use, would have to be 
removed in an additional process step. This also applies for 
the bead mill extraction method. Additionally, the purity of 
the extracts obtained by glass bead extraction was lower than 
for the other methods used in this study. Ultrasonication-
assisted extraction followed by flocculation with chitosan-
acetic acid solution can be an interesting alternative for the 
extraction of C-PC from A. maxima. The advantages of this 
method are the high C-PC yield and purity. Furthermore, 
the ultrasonication and subsequent flocculation processes 
can be scaled up easily to industrial scale. Disadvantages 
are the relatively low selectivity and the contamination of 
the extract with chitosan and acetic acid from the floccula-
tion solution.
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