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Abstract
The genus Codium is one of the most important genera of marine green macroalgae. Its distribution is widespread worldwide 
and it has a high degree of diversity in species and characteristics. This genus plays an important ecological role in marine 
ecosystems as it is a primary producer. However, some species in the genus Codium are invasive species and may disturb the 
functioning of the ecosystem. Economically, Codium has promising potential as a source of diverse nutritional and pharma-
cological compounds. Codium is edible, has a high nutrient value, and is rich in bioactive compounds. Hence, some species 
of Codium have been consumed as food and used as herbal medicines in some Asian countries. In recent decades, studies of 
the bioactivity and pharmacological properties of the genus Codium have attracted the attention of scientists. This review 
aims to identify gaps in studies analyzing Codium that have been conducted in the past three decades by assessing published 
research articles on its bioactivity and pharmacological properties. Compounds obtained from Codium have demonstrated 
significant biological activities, such as immunostimulatory, anticoagulant, anticancer, anti-inflammatory, antioxidant, anti-
viral, antibacterial, antifungal, antitumor, anti-angiogenic, osteoprotective, and anti-obesity activities. This review provides 
information that can be used as a future guideline for sustainably utilizing the genus Codium.
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Introduction

Codium (Bryopsidales) is a diverse genus of marine green 
macroalgae belonging to the Codiaceae family (Verbruggen 
et al. 2007). Codium has attracted global attention because of 

its high biodiversity, ecological features as an invasive spe-
cies, and high potential for producing bioactive compounds. 
The genus Codium comprises approximately 166 species 
that are distributed in marine environments throughout the 
world and have been cultivated in some countries (Ver-
bruggen et al. 2007; Hwang et al. 2008; Kang et al. 2008; 
Guiry and Guiry 2022; Hwang and Park 2020). Recently, 
molecular identification of Codium species has been used to 
avoid their misidentification, owing to their high morpholog-
ical plasticity (Provan et al. 2008; de Oliveira-Carvalho et al. 
2012; Verbruggen 2014; Verbruggen and Costa 2015; Muha 
et al. 2019). Some species of Codium that have been identi-
fied earlier are C. coactum Okamura, C. contractum Kjell-
man, C. fragile (Suringar) Hariot, and C. minus (Schmidt) 
P.C. Silva (Woo and Sook 2015). Some new Codium species 
that have been identified in recent years include C. bernabei 
(González et al. 2012), C. pernambucensis (de Oliveira-Car-
valho et al. 2012), C. recurvatum (Verbruggen et al. 2012), 
and C. lucasii (An et al. 2015). Codium fragile, one of the 
most popular and edible green algae species, is also one of 
the most invasive species originating from the Northwest 
Pacific (Japan) (Provan et al. 2008). This species then spread 
to the Northeast Pacific, the North Atlantic, Australia, and 
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New Zealand (Dromgoole 1975; Schmidt and Scheibling 
2005; Muha et al. 2019). Species of Codium play an impor-
tant role in marine ecosystems. Some of them are invasive 
species that can disturb marine ecosystems but can also have 
a balance impact if they coexist with other Codium species.

Codium has become one of the main macroalgae con-
sumed in some Asian countries, such as Japan, China, and 
Korea. Codium has high nutritional properties, including 
its composition of carbohydrates, proteins, lipids, vitamins, 
and minerals (Tabarsa et al. 2013; Jung and Park 2020; 
Monmai et al. 2020), as well as bioactive compounds, 
such as siphonaxanthin (Akimoto et al. 2007; Ganesan 
et al. 2010), canthaxanthin (Ahn et al. 2021), oleamide 
(Moon et al. 2018b), and sulfated polysaccharides (Wang 
et  al. 2021). Recently, sulfated polysaccharides from 
Codium species such as C. pugniforme, C. yezoense, C. 
latum, and C. vermilara were identified as sulfated glucan, 
sulfated galactan, sulfated arabinan, and sulfated mannan 
(Bilan et al. 2006; Fernández et al. 2012, 2014; Li et al. 
2015). Bioactive compounds and polysaccharides present 
in Codium possess interesting pharmacological effects, 
including immunostimulatory (Yang et al. 2019, 2021), 
anti-inflammatory (Yoon et al. 2011; Moon et al. 2018b), 
anticancer (Hye et al. 2018), anticoagulant (Choi et al. 
2013), antioxidant (Wang et al. 2020), anti-obesity (Kolsi 

et al. 2017a, b), osteoprotective (Surget et al. 2017), and 
antiviral (Yim et al. 2021) activities. However, the ecol-
ogy, nutrient value, bioactive compound composition, 
and bioactivity of Codium have not yet been comprehen-
sively reviewed to determine the gap in studies analyzing 
Codium, which can be used as a direction for future studies 
and management of the genus Codium.

Distribution of genus Codium

The genus Codium is found worldwide (Fig. 1). The green 
alga Codium is believed to have certain invasive proper-
ties because of its ability to thrive in temperate waters. 
Codium tomentosum (Stackhouse, 1797) is native to the 
northeast Atlantic coast and inhabits in rock pools and 
lower seashores throughout the year (Rey et al. 2020). 
Codium decorticatum (Woodward) M.A. Howe is a spe-
cies found in tropical and subtropical climates worldwide. 
There are 105 subspecies of C. decorticatum along the 
Atlantic coast of South America, ranging latitudinally 
from 3°S to 42°S (Fernández et al. 2015). This species 
grows on firm substrates in subtidal habitats. Codium 
bursa (Olivi) C. Agardh is typically found in temperate 
and subtropical climates. It can grow in diameters ranging 

Fig. 1   Distribution of genus Codium in the world based on some studies (Gisone et al. 2006; Provan et al. 2008; de Oliveira-Carvalho et al. 
2012; González et al. 2012; Verbruggen et al. 2012; Guiry and Guiry 2022; Muha et al. 2019; Neto et al. 2020)
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from a few millimeters to 40 cm, and it grows in a hol-
low spherical form (Jerkovi et al. 2019). Some species of 
the genus Codium are invasive. Among the species within 
Codium, C. fragile is the most invasive seaweed in the 
world and is believed to be native to Japan, from which 
it accidentally spread to other parts of the world (Pro-
van et al. 2008). Native to East Asia, it has invaded many 
parts of the world and now has a nearly global distribution 
(Hubbard and Garbary 2002; Provan et al. 2005; Schmidt 
and Scheibling 2005).

The habitat of Codium is rocky substrate in the intertidal 
zone. Sheltered rocky habitats are critical for Codium as 
these habitats allow for algae to grow and reproduce (Bulleri 
et al. 2006; Woo and Sook 2015). In addition to the habi-
tat, other ecological factors also affect the characteristics of 
Codium. Seasonal patterns affect the morphology and chlo-
roplast physiology (Benson et al. 1983), growth (Hanisak 
1979), reproductive characteristics (Churchill and Moeller 
1972; Prince and Trowbridge 2004), and the nutritional 
value of Codium (Malea et al. 2015). Furthermore, water 
movement and substratum type may contribute to the vegeta-
tive recruitment ability (Scheibling and Gagnon 2006) and 
the formation and growth of spongy and filamentous thalli 
(Nanba et al. 2005). In new habitats, they can have ecologi-
cal and economic impacts; for example, they may compete 
with native kelps or fucoids (Scheibling and Gagnon 2006; 
Drouin et al. 2011; Armitage and Sjøtun 2016), influence 
the seaweed-associated fauna composition (Schmidt and 
Scheibling 2006; Drouin et al. 2011; Armitage and Sjøtun 
2016), negatively affect commercial bivalve beds, change the 
sediment from sand to pebbles and cobbles (Ben-Avraham 
1971), and impact ecosystem services (Vilà et al. 2010). 
In addition to nutrient over-enrichment, the invasion by 
non-native species has been detrimental to biodiversity and 

ecosystem functioning in many coastal ecosystems (Thom-
sen et al. 2006).

Biochemical properties

Marine macroalgae are rich sources of new bioactive com-
pounds and functional foods with potentially beneficial 
health effects (Kim et al. 2020). They have been reported 
to have nutritional value due to their vitamin, protein, and 
mineral content (Ortiz et al. 2009; Holdt and Kraan 2011; 
El-Said and El-Sikaily 2013; Lafarga et al. 2020). Marine 
macroalgae contain protein, carbohydrate, and low-fat, 
hence, they can contribute a few calories to the diet (Rupé-
rez 2002). The variations in the nutritional composition of 
algae may be influenced by complex endogenous growth-
related, morphological, and reproductive changes, as well 
as exogenous factors including temperature, light intensity, 
day length, and concentration of nutrients (Stirk et al. 2007; 
Rey et al. 2020; Marques et al. 2021).

Sulfated polysaccharides

Green macroalgae contain different typical carbohydrates, 
including cellulose, xylan, and sulfated polysaccharides. 
There is a lack study on the structures of sulfated polysac-
charides from marine green macroalgae compare to those 
from marine red or brown macroalgae (Farias et al. 2008). 
The structural heterogeneity of sulfated polysaccharides 
within Codium species are different for each species (Fig. 2). 
The unusual complex pyruvylated and sulfated galactans in 
C. yezoense consist of linear backbone units of 3-linked β-D-
galactopyranosyl components divided by oligosaccharides 
connected by links at C6 (Bilan et al. 2007). The sulfated 

Fig. 2   Structure of sulfated 
polysaccharide from Codium 
species, including (a) sulfated 
galactan from C. fragile; (b) 
sulfated mannan from C. 
vermilara; (c) sulfated mannan 
from C. fragile (Lee et al. 2010; 
Wang et al. 2014)
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galactan of C. isthmocladum primarily consists of 4-sulfated 
3-linked β-D-galactopyranosyl units (Farias et al. 2008). A 
family of sulfated polysaccharides, including sulfated ara-
binans, sulfated galactans and sulfated arabinogalactans as 
the main components, was found in the room-temperature 
water extracts of C. fragile and C. vermilara (Ciancia et al. 
2007; Estevez et al. 2009). Moreover, the sulfated polysac-
charide in C. latum, C. pugniforme (syn. C. spongiosum),and 
C. vermilara were described as sulfated arabinan, sulfated 
glucan, and sulfated mannan, respectively (Bilan et al. 2006; 
Fernández et al. 2012, 2014). Sulfated galactans from C. 
fragile differs from the C. cylindricum. Regarding to its 
galactose content, C. fragile also contains arabinose residues 
or known as sulfated arabinogalactan (Love and Percival 
1964), and C. cylindricum (syn. C. divaricatum) contains 
glucose residues, probably forming sulfated glucogalactan 
(Matsubara et al. 2001). The analysis of sulfated galactans 
from various Codium species has revealed that 3-linked β-D-
galactopyranosyl has comparable backbones. The structures 
of the sulfated polysaccharides directly affect their biologi-
cal activities in regards to their main structure, molecular 
weight, degree of sulfation, monosaccharide composition, 
and glycosidic linkages (Sabry et al. 2019).

Lipids

Lipid is a component in macroalgae that has attracted atten-
tion due to its fatty acid fraction. Polyunsaturated fatty acids 
(PUFAs) are essential lipids for human metabolism. However, 
human can not synthesize them and must obtain them through 
their daily intake. The major PUFAs detected in macroalgae 
were C18 and C20 PUFAs, namely linoleic, arachidonic and 
eicosapentaenoic acids (Pereira et al. 2012). In Chlorophyta, 
the PUFAs content ranges from 17–61% with α-linolenic acid 
as the most abundant fatty acid (Allan et al. 2010; Goecke 
et al. 2010; Pereira et al. 2012; Schmid et al. 2018). Mean-
while, in Codium lipids are mostly in the form of LFA and 
SFA with an unusual structure of fatty acids. Long-chain fatty 
acids are present in Codium species, with palmitic acid being 
the most common saturated fatty acid (SFA) and oleic acid 
being the most common monounsaturated fatty acid (MUFA) 
(Shameel 1990). The content of fatty acids in Codium varies 
depending on various factors, such as species, growth age, 
nutrient, season, temperature, salinity, location, and depth (Xu 
et al. 1998; Dembitsky and Hanus 2003). Codium species con-
tain an unusual structure of several branched fatty acids (Aliya 
and Shameel 1993; Dembitsky and Hanus 2003). Codium 
tomentosum contains α-linolenic acid, palmitic, palmitoleic, 
oleic, hexadecatrienoic, eicosatrienoic and eicosapentaenoic 
acids (da Costa et al. 2015). Meanwhile, α-linolenic, pal-
mitic acid, oleic, linoleic, and hexadecatrienoic acids were 
detected in C. fragile, C. tomentosum, C. geppi and Codium 
sp. (Khotimchenko 2003). Moreover, Ortiz et  al. (2009) 

observed that the most abundant fatty acids in C. fragile was 
palmitic acid. Aliya and Shameel (1993) investigated 43 dif-
ferent fatty acids which identified as methyl esters fatty acid 
in C. decorticatum, C. flabellatum, and C. iyengarii. Dem-
bitsky and Hanus (2003) investigated fatty acid variability of 
C. dwarkense and C. taylorii and identified 40 volatile com-
pounds of monoenoic acid and polyenoic acid. Furthermore, 
these three Codium species contained eight sterols including 
ergosterol, ostreasterol, clerosterol, decortinone, decortinol, 
isodecortinol, cholesteryl acetate and cholesteryl galactoside 
(Aliya and Shameel 1993).

Proteins

The protein content of marine macroalgae is also vari-
able and the highest content is generally found in marine 
green and red algae, compared to brown algae (Holdt and 
Kraan 2011). Codium tomentosum is known to contain 
11.00–18.8% dw of total protein (Celikler et al. 2009; Rod-
rigues et al. 2015). A similar protein content was also found 
in C. galeatum (12% dw) and C. fragile (10.8% dw) (Ortiz 
et al. 2009; Skrzypczyk et al. 2018). Bioactive compounds 
derived from proteins such as lectins can be obtained from 
Codium species. Carneiro et al. (2020) isolated lectins from 
C. isthmocladum and found two novel lectins, CiL-1 and 
CiL-2, with unique sequences not found in other lectins.

Minerals and vitamins

Minerals and vitamins are present in macroalgae at high 
levels and have received considerable attention because the 
macrominerals and trace elements content in macroalgae are 
comparable to land-plants and can be used to fulfill human 
daily needs intake (Rupérez 2002). Macroalgae can selectively 
absorb minerals from the surrounding seawater and accumu-
late them in their cells (Cabrita et al. 2016). As for the major 
minerals, most macroalgae show abundant contents of sodium 
(Na), magnesium (Mg), potassium (K), and calcium (Ca). As 
expected, high Na content was found in C. fragile and C. 
tomentosum (92.3 and 11.79 mg g−1 dw), (Moreda-Pineiro 
et al. 2012; El-Said and El-Sikaily 2013), while C. iyengarii 
contains high K (231.7 mg g−1 dw) (Rizvi and Shameel 2004). 
However, the availability of minerals content in marine mac-
roalgae is influenced by intrinsic and extrinsic factors. The 
intrinsic factors are including specific forms of hydroxyl, car-
boxyl, amino, and sulfhydryl esters functional groups from 
their polysaccharides, lipid, and proteins, and extrinsic factors 
are including pH, temperature, salinity, and other external fac-
tors in the growth medium (Circuncis et al. 2018).

Trace elements are classified into two subclasses: (a) 
cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and 
zinc (Zn), which are required for biochemical processes but 
may be toxic at high concentrations, and (b) arsenic (As), 
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cadmium (Cd), chromium (Cr), lead (Pb), and mercury (Hg), 
which are not required for biochemical processes but are 
the most important contaminants in aquatic environments. 
Among the trace minerals, strontium (Sr), barium (Ba), and 
Fe were found in high concentrations in C. fragile (Malea 
et al. 2015; Seo et al. 2019). A high content of Fe is pre-
sent in C. reediae (91.0–196.0 μg g−1 dw) (Mcdermid and 
Stuercke 2003). For heavy metals, As exhibited the highest 
content (4.25 μg g−1 dw), while Cd exhibited the lowest 
content (0.05 μg g−1 dw) in C. fragile (Malea et al. 2015). 
Heavy metal contamination is a factor that is used to assess 
the safety of edible macroalgae (Zheng et al. 2013).

Macroalgae contain more vitamins A, B-12, and C, 
β-carotene, pantothenate, folate, riboflavin, and niacin than 
fruits and vegetables from regular land cultivars (Garcı 
et al. 2007). The carotenoids and tocols in Codium were 
found to be the source of vitamins A and E. In C. fragile, all 
types of tocols were found, with 1617.6 μg g−1 dw for the 
total tocol content and β-carotene having the high amount 
(197.9 μg g−1 dw) (Ortiz et al. 2009). Chemical structure of 
tocols derivated compounds from Codium species is shown 
in Fig. 3. Meanwhile, C. tomentosum contains vitamins A, 
C, and E (less than 1.0 mg g−1) and a total carotene content 
of 15.80 mg per 100 g dw (Celikler et al. 2009).

Bioactivities

From 1990–2021, increasing attention has been paid to the 
bioactivity and pharmacological properties of the genus 
Codium (Fig. 4). We found 70 articles that focused on the 

bioactivity and pharmacological properties of the genus 
Codium, including immunostimulatory (15.4%), anticoagu-
lant (14.1%), anticancer (12.8%), anti-inflammatory (12.8%), 
antioxidant (11.5%), antiviral (7.7%), antibacterial (3.8%), 
antifungal (3.8%), antitumor (3.8%), anti-angiogenic (2.6%), 
osteoprotective (2.6%), anti-obesity (2.6%), anti-mela-
nogenic (1.3%), anti-sarcopenia (1.3%), antihypertensive 
(1.3%), neuroprotective (1.3%), and antiprotozoal (1.3%) 
activities (Fig. 5).

Marine macroalgae contain bioactive compounds such 
as flavonoids, coumarins, fucosterol, phlorotannin, toco-
pherols, and nitrogen-containing compounds, including 
alkaloids, chlorophyll derivatives, amino acids, and amines, 
which are potential molecules with various pharmacological 
properties (Celikler et al. 2009; Ali et al. 2015; Gaspar et al. 
2020; Meinita et al. 2021, 2022; Harwanto et al. 2022). 
Several carotenoids, including siphonaxanthin and canthax-
anthin, have been reported in C. fragile. Siphonaxanthin is 
a keto-carotenoid found in siphonaceous green macroalgae, 
including Codium, that promotes the absorption of avail-
able green and blue-green light underwater (Akimoto et al. 
2007; Ganesan et al. 2010). Furthermore, siphonaxanthin 
is known to have beneficial effects on health and to have 
various other applications (Ganesan et al. 2010; Yim et al. 
2021). Codium also contains canthaxanthin, a carotenoid 
suggested to regulate changes in signaling molecules in C. 
fragile extracts (Ahn et al. 2021). Two new sulfonoglyco-
sides, codioside E (1) and codioside F (2), have also been 
identified from the methanol extract of C. dwarkense (Ali 
et al. 2017).

Research on algal lipids found that loliolide, a ubiquitous 
monoterpenoid lactone isolated from C. tomentosum, may 
be used as a neuroprotective agent (Silva et al. 2021). The 
properties of oleamide, an amide derived from the fatty acid 
oleic acid of Codium, have been reviewed (Kwon et al. 2001; 
Moon et al. 2018b). Chemical structure of lipid derivated 
compounds from Codium species is shown in Fig. 6.

Fig. 3   Structure of tocols found in Codium species, including (a) 
α-Tocopherol; (b) β-Tocopherol; (c) γ-Tocopherol; (d) δ-Tocopherol 
(Ortiz et al. 2009)

Fig. 4   Number of publication of genus Codium based on publication 
year
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Codium has demonstrated significant biological activity 
both in vitro and in vivo. We review the biological activities 
attributed specifically to Codium, focusing on those with 
potential nutraceutical and pharmacological properties. 
Codium fragile is the most widely studied species in terms 
of bioactivity. Based on previous research, the polysaccha-
rides and their bioactive compounds in the genus Codium 
exhibited the highest bioactivity (Table 1).

Immunostimulatory activity

Immunomodulation, which includes immunostimulatory 
and immunosuppressive effects, is a complicated mechanism 
that regulates the pathophysiology and etiology of different 
immune-related disorders. Immunomodulatory substances 
can be used as immune stimulators to reduce the negative 
effects of immunosuppressive medicines (Prendergast and 
Jaffee 2007).Sulfated polysaccharides from marine algae 
have been shown to have immunostimulatory properties. 
According to Tabarsa et al. (2013), C. fragile contained 
sulfated polysaccharide fractions (F1 and F2) in the form 
of D-galactan with pyruvates and sulfates. The sulfated 
polysaccharide triggered nitric oxide (NO) production by 
activating protein and mRNA expression of inducible nitric 
oxide synthase (iNOS). The sulfated polysaccharides of C. 

fragile may activate the expression of cytokines inflamma-
tory, including tumor necrosis factor (TNF-α), interleukin 
(IL)-1, IL-6, and IL-10, as well as promote inflammatory 
mediators, iNOS and NO production, and protein expres-
sion in the RAW 264.7 murine macrophage cell line. As a 
result, the nuclear factor κB (NF-κB) and mitogen-activated 
protein kinase (MAPK) pathways are also activated by C. 
fragile sulfated polysaccharides, which seem to stimulate 
the immune system. Among these two fractions, the F2 frac-
tion, which has a high protein content (14.7%), possessed 
the most immune-stimulating activity. Furthermore, the F2 
fraction can stimulate the gene expression of inflammatory 
cytokines, including IL-1β, TNF-α, and interferon gamma 
(IFN-γ) in human cell lines and mouse models (Surayot and 
You 2017; Yang et al. 2019). The expression of inflamma-
tory cytokines was upregulated in the F2 fraction via the 
NF-κB and MAPK pathways. The F2 fraction and folic acid-
conjugated sulfated polysaccharides significantly increased 
natural killer cell proliferation and cytotoxicity against HeLa 
cells (Surayot and You 2017; Li et al. 2020). In addition, 
in vitro, the F2 fraction was shown to stimulate the expres-
sion of the IL-1β gene in head kidney (HK) cells, while 
in vivo gene expressions of IL-1β and IL-8 were up-reg-
ulated in peritoneal cells, HK cells, the liver, the gill, and 
the spleen. TNF-α, IFN-γ, and lysozyme gene expressions 

Fig. 5   Number of publications 
on bioactivity and pharmaco-
logical properties of the genus 
Codium based on the species
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were mainly upregulated, but they differed depending on 
the tissue type or time point in olive flounder (Paralychthys 
olivaceus) (Yang et al. 2019). Similar results were obtained 
in rockfish, Sebastes schlegelii, induced by Edwardsiella 
tarda, a pathogenic bacterium in fish. This result indicates 
that IL-1β and IL-6 gene expression was upregulated in the 
HK of the 0.5% group on day 1, whereas IL-1β gene expres-
sion was downregulated in the liver on day 3 (Yang et al. 
2021). In addition, sulfated glycoproteins (NF2) and sul-
fated galactan of C. fragile have immunostimulatory effect 
in RAW 264.7 cells by activating the NF-κB pathway, thus 
stimulating the MAPK pathway, including ERK1/2, p38, and 
JNK1/2, as well as the nuclear translocation of c-JUN and 
c-FOS (Lee et al. 2010; Tabarsa et al. 2015).

According to Monmai et al. (2020), the expression 
and production of pro-inf lammatory genes and the 
expression of immune-associated genes were increased 
by the combination of C. fragile and arachidonic acid 
via the activation of NF-κB, p-65, and MAPK signaling, 
including ERK1/2 and p38, which led to the immune-
enhancement in RAW 264.7 cells. Another study dem-
onstrated the immune-enhancing effects of anionic mac-
romolecules of C. fragile mixed with red ginseng extract 
orally administered to cyclophosphamide-treated mice 
(Kim et al. 2019; Jung and Park 2020). These extracts 
upregulated the expression of immune-associated genes, 
thereby inhibiting immune biomarkers by activating the 
NF-κB and MAPK pathways. These results indicate that 
polysaccharides and anionic macromolecules extracted 
from C. fragile are potential sources of immunostimula-
tory agents.

Anticoagulant activity

In the pharmaceutical industry, there is growing interest in 
isolating anticoagulant compounds from marine macroalgae. 
Heparin is a commonly used anticoagulant, but it has some 
side effects, including thrombocytopenia and spontaneous 
bleeding (Tardy-poncet et al. 1994). Therefore, it is impor-
tant to investigate alternatives to anticoagulant agents with 
fewer heparin-like side effects. Algal polysaccharides have 
been reported to exhibit heparin-like activity (Faggio et al. 
2016). Extracts of C. fragile ssp. atlanticum through low-
molecular weight sulfated polysaccharides and high-molec-
ular weight (sulfated) proteoglycans have exhibited antico-
agulant properties (Rogers et al. 1990; Jurd et al. 1995). 
These molecules prolong the thrombin time (TT) and act 
as antithrombin agents due to potentiation of the activity of 
the cofactors heparin II and antithrombin III. Furthermore, 
Athukorala et al. (2007) reported that the crude polysaccha-
ride fraction (CpoF) of C. fragile and Sargassum horneri 
showed potent anticoagulant properties, with activated par-
tial thromboplastin time (APTT) values of > 300 s. The most Ta
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potent activity was recorded in the > 30 kDa fraction. The 
highest molecular weight fraction significantly prolonged 
clotting times in the APTT and TT assays but had an insig-
nificant effect on the prothrombin time (PT). In addition to 
prolonging the APTT and PT, C. dwarkense sulfated poly-
saccharides may reduce the number of microthrombi in the 
histopathology of the lung, liver, and mesentery with less 
structural damage in vivo (Golakiya et al. 2017).

In contrast, codiase, a new bifunctional fibrinolytic ser-
ine protease isolated from C. fragile, exhibits anticoagu-
lant properties with the prolongation of the APTT and PT, 
which leads to the inhibition of coagulation factors (Choi 
et al. 2013). Furthermore, codiase has the potential to block 
blood-clotting pathways by increasing the anticoagulant 
action of naturally existing blood factors. An insignificant 
reduction in fibrinogen levels by codiase may otherwise 
favor anticoagulation. Codium fragile significantly inhibited 
platelet activation by downregulating αIIbβ3 signaling and 
prevented FeCl3-induced arterial thrombus formation with-
out prolonging the bleeding time in vivo (Kim et al. 2021). 
Finally, the high molecular weight molecules (i.e., polysac-
charides and proteoglycans) and codiase of C. fragile could 
be used as anticoagulant agents.

Anticancer activity

Failure of apoptosis is known to trigger the development of 
cancer in cells (Shinkai et al. 1996). Apoptosis is a physi-
ological process involving selective cell deletion that regu-
lates the balance between cell proliferation and cell death. 
Numerous studies have reported the anticancer properties of 
marine macroalgae. For example, an aqueous extract of C. 
fragile may inhibit the growth of CT-26 cells and decrease 
the protein expression of anti-apoptotic Bcl-xL, leading to 
caspase-3 and caspase-7 activation (Kim et al. 2008). Treat-
ment with C. fragile increases the sensitivity of tumor necro-
sis factor-related apoptosis-inducing ligand (TRAIL) and the 
protein levels of c-caspase-8 and c-caspase-3 by inhibiting 
cellular FLICE-inhibitory protein (c-FLIP) expression (Hye 
et al. 2018).

In addition, C. fragile polysaccharides increase the NK 
cell activation in mice by promoting the activation of bone 
marrow-derived dendritic cells (BMDCs) in vitro and den-
dritic cells (DCs) in tumor-bearing mice in vivo (Park et al. 
2020b). In an animal model, C. fragile polysaccharides 
significantly suppressed B16 tumor growth. Moreover, 
C. fragile polysaccharide treatment inhibited CT-26 cell 
growth by enhancing anti-cancer immunity mediated by 
anti-PD-L1 antibodies. According to Wang et al. (2021), 
C. fragile polysaccharides also reduced Lewis lung carci-
noma cell infiltration into the lungs and their anti-tumor 
growth activity required NK and CD8 T cells. Another 
study reported that C. fragile polysaccharides inhibited 

CT-26 and B16 cell infiltration in the lungs (Park et al. 
2020a). This study also demonstrated that C. fragile stimu-
lates NK cells. Moreover, C. fragile polysaccharides pro-
mote the stimulation of the human peripheral blood DC 
(PBDC) subset, resulting in T-helper 1 (Th1) cell activation 
and cytotoxic T lymphocyte (CTL) cell activation, which, 
in turn, elicits anti-cancer effects (Zhang et  al. 2020). 
Dilshara et al. (2016) evaluated the activity of a methanol 
extract of C. fragile as a stimulator in human breast cancer 
MDA-MB-231 cells. They found that that treatment with 
the methanol extract of C. fragile increased the expres-
sion of TNF-α by inhibiting matrix metalloproteinase-9 
(MMP-9), further inhibiting NF-κB activity. Cytotoxic 
effects (IC50 of 150 µM) were also demonstrated in A2058 
human melanoma cells treated with C. fragile clerosterol 
via the upregulation of Bax, downregulation of Bcl-2, and 
activation of caspases 3 and 9 (Kim et al. 2013). Taken 
together, C. fragile produces compounds with therapeutic 
effects against cancer cells by suppressing protein expres-
sion and could be used to promote anticancer immunity 
(Monmai et al. 2019).

Anti‑inflammatory activity

Inflammation is a protective response induced by a 
variety of stimuli, such as physical damage, precur-
sor chemicals, microbial invasion, and immunological 
responses, in the body (Medzhitov 2008). The infiltration 
of leukocytes and macrophages is a typical inflamma-
tory reaction. Lipopolysaccharide (LPS) rapidly triggers 
macrophages and stimulates the secretion of pro-inflam-
matory cytokines and inflammatory mediators, such as 
NO and PGE2 via iNOS and COX-2, respectively (Moon 
et al. 2018b), by upregulating the NF-κB pathway and 
MAPKs, including the extracellular signal-regulated 
kinase (ERK)1/2, c-Jun NH2-terminal kinase (JNK), and 
p38 subfamilies (Sudirman et al. 2019). Currently, alter-
native anti-inflammatory agents are being identified from 
marine macroalgae.

It has been found that the extracts of C. fragile, includ-
ing the aqueous, ethanolic, and methanol extracts, may 
have anti-inflammatory properties in  vitro by inhibit-
ing NO and PGE2 production and reducing inflammatory 
cytokine levels in LPS-stimulated RAW 264.7 cells, or by 
inhibiting peptidoglycan (PGN) by blocking NF-κB and 
MAPK phosphorylation (Han et al. 2010; Yoon et al. 2011; 
Kang et al. 2012; Ah et al. 2017). Furthermore, an aque-
ous extract of C. fragile inhibited carrageenan-induced rat 
paw edema thickness by up to 50% in vivo (Ah et al. 2017). 
Moon et al (2018b) have also reported that the oleamide 
from C. fragile may inhibit the inflammatory response in 
LPS-induced RAW264.7 murine macrophages and reduce 
carrageenan-induced inflammatory edema in the rat paw 
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model. In addition, the activation of pro-inflammatory pro-
teins, including COX-2, iNOS, and TNF-α, along with pro-
inflammatory mediators, including PGE2 and NO, due to 
the stimulation by ultraviolet B (UVB) irradiation in HaCaT 
cells decreased after treatment with C. fragile extract. This 
result also demonstrated that the C. fragile extract reduced 
oxidative damage, such as lipid peroxidation and/or protein 
carbonylation, possibly mediated by an increase in antioxi-
dant defense enzymes (Lee et al. 2013).

Antioxidant activity

Antioxidants are important inhibitors of lipid peroxi-
dation; hence, they are used to delay or prevent lipid 
peroxidation in foods and the oxidation of cellular sub-
strates. All aerobic organisms produce and degrade reac-
tive oxygen species (ROS), including hydroxyl radicals, 
superoxide anions, hydrogen peroxide (H2O2), and sin-
glet oxygen, resulting in physiological concentrations 
required for normal cell function or excessive ROS pro-
duction and subsequently oxidative stress (Nordberg and 
Arnér 2001). The overproduction of ROS causes dam-
age to cellular macromolecules, such as proteins, DNA, 
and lipids. Wang et al. (2020) demonstrated that sulfated 
polysaccharides from C. fragile possessed high toxic-
ity against hydrogen peroxide (H2O2)-induced oxidative 
stress by reducing intracellular ROS levels, increasing 
cell viability, and inhibiting apoptosis both in Vero cells 
and zebrafish in a dose-dependent manner. Furthermore, 
the aqueous extracts of C. fragile have high scavenging 

activity against O2
–, HO·, H2O2, DPPH free radicals, and 

ROS (Heo et al. 2005). Another study reported that C. 
fragile flavonoids with low levels of condensed tannins 
have fascinating antioxidant profiles (Kolsi et al. 2017a, 
b). In addition, Celikler et al. (2009) studied the effect of 
the ethanolic extract of C. tomentosum on chromosomes 
induced by oxidative stress, and found that it exhibited no 
genotoxic effects on human lymphocytes in vitro. Finally, 
the development of antioxidants from marine macroal-
gae, especially those from C. fragile, is desired for use in 
the pharmacological industry as a substitute for synthetic 
antioxidants.

Antiviral activity

Viral treatments address several stages of viral replica-
tion, which are broadly defined as entry, replication, shed-
ding, and latency (Kidgell et al. 2019). Enzymatic hydro-
lysates of C. fragile exhibited significant antiviral activity 
against the Herpes simplex virus (HSV-1), with an EC50 of 
36.5–41.3 μg mL−1 and a multiplicity of infection (MOI) 
of 0.001 ID50/cells without cytotoxity (1–200 μg mL−1) 
(Kulshreshtha et al. 2015). Likewise, the extracts from 
proteases (P1) and carbohydrases (C3) were efficient at 
a higher MOI, of 0.01 ID50/cells, without cytotoxicity. 
Selain HSV-1 C. fragile may also inhibit the replica-
tion of HSV-2 and the promoted mortality rate in HSV-
2-infected mice in vivo (Ohta et al. 2009). Another study 
demonstrated that siphonaxanthin derived from C. frag-
ile exhibited antiviral activity against the SARS-CoV-2 

Fig. 6   Structure of bioactive compounds from Codium species, 
including (a) dwarkenoic acid (Ali et  al. 2015); (b) siphonaxanthin 
(Ricketts 1971); (c) canthaxanthin (Rebelo et al. 2020); (d) loliolide 

(Silva et al. 2021); (e) oleamide (Moon et al. 2018b); (f) sulfonogly-
cosides: Codioside E and Codioside F (Ali et al. 2017)
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pseudovirus in HEK293 cells (IC50 = 87.4 µM) (Yim et al. 
2021). These results indicate that C. fragile has the poten-
tial as a source of novel antiviral agents.

Antibacterial activity

 Steroidal glycosides and clerosterol galactoside 
extracted from C. iyengarii showed moderate in vitro 
bactericidal activity against Corynebacterium diptheriae, 
Escherichia coli, Klebsiella pneumoniae, Snigella dysen-
tri, and Staphylococcus aureus (Ali et al. 2010). A sig-
nificant inhibitory activity against GES-type β-lactamase 
(GES-22) was observed by the methanol extract of C. 
tomentosum. Another study on the methanol extract of 
C. iyengarii exhibited no antibacterial activity against 
Gram-positive and Gram-negative bacteria. However, it 
did exhibit good antiviral activity (Rizvi and Shameel, 
2004). The variability in activities between species was 
also demonstrated by Reichelt and Borowitzka (1984) 
who found that extracts of C. adahaerens, C. muelleri 
and C. spongiosum showed antibacterial activity against 
Gram-positive bacteria but not against Gram-negative 
bacteria, whereas extracts of C. fragile showed no anti-
bacterial activity.

Antifungal activity

Similar to the antibacterial mechanisms, antifungal agents 
may kill or inhibit fungal pathogens. A previous study on 
Codium extracts demonstrated that they have antifungal 
activity. Codium bursa exhibits inhibitory activity against 
Fusarium spp., Penicillium expansum, Aspergillus flavus, 
and Rhizophus spp. (Jerkovi et al. 2019). Codium iyengarii 
exhibited significant antifungal activity against various 
pathogens, whereas C. shameelii showed weak antifungal 
activity (Rizvi and Shameel 2004).

Antitumoral activity

Marine macroalgae have been shown to be potential sources 
of drugs for cancer chemotherapy (Murphy et al. 2014). A 
sulfated homogalactan from C. isthmocladum showed anti-
tumoral activity by reducing the growth and metastasis of 
solid tumors without any negative drawbacks. (Bellan et al. 
2020). El-Masry et al. (1995) also found that C. sinensis 
showed antitumoral activity. Zbakh et al. (2020) found that 
the dichloromethane extract of C. decorticatum effectively 
reduced tumor cell viability and targeted human cervical 
cancer cell lines through the apoptotic pathway. Moreover, 
the dichloromethane extract of C. decorticatum has an anti-
proliferative effect by reducing cell viability human of cer-
vical carcinoma HeLa cells through apoptosis in 25.6% of 
the cells.

Anti‑angiogenic activity

Angiogenesis is the physiological process of forming new 
blood vessels. This process prevents cancer and other related 
diseases.. The effects of the siphonaxanthin extract from C. 
fragile and the sulfated galactan extract from C. cylindri-
cum were tested in human umbilical vein endothelial cells 
(HUVECs) in vitro and in rat aortic rings ex vivo (Matsubara 
et al. 2003; Ganesan et al. 2010).

Osteoprotective activity

Previous studies have reported the osteoprotective effects 
of marine macroalgae, including those on osteoporosis and 
osteoarthritis, both in vitro and in vivo. Osteoporosis is char-
acterized by a decrease in bone mass caused by an imbalance 
between bone resorption and bone creation, whereas bone 
homeostasis requires balanced interactions between osteo-
blasts and osteoclasts (Baek et al. 2016). Meanwhile, the 
balance in cartilage is disrupted in osteoarthritis, resulting 
in a substantial increase in inflammatory mediators, ROS, 
and degradative enzymes, resulting in cartilage degradation 
and the eventual loss of joint function (Shin et al. 2006). 
Surget et al. (2017) reported that phenolic compounds from 
C. fragile may stimulate mineralogenic activity in fish bone-
derived cell lines, thereby increasing osteogenic activity by 
more than 1.5-fold. Moreover, osteoarthritis treatment with 
an aqueous extract of C. fragile can be relieved by regulat-
ing the immune system. The aqueous extract of C. fragile 
significantly increased the production of nitrite and inflam-
matory biomarkers (iNOS, MMP-13, ADAMTS-4, and 
ADAMTS-5) in IL-1β-induced rat primary chondrocytes via 
interleukin-1β-induced NF-κB signaling activation. Carti-
lage lesions in the aqueous extract of C. fragile‐treated rats 
with osteoarthritis exhibited less proteoglycan loss and lower 
OARSI scores in vivo.

Anti‑obesity activity

Obesity has become a global public health issue because 
it reduces the quality of life of individuals and increases 
healthcare costs (Maeda 2013). Obesity is defined as the 
accumulation of body fat. In particular, fat accumulation 
around internal organs is a major risk factor for various dis-
eases, including type II diabetes, hypertension, dyslipidemia, 
and cancer (Calle and Thun 2004; Maeda 2015). In recent 
years, bioactive compounds from marine macroalgae, such 
as fucoxanthin, alginates, fucoidans, and phlorotannins, have 
been reported as being potential anti-obesity agents (Wan-
Loy and Siew-Moi 2016). Kim et al. (2020) evaluated the 
anti-obesity effects of C. fragile extracts in mice adminis-
tered a high-fat diet. They observed that C. fragile extract 
significantly decreased the body weight and modulated the 
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gut microbiota of the animals by increasing the abundance 
of beneficial bacteria. It also has been demonstrated that the 
sulfated polysaccharides of C. fragile effectively decreased 
the body weight of rats fed a high-fat diet while also protect-
ing hepatic function by increasing the levels of antioxidant 
enzymes (Kolsi et al. 2017a, b).

Other bioactivities

In addition to the biological effects mentioned above, C. 
fragile possesses antiprotozoal, antihypertensive, anti-
sarcopenia, anti-angiogenic, anti-melanogenic, and neu-
roprotective activities. Spavieri et al. (2010) isolated a 
crude extract of C. fragile and demonstrated that it has a 
high toxicity in protozoan organisms, especially Trypa-
nosoma brucei rhodesiense (IC50 = 8.9 μg mL−1), but it 
was ineffective against Mycobacterium tuberculosis. The 
methanol extract from C. fragile exhibits a strong inhi-
bition of the enzyme activity of angiotensin-converting 
enzyme (ACE) (IC50 = 0.59 mg mL−1), resulting in potent 
antihypertensive activity (Kolsi et al. 2017a, b). Ahn et al. 
(2021) showed the potential of a C. fragile extract as a 
therapeutic agent for sarcopenia management. Sarcope-
nia is characterized by a loss of skeletal muscle mass and 
function (Santilli et al. 2014). Ahn et al. (2021) suggested 
that C. fragile extracts, including LPC, retinoic acid, 
α-tocopherol, linoleic acid, linolenic acid, and canthax-
anthin, enhanced skeletal muscle mass and function by 
regulating protein synthesis by increasing the phospho-
rylation of S6K1 and improving the ERRγ-PGC-1α-SIRT1 
pathway in myotubes.

Furthermore, siphonaxanthin inhibited HUVEC prolifera-
tion and tube formation, while ex vivo treatment effectively 
suppressed microvessel outgrowth in a dose-dependent 
manner. In addition, C. fragile extract, at a concentration 
of 25 µg mL−1, exhibited anti-melanogenic activity through 
the downregulation of α-melanocyte-stimulating hormone-
mediated melanin synthesis in MNT-1 human melanoma 
cells, as well as through the downregulation of microphthal-
mia-associated transcription factor, tyrosinase, and tyrosi-
nase-related protein 1. This result, which was produced from 
a clinical trial, also suggested that the extracellular vesicles 
of C. fragile may enhance skin brightness. In addition, the 
neuroprotective activity of loliolide isolated from C. tomen-
tosum can enhance cell viability and reduce oxidative stress, 
thereby preventing Parkinson’s Disease (Silva et al. 2021).

Conclusion and future directions

In the last three decades studies on the bioactivity and phar-
macological properties of the genus Codium have steadily 
increased. This indicates that the species of Codium have 

promising potential as sources of various bioactive com-
pounds, such as sulfated polysaccharides, sulfated glyco-
proteins, dwarkenoic acid, siphonaxanthin, canthaxanthin 
oleamide, siphonaxanthin, loliode, codioside E, codioside F, 
α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol. 
However, despite the increased research efforts conducted by 
scientists, to date, only a few products have been developed 
from Codium species in the pharmaceutical and nutraceu-
tical industries. The present review demonstrates the gap 
that must be filled in the study of Codium. Two approaches 
can be applied to develop Codium spp. into products with 
a high economic value. First, ecological studies should 
be conducted. Ecological studies include the taxonomy, 
reproduction, growth, and environmental factors that influ-
ence Codium species and their composition (e.g. Marques 
et al. 2021). This genus is found worldwide as native or inva-
sive species. The occurrence of the Codium species as an 
invasive species must be considered. A comprehensive study 
of the reproduction and characteristics of the genus Codium, 
as well as the dispersal mechanism, needs to be conducted 
to gain a full understanding of this genus. Furthermore, an 
aquaculture system for Codium species must be developed 
and optimized to produce high algal biomass (e.g. Hwang 
et al. 2008). To date, Codium is little cultivated globally. 
Second, the identification and isolation of bioactive com-
pounds from species of Codium are needed. Most previously 
published papers did not go further to isolate and identify the 
bioactive compounds of Codium. Most studies using crude 
extracts of Codium species are still in the preliminary stage 
and the purported active compounds need to be tested in 
clinical settings. These approaches can be used to develop 
Codium species into high-value products and maintain their 
ecological function in marine ecosystems.
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