Skip to main content
Log in

A preliminary evaluation of the red seaweed Gracilariopsis silvana, isolated from Colon, Panama, as a potential new agar-producing cultivar

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Gracilariopsis, a genus of agar-producing red seaweeds with high economic value, plays an important role in food manufacturing, pharmaceutical processing, and modern biotechnology. In this study, a wild species of red seaweed from Panama was identified as Gracilariopsis silvana by anatomy and DNA sequence data. With an aim to evaluate the response of this species to environmental conditions, changes of its PSII behaviors when exposed to gradient temperatures, salinities, and irradiances were assessed using the chlorophyll (Chl) a fluorescence transient. The PSII behaviors of this seaweed had no significant variation when the water temperature ranged from 21 to 33 °C, salinity from 12 to 40‰, and irradiance from 4 to 160 μmol photons m−2 s−1. These observations suggest that this red seaweed is able to adapt to a wide range of temperatures and salinities and has a useful characteristic of adaptation to low irradiance. Based on these results, this Gracilariopsis species is proposed as a potentially excellent red seaweed for cultivation, with great potential for benthic seaweed cultivation in low-light water layers in tropical and temperate regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Achnine L, Mata R, Iglesias-Prieto R, Lotina-Hennsen B (1998) Impairment of photosystem II donor side by the natural product odoratol. J Agric Food Chem 46:5313–5317

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bouzon ZL, Schmidt EC, Almeida ACd, Yokoya NS, Oliveira MCd, Chow F (2011) Cytochemical characterization and ultrastructural organization in calluses of the agarophyte Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Micron 42(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Bunsom C, Prathep A (2012) Effects of salinity, light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla Lagoon in Thailand. Phycol Res 60:169–178

    Article  Google Scholar 

  • Chen HX, Li WJ, An SZ, Gao HY (2004) Characterization of PSII photochemistry and thermostability in salt-treated Rumex leaves. J Plant Physiol 161:257–264

    Article  CAS  PubMed  Google Scholar 

  • Daugherty BK, Bird KT (1988) Salinity and temperature effects on agar production from Gracilaria verrucosa Strain G-16. Aquaculture 75(1):105–113

    Article  Google Scholar 

  • Dawes CJ, Orduña-Rojas J, Robledo D (1999) Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J Appl Phycol 10:419–425

    Article  Google Scholar 

  • Díaz FC, Carbajal FA, Ruíz IP (1999) Variación estacional del rendimiento y calidad de agar de Gracilariopsis lemaneiformis (Bory) Dawson, Acleto et Foldvik, del Golfo de Califoria, México. Cienc Mar 25:51–62

  • Fredericq S, Hommersand MH (1989) Comparative morphology and taxonomic status of Gracilariopsis (Gracilariales, Rhodophyta). J Phycol 25:228–241

    Article  Google Scholar 

  • Fredericq S, Hommersand MH (1990) Diagnoses and key to the genera of the Gracilariaceae (Gracilariales, Rhodophyta). Hydrobiologia 204–205:173–178

    Article  Google Scholar 

  • Gao G, Clare AS, Rose C, Caldwell GS (2018) Ulva rigida in the future ocean: potential for carbon capture, bioremediation and biomethane production. GCB Bioenergy 10:39–51

    Article  CAS  Google Scholar 

  • Goff LJ, Moon DA, Coleman AW (1994) Molecular delineation of species and species relationships in the red algal agarophytes Gracilariopsis and Gracilaria (Gracilariales). J Phycol 30:521–537

    Article  CAS  Google Scholar 

  • Gómez I, Pérez-Rodríguez E, Viñegla B, Figueroa FL, Karsten U (1998) Effects of solar radiation on photosynthesis, UV-absorbing compounds and enzyme activities of the green alga Dasycladus vermicularis from southern Spain. J Photochem Photobiol B 47:46–57

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 15 June 2020

  • Gulbransen DJ, McGlathery KJ, Marklund M, Norris JN, Gurgel CF (2012) Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in the Virginia coastal bays, USA: cox1 analysis reveals high genetic richness of an introduced macroalga. J Phycol 48:1278–1283

    Article  PubMed  Google Scholar 

  • Guo Y, Wang L, Ma R, Mu Q, Yu N, Zhang Y, Tang Y, Li Y, Jiang G, Zhao D (2016) JiangTang XiaoKe granule attenuates cathepsin K expression and improves IGF-1 expression in the bone of high fat diet induced KK-Ay diabetic mice. Life Sci 148:24–30

    Article  CAS  PubMed  Google Scholar 

  • Gurgel CFD, Fredericq S, Norris JN (2003a) Gracilariopsis silvana sp. nov., G. hommersandii sp. nov., and G. cata-luziana sp.nov.: three new species of Gracilariaceae (Gracilariales, Rhodophyta) from the Western Atlantic. Hidrobiológica 13:57–68

    Google Scholar 

  • Gurgel CFD, Liao LM, Fredericq S, Hommersand MH (2003b) Systematics of Gracilariopsis (Gracilariales, Rhodophyta) based on rbcL sequence analyses and morphological evidence. J Phycol 39:154–171

    Article  CAS  Google Scholar 

  • Hommersand MH, Freshwater DW (2009) Gracilaria hummii sp. nov. (Gracilariales, Rhodophyta), a new name for the agarophyte “Gracilaria confervoides” harvested in North Carolina during World War II. J Phycol 45:503–516

    Article  CAS  PubMed  Google Scholar 

  • Israel A, Martinez-Goss M, Friedlander M (1999) Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. J Appl Phycol 11:543–549

    Article  Google Scholar 

  • Jiang HX, Chen LS, Zheng JG, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Wang ZJ, Xie D, Sun X, Yang W, Zhao X, Xu N (2017) Characterization and potential antitumor activity of polysaccharide from Gracilariopsis lemaneiformis. Mar Drugs 15:100

  • Kilar JA, Norris JN (1988) Composition, export, and import of drift vegetation on a tropical, plant-dominated, fringing-reef platform (Caribbean Panama). Coral Reefs 7:93–103

    Article  Google Scholar 

  • Lopes PF, Oliveira MC, Colepicolo P (1997) Diurnal fluctuation of nitrate reductase activity in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Phycol 33:225–231

    Article  CAS  Google Scholar 

  • Gde M Lyra, Eda S Costa, de Jesus PB, de Matos JC, Caires TA, Oliveira MC, Oliveira EC, Xi Z, Nunes JM, Davis CC (2015) Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences. J Phycol 51:356–366

    Article  Google Scholar 

  • Macler BA (1988) Salinity effects on photosynthesis, carbon allocation, and nitrogen assimilation in the red alga Gelidium Coulteri. Plant Physiol 88:690–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDevit DC, Saunders GW (2009) On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycol Res 57:131–141

    Article  CAS  Google Scholar 

  • Melo MRS, Feitosa JPA, Freitas ALP, Paula RCMd (2002) Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr Polym 49:491–498

    Article  CAS  Google Scholar 

  • Mohsen AF, Nasr AH, Metwalli AM (1973) Effect of temperature variations on growth, reproduction, amino-acid synthesis, fat and sugar content in Ulva fasciata Delile plants. Hydrobiologia 42:451–460

    Article  CAS  Google Scholar 

  • Muangmai N, Yamagishi Y, Zuccarello GC, Chirapart A, Lewmanomont K (2014) Transferring Gracilaria irregularis (Gracilariaceae, Rhodophyta) from Thailand to Gracilaria irregularis based on morphological and molecular analyses. Phycol Res 62:29–35

    Article  CAS  Google Scholar 

  • Nejrupa LB, Pedersena MF (2012) The effect of temporal variability in salinity on the invasive red alga Gracilaria vermiculophylla. Eur J Phycol 47:254–263

    Article  Google Scholar 

  • Oliveira EC, Alveal K, Anderson RJ (2000) Mariculture of the agar-producing gracilarioid red algae. Rev Fish Sci 8:345–377

    Article  CAS  Google Scholar 

  • Rao MU (1972) On the Gracilariaceae of the seas around India. J Mar Biol Assoc India 14:671–696

    Google Scholar 

  • Satoh K, Smith CM, Fork DC (1983) Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata. Plant Physiol 73:643–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders GW (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol Ecol Resour 9, Suppl s1:140–150

  • Sharma DK, Andersen SB, Ottosen C-O, Rosenqvist E (2012) Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Funct Plant Biol 39:936–947

    Article  CAS  PubMed  Google Scholar 

  • Shetty P, Gitau MM, Maroti G (2019) Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8:1657

  • Soares LP, Carneiro PBdM, Fujii MT (2018) New records of red seaweeds to the coast of Ceará State, northeastern Brazil (Novos registros de algas marinhas vermelhas na costa do Estado do Ceará, Nordeste do Brasil). Hoehnea 45:323–348

    Article  Google Scholar 

  • Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Riznichenko GY, Rubin AB, Govindjee, (2014) Modeling chlorophyll fluorescence transient: relation to photosynthesis. Biochemistry (Mosc) 79:291–323

    Article  CAS  Google Scholar 

  • Strasser R, Srivastava SK, Govindjee G, Srivastava A, Strasser R (1995) Polyphasic chlorophyll a fluorescence transcient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Sudhir K, Glen S, Koichiro T (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 7:1870

    Google Scholar 

  • Tsai CC, Chang JS, Sheu F, Shyu YT, Yu YC, Wong SL, Dai CF, Lee TM (2005) Seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a highly eutrophic reef in southern Taiwan: temperature limitation and nutrient availability. J Exp Mar Biol Ecol 315:49–69

    Article  Google Scholar 

  • Van Heerden PDR, Strasser RJ, Krüger GHJ (2004) Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plant 121:239–249

    Article  PubMed  Google Scholar 

  • Vega GB (2009) Cultivo Ecosostenible de Kappaphycus alvarezii en Panamá. PhD thesis, Universidad de Las Palmas de Gran Canaria. pp 243

  • Vega GB, Carlos EU, Hurtado AQ, Cornish L, Critchley AT (2020) On the efficacy of an Ascophyllum-based, soluble extract in association with standard plant growth regulators on the micropropagation of the agarophyte, Gracilaria blodgettii, from seaweed farms located at the northern entrance of the Panama Canal. J Appl Phycol 32:3211-3217

    Google Scholar 

  • Vergara-Rodarte MA, Hernández-Carmona G, Rodríguez-Montesinos YE, Arvizu-Higuera DL, Riosmena-Rodríguez R, Murillo-Alvarez JI (2010) Seasonal variation of agar from Gracilaria vermiculophylla, effect of alkali treatment time, and stability of its Colagar. J Appl Phycol 22:753–759

    Article  Google Scholar 

  • Wu CY, Li RZ, Lin GH (1994) Study on the optimum environmental parameters for the growth of Gracilaria tenuistipitata var. liui in pond culture. Oceanol Limnol Sinica 25:60–66

    Google Scholar 

  • Yang Y, Chai Z, Wang Q, Chen W, He Z, Jiang S (2015) Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res 9:236–244

    Article  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee SNB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    Article  CAS  PubMed  Google Scholar 

  • Zhang LT, Zhang ZS, Gao HY, Meng XL, Yang C, Liu JG, Meng QW (2012) The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. BMC Plant Biol 12:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou D, Gao K (2014) Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). J Phycol 50(2):366–375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Amanda Burgueño of Global SLI for her advice in this study in following a good farm practice and Ms. Jeimy Gondola for her support in the laboratory, and Petro American Terminal S.A. for facilitating access to the areas near the ports that allowed for installation of the algal cultivation tanks. The authors would like to thank Dr. John van der Meer (Pan-American Marine Biotechnology Association) for his assistance with proofreading. The authors would also like to thank Dr. Dahai Gao for his generous donation of primers for rbcL.

Funding

This work was supported by the International Partnership Program, Bureau of International Cooperation of the Chinese Academy of Sciences, Grant No. GJHZ2039; Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB42000000; Shandong Province Natural Science Foundation, Grant No. ZR2020QD101; and Key Program of Science and Technology Innovation in Ningbo, Grant No. 2019B10009. The transportation to visit the seaweed farms and seaweed sampling were donated by Gracilarias of Panama S.A. and Sea Farms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, H., Xue, J. et al. A preliminary evaluation of the red seaweed Gracilariopsis silvana, isolated from Colon, Panama, as a potential new agar-producing cultivar. J Appl Phycol 33, 4125–4136 (2021). https://doi.org/10.1007/s10811-021-02598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02598-7

Keywords

Navigation