Skip to main content
Log in

Kinetic and thermodynamics study of the pyrolytic process of the freshwater macroalga, Chara vulgaris

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This is the first study where the pyrolysis of the freshwater macroalga Chara vulgaris was explored to reveal its bioenergy potential. The suitability of C. vulgaris to bioenergy conversion via pyrolysis was accessed in terms of kinetic triplet and thermodynamic parameters. For this purpose, pyrolysis experiments under a thermogravimetric scale were conducted at multiple heating rates (5, 10, and 20 °C min−1) in an inert atmosphere. The mass-loss profiles of C. vulgaris pyrolysis showed that there are two dominant decomposition stages that are related to distinct chemical components inside its structure and that directly affect the calculated kinetic triplet and thermodynamics parameters. The average activation energy obtained using isoconversional methods of Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Starink, and Friedman was in the range of 52.87–72.91 kJ mol−1 for the first decomposition stage and 156.14–174.65 kJ mol−1 for the second decomposition stage. The pyrolytic conversion of C. vulgaris initially follows a second-order reaction model (first decomposition stage), while in second decomposition stage is controlled by a second-order Avrami-Erofeev reaction model. The kinetic results derived from the non-isothermal decomposition of C. vulgaris proved its suitable characteristics for pyrolysis. Additionally, multi-stage kinetic interpretation was successfully attained based on two kinetic triplets, where reconstructed pyrolysis behavior correlated well with experimental pyrolysis behavior. The changes in enthalpy, Gibbs free energy, and entropy for first decomposition stage were 67.58±0.25 kJ mol−1, 180.77±5.30 kJ mol−1, and −176.65±0.41 J mol−1 K−1, and for the second decomposition stage the values were 166.70±0.09 kJ mol−1, 285.51±1.29 kJ mol−1, and −124.29±0.09 J mol−1 K−1, respectively. Based on thermodynamic aspects, C. vulgaris is particularly interesting for use as a raw material to produce biofuels and bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data will be available upon request.

References

  • Ahmad MS, Mehmood MA, Taqvi STH, Elkamel A, Liu CG, Xu J, Rahimuddin SA, Gull M (2017) Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresour Technol 245:491–501

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Khan M, Khan G (1992) Trace-elements and nutritional contents of freshwater algae. Pakistan J Chem Soc 14:297–298

  • Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl 118:13–26

    Article  Google Scholar 

  • Ali I, Bahadar A (2019) Thermogravimetric characteristics and non-isothermal kinetics of macro-algae with an emphasis on the possible partial gasification at higher temperatures. Front Energy Res 7:00007

    Article  Google Scholar 

  • Alves JLF, Da Silva JCG, da Silva Filho VF, Alves RF, Ahmad MS, Ahmad MS, de Araujo Galdino WV, de Sena RF (2019a) Bioenergy potential of red macroalgae Gelidium floridanum by pyrolysis: evaluation of kinetic triplet and thermodynamics parameters. Bioresour Technol 291:121892

    Article  CAS  PubMed  Google Scholar 

  • Alves JLF, Da Silva JCG, da Silva Filho VF, Alves RF, de Araujo Galdino WV, Andersen SLF, de Sena RF (2019b) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. Bioenergy Res 12:168–183

    Article  CAS  Google Scholar 

  • Alves JLF, Da Silva JCG, Di Domenico M, de Araujo Galdino WV, Andersen SLF, Alves RF, de Sena RF (2020) Exploring Açaí seed (Euterpe oleracea) pyrolysis using multi-component kinetics and thermodynamics assessment towards its bioenergy potential. Bioenergy Res 14:209–225

    Article  CAS  Google Scholar 

  • Amin M, Chetpattananondh P (2019) Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II). Bioresour Technol 289:121578

    Article  CAS  PubMed  Google Scholar 

  • Aslan DI, Özoğul B, Ceylan S, Geyikçi F (2018) Thermokinetic analysis and product characterization of Medium Density Fiberboard Pyrolysis. Bioresour Technol 258:105–110

    Article  CAS  PubMed  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar - production and properties. Bioresour Technol 102:1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Boonchom B (2008) Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data 53:1533–1538

    Article  CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD, Nockolds CE (1974) A scanning electron microscope study of the structure and organisation of the calcium carbonate deposits of algae. Phycologia 13:195–203

    Article  Google Scholar 

  • Boyer JS (2016) Enzyme-less growth in Chara and terrestrial plants. Front Plant Sci 7:00866

  • Ceylan S, Topcu Y, Ceylan Z (2014) Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Bioresour Technol 171:193–198

    Article  CAS  PubMed  Google Scholar 

  • Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606

    Article  CAS  Google Scholar 

  • Chen W, Yang H, Chen Y, Xia M, Yang Z, Wang X, Chen H (2017) Algae pyrolytic poly-generation: influence of component difference and temperature on products characteristics. Energy 131:1–12

    Article  CAS  Google Scholar 

  • da Silva JCG, Alves JLF, Galdino WV d A, Andersen SLF, de Sena RF (2018) Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manag 72:265–273

    Article  PubMed  CAS  Google Scholar 

  • da Silva JCG, Andersen SLF, Costa RL, Moreira RFPM, José JH (2019) Bioenergetic potential of Ponkan peel waste (Citrus reticulata) pyrolysis by kinetic modelling and product characterization. Biomass Bioenergy 131:105401

    Article  CAS  Google Scholar 

  • da Silva JCG, de Albuquerque JG, Galdino WV d A, de Sena RF, Andersen SLF (2020) Single-step and multi-step thermokinetic study – deconvolution method as a simple pathway for describe properly the biomass pyrolysis for energy conversion. Energy Convers Manag 209:112653

    Article  Google Scholar 

  • Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102:6230–6238

    Article  CAS  PubMed  Google Scholar 

  • Domozych DS, Popper ZA, Sørensen I (2016) Charophytes: evolutionary giants and emerging model organisms. Front Plant Sci 7:01470

    Article  Google Scholar 

  • Fong MJB, Loy ACM, Chin BLF, Lam MK, Yusup S, Jawad ZA (2019) Catalytic pyrolysis of Chlorella vulgaris: kinetic and thermodynamic analysis. Bioresour Technol 289:121689

    Article  CAS  PubMed  Google Scholar 

  • Gotor FJ, Criado JM, Malek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104:10777–10782

    Article  CAS  Google Scholar 

  • Gupta S, Gupta GK, Mondal MK (2020) Thermal degradation characteristics, kinetics, thermodynamic, and reaction mechanism analysis of pistachio shell pyrolysis for its bioenergy potential. Biomass Convers Biorefinery 10:1–15

    CAS  Google Scholar 

  • Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kan T, Grierson S, De Nys R, Strezov V (2014) Comparative assessment of the thermochemical conversion of freshwater and marine micro- and macroalgae. Energy Fuel 28:104–114

    Article  CAS  Google Scholar 

  • Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Ly HV, Kim J, Choi JH, Woo HC (2013) Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass. Bioresour Technol 139:242–248

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Han TU, Lee B, Watanabe A, Teramae N, Kim JH, Park YK, Park H, Kim S (2018) Analytical pyrolysis reaction characteristics of Porphyra tenera. Algal Res 32:60–69

    Article  Google Scholar 

  • Kumar M, Shukla SK, Upadhyay SN, Mishra PK (2020a) Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresour Technol 310:123393

  • Kumar M, Mishra PK, Upadhyay SN (2020b) Thermal degradation of rice husk: Effect of pre-treatment on kinetic and thermodynamic parameters. Fuel 268:117164

  • Liu H, Wang C, Zhang J, Zhao W, Fan M (2020) Pyrolysis kinetics and thermodynamics of typical plastic waste. Energy Fuel 34:2385–2390

    Article  CAS  Google Scholar 

  • Ma Z, Chen D, Gu J, Bao B, Zhang Q (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers Manag 89:251–259

    Article  CAS  Google Scholar 

  • Mata L, Schuenhoff A, Santos R (2010) A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. J Appl Phycol 22:639–644

    Article  CAS  Google Scholar 

  • Mumbach GD, Alves JLF, da Silva JCG, Di Domenico M, de Sena RF, Marangoni C, Machado MRF, Bolzan A (2020) Pyrolysis of cocoa shell and its bioenergy potential: evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01058-5

  • Müsellim E, Tahir MH, Ahmad MS, Ceylan S (2018) Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl Therm Eng 137:54–61

    Article  CAS  Google Scholar 

  • Rasam S, Moshfegh Haghighi A, Azizi K, Verdugo AS, Moraveji MK (2020) Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel 280:118665

    Article  CAS  Google Scholar 

  • Rey-Boissezon A, Auderset Joye D (2015) Habitat requirements of charophytes-Evidence of species discrimination through distribution analysis. Aquat Bot 120:84–91

    Article  Google Scholar 

  • Roslee AN, Munajat NF (2017) Comparative study on the pyrolysis behaviour and kinetics of two macroalgae biomass (Gracilaria changii and Gelidium pusillum) by thermogravimetric analysis. IOP Conf Ser Mater Sci Eng 257:012037

    Article  Google Scholar 

  • Santos VO, Queiroz LS, Araujo RO, Ribeiro FCP, Guimarães MN, da Costa CEF, Chaar JS, de Souza LKC (2020) Pyrolysis of acai seed biomass: Kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresour Technol Rep 12:100553

    Article  Google Scholar 

  • Shahid A, Ishfaq M, Ahmad MS, Malik S, Farooq M, Hui Z, Batawi AH, Shafi ME, Aloqbi AA, Gull M, Mehmood MA (2019) Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery. Bioresour Technol 289:121701

    Article  CAS  PubMed  Google Scholar 

  • Siddiqua S, Mamun AA, Enayetul Babar SM (2015) Production of biodiesel from coastal macroalgae (Chara vulgaris) and optimization of process parameters using Box-Behnken design. Springerplus 4:1–11

    Article  CAS  Google Scholar 

  • Tahir MH, Çakman G, Goldfarb JL, Topcu Y, Naqvi SR, Ceylan S (2019) Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Bioresour Technol 279:67–73

    Article  CAS  PubMed  Google Scholar 

  • Vinyard DJ, Badshah SL, Riggio MR, Kaur D, Fanguy AR, Gunner MR (2019) Photosystem II oxygen-evolving complex photoassembly displays an inverse H/D solvent isotope effect under chloride-limiting conditions. Proc Natl Acad Sci U S A 116:18917–18922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  • Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23

    Article  CAS  Google Scholar 

  • Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52:5027–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Zhou Y, Hu C (2021) Study on the pyrolysis behaviour of the macroalga Ulva prolifera. J Appl Phycol 33:91–99

    Article  CAS  Google Scholar 

Download references

Funding

We thank HEC Pakistan for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syed Lal Badshah or Arshad Iqbal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badshah, S.L., Shah, Z., Alves, J.L.F. et al. Kinetic and thermodynamics study of the pyrolytic process of the freshwater macroalga, Chara vulgaris. J Appl Phycol 33, 2511–2521 (2021). https://doi.org/10.1007/s10811-021-02459-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02459-3

Keywords

Navigation