Skip to main content

Advertisement

Log in

A new strategy for a combined isolation of EPS and pigments from cyanobacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2020

This article has been updated

Abstract

Cyanobacteria obtain their energy through photosynthesis and live embedded in a matrix of extracellular polymeric substances (EPS) containing valuable products, e.g., polysaccharides, lipids, proteins, and antimicrobials. Besides chlorophyll a and carotenoids, they have light-absorbing compounds in the form of light-harvesting complexes, the so-called phycobilisomes, consisting of different phycobiliproteins. Together they close the “green gap” whereby cyanobacteria can use light more effective than higher plants. Cultivation of cyanobacteria on a lab-scale results in small amounts of biomass for their characterization or a comprehensive screening. EPS are, for example, produced as a protection against suboptimal culture conditions. Carotenoids are essential light-harvesting pigments for photosynthesis, play a key role in photoprotective reactions, and are produced for cell wall stabilization. Essentially, the pigment composition of cyanobacteria depends on the available light spectrum, nitrogen content, and temperature. Especially the production of EPS and pigments are indicators for the cell-condition. Therefore, different EPS extraction methods were tested including the determination of inhibitory effects of extracts against Escherichia coli. Based on the best EPS extraction method, a new strategy for downstream processing (DSP) was developed to determine EPS, the pigments chlorophyll a and carotenoids, and phycobiliproteins from only one sample. As cyanobacterial model organisms Trichocoleus sociatus and Nostoc flagelliforme were used, and DSP strategy was successfully transferred to four additional cyanobacteria. The final DSP includes the following steps: (i) EPS extraction, (ii) lyophilization of biomass, (iii) extraction of phycobiliproteins, and a final (iv) chlorophyll a and carotenoid extraction. The new strategy allows a comprehensive characterization of cyanobacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 22 April 2020

    The original version of this article unfortunately contains mistake introduced during the publishing process. The names of the authors were interchanged in the author group. The corrected author group is shown above.

References

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bimakr M, Ganjloo A, Zarringhalami S, Ansarian E (2017) Ultrasound-assisted extraction of bioactive compounds from Malva sylvestris leaves and its comparison with agitated bed extraction technique. Food Sci Biotechnol 26:1481–1490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biondi N, Tredici MR, Taton A, Wilmotte A, Hodgson DA, Losi D, Marinelli F (2008) Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J Appl Microbiol 105:105–115

    CAS  PubMed  Google Scholar 

  • Branen JK, Davidson PM (2004) Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int J Food Microbiol 90:63–74

    CAS  PubMed  Google Scholar 

  • Braumann T, Grimme LH (1979) Single-step separation and identification of photosynthetic pigments by high-performance liquid chromatography. J Chromatogr A 1 1979:264–268

    Google Scholar 

  • Caesar J, Tamm A, Ruckteschler N, Leifke AL, Weber B (2018) Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods. Biogeoscience 15:1415–1424

    CAS  Google Scholar 

  • Caicedo NH, Heyduck-Söller B, Fischer U, Thöming J (2011) Bioproduction of antimicrobial compounds by using marine filamentous cyanobacterium cultivation. J Appl Phycol 23:811–818

    CAS  Google Scholar 

  • Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353

    CAS  PubMed  Google Scholar 

  • Chi Z, Su CD, Lu WD (2007) A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresour Technol 98:1329–1332

    CAS  PubMed  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Enzym Microb Technol 38:237–245

    CAS  Google Scholar 

  • Dai Y-J (2013) Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture. J Microbiol Biotechnol 23:534–538

    CAS  PubMed  Google Scholar 

  • de Rangel-Yagui CO, Danesi EDG, de Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol 92:133–141

    CAS  Google Scholar 

  • Dussault D, Vu KD, Vansach T, Horgen FD, Lacroix M (2016) Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chem 199:114–118

    CAS  PubMed  Google Scholar 

  • Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the "house of biofilm cells". J Bacteriol 189:7945–7947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foote C S, Denny R W (1968) Chemistry of singlet oxygen. VII Quenching by beta-carotene J Am Chem Soc 90:6233–6235.

  • Fromme P (2008) Photosynthetic protein complexes. Wiley-VCH, Weinheim, Germany

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32:327–347

    CAS  Google Scholar 

  • Gilligan TJ, Schwarz G (1976) The self-association of adenosine-5′-triphosphate studied by circular dichroism at low ionic strengths. Biophys Chem 4:55–63

    CAS  PubMed  Google Scholar 

  • Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta 35:1–8

    CAS  PubMed  Google Scholar 

  • Goldberg SS, Cordeiro MN, Pereira SAA, Mares-Guia ML (1983) Release of lipopolysaccharide (LPS) from cell surface of Trypanosoma cruzi by EDTA. Int J Parasitol 13:11–18

    CAS  PubMed  Google Scholar 

  • Gray GW, Wilkinson SG (1965) The action of Ethylenediaminetetra-acetic acid on Pseudomonas aeruginosa. J Appl Bacteriol 28:153–164

    CAS  Google Scholar 

  • Gross W (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638

    CAS  Google Scholar 

  • Gruszecki WI, Strzałka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115

    CAS  PubMed  Google Scholar 

  • Han P-P, Shen S-G, Wang H-Y, Yao S-Y, Tan Z-L, Zhong C, Jia S-R (2017) Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme. J Appl Phycol 29:55–65

    CAS  Google Scholar 

  • Homoelle BJ, Beck WF (1997) Solvent accessibility of the phycocyanobilin chromophore in the alpha subunit of C-phycocyanin: implications for a molecular mechanism for inertial protein-matrix solvation dynamics. Biochemistry 36:12970–12975

    CAS  PubMed  Google Scholar 

  • İlter I, Akyıl S, Demirel Z, Koç M, Conk-Dalay M, Kaymak-Ertekin F (2018) Optimization of phycocyanin extraction from Spirulina platensis using different techniques. J Food Anal 70:78–88

    Google Scholar 

  • Kadish K M, Smith K M, Guilard R (eds) (2016) Handbook of porphyrin science (volumes 41, 42, 43, 44). With applications to chemistry, physics, materials science, engineering, biology and medicine. World scientific, Singapore

  • Karapanagiotis NK, Rudd T, Sterritt RM, Lester JN (1989) Extraction and characterisation of extracellular polymers in digested sewage sludge. J Chem Technol Biotechnol 44:107–120

    CAS  Google Scholar 

  • Khazi MI, Demirel Z, Dalay MC (2018) Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. J Appl Phycol 30:1513–1523

    CAS  Google Scholar 

  • King RO, Forster CF (1990) Effects of sonication on activated sludge. Enzym Microb Technol 12:109–115

    CAS  Google Scholar 

  • Koçak E, Pazir F (2018) Effect of extraction methods on bioactive compounds of plant origin. Turkish JAF Sci Tech 6:663

    Google Scholar 

  • Kuhne S (2015) Fermentation von phototrophen Organismen zur Produktion von biotechnologischen Wertstoffen. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Kuhne S, Lakatos M, Foltz S, Muffler K, Ulber R (2013) Characterization of terrestrial cyanobacteria to increase process efficiency in low energy consuming production processes. Sustain Chem Process 1:6–6

    Google Scholar 

  • Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36:367–375

    Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C, Liu Y (2011) Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts. Soil Biol Biochem 43:857–861

    CAS  Google Scholar 

  • Lawrenz E, Fedewa EJ, Richardson TL (2011) Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J Appl Phycol 23:865–871

    Google Scholar 

  • Leive L (1965) Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commn 21:290–296

    CAS  Google Scholar 

  • Liang Z, Li W, Yang S, Du P (2010) Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge. Chemosphere 81:626–632

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Maccoll R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    CAS  PubMed  Google Scholar 

  • Marvin HJ, Witholt B (1987) A highly efficient procedure for the quantitative formation of intact and viable lysozyme spheroplasts from Escherichia coli. Anal Biochem 164:320–330

    CAS  PubMed  Google Scholar 

  • Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero MG (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60:175–182

  • Nakagawa K, Ritcharoen W, Sri-Uam P, Pavasant P, Adachi S (2016) Antioxidant properties of convective-air-dried Spirulina maxima: evaluation of phycocyanin retention by a simple mathematical model of air-drying. Food Bioprod Process 100:292–302

    CAS  Google Scholar 

  • Palmqvist K, Sltemeyer D, Baldet P, Andrews TJ, Badger MR (1995) Characterisation of inorganic carbon fluxes, carbonic anhydrase(s) and ribulose-1,5-biphosphate carboxylase-oxygenase in the green unicellular alga Coccomyxa. Planta 197:352–361

    CAS  Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5:e10821

  • Pittera J, Partensky F, Six C (2017) Adaptive thermostability of light-harvesting complexes in marine picocyanobacteria. ISME J 11:112–124

    CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta - Bioenergetics 975:384–394

  • Pramanik A, Sundararaman M, Das S, Ghosh U, Mukherjee J (2011) Isolation and characterization of cyanobacteria possessing antimicrobial activity from the Sundarbans, the world's largest tidal mangrove forest. J Phycol 47:731–743

    PubMed  Google Scholar 

  • Rascher U, Lakatos M, Büdel B, Lüttge U (2003) Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana highlands. Euo J Phycol 38:247–256

    Google Scholar 

  • Richaud C, Zabulon G, Joder A, Thomas JC (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989–2994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rippka R, Herdman M, Waterbury JB (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rossi F, De Philippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5:1218–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saer RG, Blankenship RE (2017) Light harvesting in phototrophic bacteria: structure and function. Biochem J 474:2107–2131

    CAS  PubMed  Google Scholar 

  • Sato M, Murata Y, Mizusawa M, Iwahashi H, Oka S (2004) A simple and rapid dual-fluorescence viability assay for microalgae. Microbiol Cult Coll 20:53–59

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo YC, Choi WS, Park JH, Park JO, Jung K-H, Lee HY (2013) Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process. Int J Mol Sci 14:1778–1787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw E, Hill DR, Brittain N, Wright DJ, Täuber U, Marand H, Helm RF, Potts M (2003) Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69:5679–5684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng G-P, Yu H-Q, Yu Z (2005) Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biotechnol 67:125–130

    CAS  PubMed  Google Scholar 

  • Song W, Zhao C, Zhang D, Mu S, Pan X (2016) Different resistance to UV-B radiation of extracellular polymeric substances of two cyanobacteria from contrasting habitats. Front Microbiol 7:13

    Google Scholar 

  • Staats N, de Winder B, Stal L, Mur L (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169

    Google Scholar 

  • Strieth D (2019) Produktive phototrophe Biofilme in Aerosolreaktoren. 1 Verlag Dr. Hut (Verfahrenstechnik), Munich

  • Strieth D, Schwing J, Kuhne S, Lakatos M, Muffler K, Ulber R (2017) A semi-continuous process based on an ePBR for the production of EPS using Trichocoleus sociatus. J Biotechnol 256:6–12

    CAS  PubMed  Google Scholar 

  • Vaara M (1981) Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid a mutants. J Bacteriol 148:426–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Yang L, Zhang Y, Chen S, Gao X, Wan C (2019) Investigation of the dynamical expression of Nostoc flagelliforme proteome in response to rehydration. J Proteome 192:160–168

    CAS  Google Scholar 

  • Weber B, Wessels DCJ, Deutschewitz K, Dojani S, Reichenberger H, Büdel B (2013) Ecological characterization of soil-inhabiting and hypolithic soil crusts within the Knersvlakte. S Afr Ecol Proc 2:231–213

    Google Scholar 

  • Yi Z-W, Huang H, Kuang T-Y, Sui S-F (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573

    CAS  PubMed  Google Scholar 

  • Yu H, Liu R (2013) Effect of UV-B radiation on the synthesis of UV-absorbing compounds in a terrestrial cyanobacterium, Nostoc flagelliforme. J Appl Phycol 25:1441–1446

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Burkhard Büdel (University of Kaiserslautern, Department of Plant Ecology and Systematics, Germany) for his expertise, his stock cultures, and his assistance concerning cyanobacteria.

Funding

The research was supported by the Carl-Zeiss-Stiftung, TU-Nachwuchsring research funding, the German Research Foundation (DFG; Project number: UL 170/16–1; MU 2985/3–1), Ministry of Education of Rhineland-Palatinate (bm.rlp) (iProcess intelligent process development – from modeling to product) and the Federal Ministry of Education and Research (BMBF) (Project number: 031B0068D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorina Strieth.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strieth, D., Stiefelmaier, J., Wrabl, B. et al. A new strategy for a combined isolation of EPS and pigments from cyanobacteria. J Appl Phycol 32, 1729–1740 (2020). https://doi.org/10.1007/s10811-020-02063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02063-x

Keywords

Navigation