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Abstract
To investigate the release and degradation of arsenolipids present in the marine brown macroalga Ecklonia radiata, tissues were
collected in various stages of decomposition from intertidal environments, while tissues were also decomposed in laboratory-
based microcosms prepared using combinations of autoclaved and natural (non-autoclaved) seawater and sand. Field collected
macroalgae samples contained 20–120 μg g−1 total As of which 1–10% were arsenolipids comprising mainly an arsenic
hydrocarbon (AsHC; 3–13% of total arsenolipids) and four di-acyl arsenic phospholipids (AsPLs; 86–95%). Additionally, a
mono-acyl AsPL was found in all water-column decomposing samples. Arsenolipid concentrations in live tissues were similar to
those in tissues decomposing in the water-column (1.3–2.9 μg g−1 dry mass), which were both up to four times higher than those
in decomposing tissues collected from intertidal environments (0.7–1.3 μg g−1 dry mass). In the microcosm experiments, the
arsenolipid content of E. radiata decreased substantially as decomposition proceeded. In the majority of microcosms, more than
75% of the arsenolipids present initially disappeared within 5 days with only the AsHC persisting until day 60 (the length of the
experiment). This study demonstrates that the habitat in which decomposition occurs influences the release and degrada-
tion of arsenolipids with the greatest losses occurring when tissues decompose in intertidal environments. Microbial
diversity, biomass, and overall activity are thus likely to play important roles in the persistence of arsenolipids in
decomposing algae.
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Introduction

Marine organisms naturally contain high concentrations of
organic arsenic species (Edmonds and Francesconi 2003).
Currently, more than 100 arsenic species have been identified
with arsenoribosides the most common species in algae and
arsenobetaine (AB), the dominant species in most marine an-
imals (Francesconi and Edmonds 1998; Rahman et al. 2012).

Many studies have investigated the cycling and biosynthe-
sis of water-soluble As species in marine ecosystems (e.g.,
Santosa et al. 1994; Rahman et al. 2012; Hanaoka and
Usui 2014; Maher et al. 2015; Foster and Maher 2016).
Despite arsenic-containing lipids (arsenolipids; the major
classes are depicted in Fig. S1) originally being identified
over 30 years ago by Morita and Shibata (1988), far less
information exists on the production and biosynthesis of
arsenolipid species by marine organisms (Sele et al. 2012;
Amayo et al. 2014; Petursdottir et al. 2015; Glabonjat
et al. 2018). In recent years, however, there has been
renewed interest in the characterization of arsenolipids in
marine organisms; and as a result, over 80 arsenolipids
including As-hydrocarbons (AsHCs) (Taleshi et al.
2008), As-fatty acids (Rumpler et al. 2008), As-fatty alco-
hols (Amayo et al. 2013), As-phospholipids (AsPLs)
(Morita and Shibata 1988; Viczek et al. 2016), and
methoxy As-sugar phytol (Glabonjat et al. 2017) have
been identified from a range of organisms such as marine
algae, squid, and fish.

Algae (macro and unicellular) play three important roles in
the cycling of As in marine environments. Firstly, they are
able to remove arsenic from the water-column and bio-
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transform inorganic As species (predominantly arsenate) to
arsenoribosides and other organic As species such as
methylarsonic acid (MA) and dimethylarsinic acid (DMA)
(Rahman et al. 2012; Duncan et al. 2015). Secondly, as algae
are the bases of most marine food webs, this accumulated and
bio-transformed As is then transferred to higher marine organ-
isms that utilize algae as a food source (Rahman et al. 2012;
Foster and Maher 2016). Thirdly, the arsenic accumulated by
algae is eventually returned to the environment when tissues
decompose in the water column, or by active excretion of
inorganic and methylated arsenic species, which represents
an important link in the marine As-cycle (Hanaoka et al.
1995; Duncan et al. 2014a, b).

Previously, our group investigated the degradation of
water-soluble As species associated with the marine
macro-alga Ecklonia radiata when tissue decomposition
occurred in the field and in laboratory microcosms
(Duncan et al. 2014a, c). The current study complements
those previous findings by utilizing the same tissue sam-
ples to investigate the fate of arsenolipids associated with
decomposing E. radiata. Our objective was to determine
how arsenolipid species present in E. radiata changed
depending on the stage of decomposition and habitat
(water-column, intertidal sand/rock platforms), and estab-
lish the potential roles played by microbial communities
during the decomposition processes.

Materials and methods

Live and naturally decomposing Ecklonia radiata

Detailed information on the collection of Ecklonia radiata
tissues can be found in the study of Duncan et al. (2014c).
Ecklonia radiata samples were collected between 24 and 26
February 2012 at two estuaries, Lake Tabourie (35.4486° S,
150.4011° E), Burill Lake (35.3886° S, 150.4447° E), and
Ulladulla Harbor (35.3667° S, 150.4667° E) in southern
New South Wales, Australia. These locations were chosen
because there are no arsenic contamination sources and all
locations contained live E. radiata tissues plus E. radiata
decomposing in the water-column. In addition, these sites also
contained a combination of beach (i.e., sand) and rock plat-
form environments, which we hypothesized, would signifi-
cantly influence the extent of terrestrial decomposition of the
algae and thus would result in different rates of degradation of
arsenolipids. Five replicates of liveE. radiata specimens (live;
n = 5), E. radiata tissues decomposing in the water-column
(submerged; n = 5), and E. radiata tissues decomposing on a
sand/rock platform on the beach (beach; n = 5) were collected
at all three sampling locations. For the analysis of
arsenolipids, replicates were pooled within each of the three
sampling habitats (live, submerged, and beach).

Microbially manipulated microcosms

Details of the preparation of laboratory microcosms can be
found in the study of Duncan et al. (2014a). In brief,
E. radiata tissue, sand, and seawater were collected from
one site at Bawley Point, New South Wales (35.5199° S;
150.3967° E). On return to the laboratory, three subsam-
ples each of E. radiata, seawater, and sand were frozen for
later use in the microcosm experiments.

Microcosms were created using 225 cm2 non-
pyrogenic tissue culture flasks (Corning, USA) contain-
ing E. radiata tissue (2 g wet mass), sand (300 g dry
mass, either autoclaved or natural), and seawater
(600 mL, either autoclaved or natural), which were
added to each flask under aseptic conditions. Four sets
of conditions, each done in triplicate, were used to es-
tablish the microcosms: (1) natural sand and seawater,
(2) natural sand and sterile seawater, (3) sterile sand and
natural seawater, and (4) sterile sand and sterile seawa-
ter. Microcosms were incubated at a light intensity of
110 μmol photons m−1 s−1, under a 12:12 h light:dark
ratio. Temperatures were maintained at 20 °C during
dark periods ramping up to 25 °C during light periods.
After incubation for 5 days, one set of samples (n = 3
replicates) for each of the experimental treatments
(n = 4) (n = 12 microcosms in total) were randomly
selected and removed from the chamber. This process
was repeated at all time intervals (days 5, 10, 15, 20,
30, 45, and 60). E. radiata tissues were removed and
placed into 50-mL centrifuge tubes (polypropylene;
Greiner, USA), frozen and freeze-dried for later deter-
mination of total arsenic and arsenic species. For the
analysis of arsenolipids, replicates from each sampling
time were pooled; at some time intervals (natural sand
and seawater: days 10, 15, and 30; sterile seawater:
days 20, 30, and 60; and sterile sand: day 15), there
was insuff ic ient a lgal biomass for arsenol ip id
measurements.

Reagents and standards

Water used for all analytical steps was obtained from a
Milli-Q system (18.2 MΩ cm, Millipore GmbH, Austria).
Methanol (≥ 99.9%, MeOH), dichloromethane (≥ 99.9%,
DCM), formic acid (≥ 98%), acetone (≥ 99.5%), and am-
monia (25%) were obtained from Carl Roth GmbH
(Germany); acetone (≥ 99.5%) was purchased from
Sigma-Aldrich (Austria); and acetic acid (100% glacial)
and silica gel 60 (0.063–0.200 mm) were obtained from
Merck (Switzerland). The certified reference material was
NMIJ CRM 7405-a (Trace Elements and Arsenic
Compounds in Seaweed – Hijiki) from the Natural
Metrology Institute of Japan (Tsukuba, Ibaraki, Japan).

3980 J Appl Phycol (2019) 31:3979–3987



Standard arsenolipids, namely AsHC332, AsHC360, and
AsHC444 (structures are shown in Fig. S1), were syn-
thesized in-house according to Taleshi et al. (2014), and
standard solutions (each 0.1 mM or 7.5 mg L−1) were
prepared by dissolving the compound (7.5 ± 0.2 μg as
As) in MeOH (1 mL).

Arsenolipid measurements

The lipid arsenic species within E. radiata tissues were
measured via high performance liquid chromatography
(HPLC) coupled simultaneously to an inductively
coupled plasma mass spectrometer (ICPMS) and an
electrospray ionization mass spectrometer (ESMS) (Yu
et al. 2018). The freeze-dried algal sample (10 mg
weighed to a precision of 0.01 mg) was extracted with
DCM/MeOH (2 + 1, v/v; 1 mL) for 1 h on a rotary cross
at room temperature. The mixture was centrifuged
(10 min, 5000×g), and a portion of the liquid phase
(0.7 mL) was filtered (0.2 μm; nylon) and injected onto
the HPLC-system.

Separation of arsenolipid species was carried out by
reversed-phase (RP) HPLC using an ACE UltraCore
SuperC18 column (4.6 × 250 mm, 5-μm particle size).
Elution was performed with water containing 25 mM
ammonium acetate (adjusted to pH 9.2 with NH3; mobile
phase A) and MeOH containing 25 mM ammonium ac-
etate (adjusted to pH 9.2 with NH3; mobile phase B)
under gradient elution conditions: 0–40 min, 20–100%
B; 40–53 min, 100% B; 53–53.5 min, 100–20% B; and
53.5–60 min, 20% B. Flow rate was 1 mL min−1, col-
umn temperature was 40 °C, and injection volume was
50 μL. For ICPMS detection, the HPLC effluent was
split whereby 10% were transported to the ICPMS (to
maintain a stable plasma by reducing the organic solvent
load) using a passive splitter (Analytical Scientific
Instruments, Richmond, USA) and post-splitter support
of the outflow with water containing 1%v/v formic acid
and internal standards Ge, In, and Te (20 μg L−1;
0.9 mL min−1) through a T-piece. Carbon compensation
(Raber et al. 2010) was performed by constant introduc-
tion of an aqueous acetone solution (5%v/v in water)
directly into the spray chamber delivered with a rotatory
pump (0.2 mL min−1) to ensure constant carbon content
reaching the plasma. Limit of detection (LOD) and limit
of quantification (LOQ) of the HPLC-ICPMS method
were 0.01 μg As g−1 dry mass (based on three blank
extracts + 3 × standard deviation of the blank) and
0.05 μg As g−1 dry mass (based on three blank extracts
+ 10 × standard deviation of the blank), respectively.
Lipid extracts were measured on an Agilent 7900 instru-
ment. For ESMS detection, the remaining 90% of the
HPLC effluent was directly introduced to the ion source

of an Agilent 6460 instrument equipped with a Jetstream
ion source operated in positive ionization mode using a
capillary voltage of 5 kV and nozzle voltage of 2 kV; N2

gas temperature was 350 °C with a flow of 12 L min−1;
nebulizer pressure was 25 psi; and sheath gas tempera-
ture was 350 °C with a flow of 11 L min−1. Arsenolipid
species were extracted from either SCAN mode observ-
ing a mass range of m/z 150–1100 with a scan time of
0.5 s, and fragmentor voltages of 135 V and 200 V; or
determined in MRM mode with dwell times of 0.1 s per
transition using the conditions described in Table S1.

In addition to the simultaneous determination by RP-
HPLC-ICPMS/ESMS, we also used high-resolution (HR)
ESMS for the accurate measurement of arsenolipid
masses using a Thermo Q-Exactive Hybrid Quadrupole
Orbitrap MS equipped with an HESI-II ion source
(Thermo Scientific, USA). The HPLC system comprised
an UltiMate 3000 system (Thermo Scientific). Freeze-
dried E. radiata samples (100 mg) were extracted with
DCM/MeOH (2 + 1, v/v; 3 mL) for 1 h on a rotary cross
at room temperature. The mixture was centrifuged
(10 min, 5000×g) and a portion of the liquid phase
(2.7 mL) evaporated to dryness (100 mbar, 25 °C), re-
dissolved in MeOH/acetone (1 + 1, v/v, containing 1%v/v
formic acid, 1 mL), and transferred to a small column
containing silica gel 60 (glass Pasteur pipette, 230 ×
5 mm, filled to a height of 40 mm), conditioned with
the same mixture (5 mL). The column was washed with
the conditioning solution (5 mL) and then with pure
MeOH (2 mL). Finally, arsenolipids were eluted with
MeOH containing 1%v/w NH3 (8 mL) and evaporated
to dryness (10 mbar, 25 °C), and the residue stored at
− 20 °C. The residue was re-dissolved in pure MeOH
(200 μL) prior to measurement.

Chromatographic conditions were slightly different for
HR-ESMS measurements owing to the need for higher
sensitivity: HPLC-column was an Asahipak ODP-50
(150 × 4.6 mm; 5 μm particle size); separation of
arsenolipids was carried out using gradient elution condi-
tions with a flow of 0.5 mL min−1 using water containing
0.1%v/v formic acid (mobile phase A) and MeOH contain-
ing 0.1%v/v formic acid (mobile phase B), 0–30 min, 60–
100% B; 30–40 min, 100% B; 40–40.1 min, 100–60% B;
and 40.1–50 min, 60% B. The HPLC column was held at
40 °C and the injection volume was 20 μL. The HR-ESMS
was operated under positive ionization conditions (3.5 kV)
in data dependent MS2 mode fragmenting the five most
abundant peaks of each scan event (m/z 100–1200) with
fragmentation energies of 20, 35, and 50 instrument units
(IU). Resolution was set to 70,000 (FWHM) with an iso-
lation window of 0.4 m/z at the quadrupole; capillary tem-
perature, 270 °C; sheath gas flow, 52.5 IU; auxiliary gas
flow, 14 IU; and probe temperature 438 °C.
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Data evaluation of ICPMS measurements was carried out
with the chromatographic software MassHunter B.01.01 ob-
tained from Agilent Technologies (Germany). Quantification
was based on peak areas with external calibration against
standards of AsHC332, AsHC360, and AsHC444 for lipid-
soluble arsenicals. ESMS data were evaluated with
MassHunte r Works ta t ion B.07 .00 f rom Agi len t
Technologies, and HR-ESMS data were evaluated with chro-
matographic software Xcalibur 3.0.63 from Thermo Scientific
(USA). Accuracy of the arsenic speciation procedure was de-
termined by analysis of the certified reference material NMIJ
7405-a Hijiki prepared in the same way as E. radiata samples
(Fig. S2 and Table S2). Identification of individual
arsenolipids was based on retention time matching with
CRM Hijiki (RP-HPLC-ICPMS/ESMS), as well as accurate
mass determination with RP-HPLC-HR-ESMS (Table S3).
Arsenolipid species found in E. radiata samples in this study
are shown in Fig. 1.

Total arsenic

Total arsenic concentrations in naturally decomposing
E. radiata tissues and in E. radiata decomposing in

microbially manipulated microcosms were determined in our
previous studies (Duncan et al. 2014a, c).

Results and discussion

Arsenolipids present in live and naturally
decomposing Ecklonia radiata tissues

Total arsenolipid concentrations

For live E. radiata samples, total arsenolipid concentrations
ranged between 1.28 and 2.17 μg g−1 dry mass (Fig. 2 and
Table S4) across the three sampling locations, which repre-
sents ca 1–3% of the total As in the macroalga. This
arsenolipid concentration range is consistent with that report-
ed for other marine algae (García-Salgado et al. 2012; Raab
et al. 2013; Glabonjat et al. 2014; Al Amin et al. 2018).

Total arsenolipid concentrations in decomposing
E. radiata t issues collected in the water-column
(submerged) ranged between 1.87 and 2.85 μg g−1 dry
mass across the three sampling locations (Fig. 2 and
Table S4). These values were comparable with, or even
higher than, those found in the live algae, indicating that
the arsenolipids are retained, at least initially, in the sub-
merged E. radiata tissues. This is in contrast to the behav-
ior of total arsenic, mostly consisting of water soluble As
species, which decreased by 25–65% as a result of abiotic
processes such as leaching occurring in the water column
(Duncan et al. 2014c). As a consequence, the proportion
of arsenic present as arsenolipids in the submerged algae
(2–10%) was two- to threefold higher than that found in
the live algae.

Total arsenolipid concentrations in decomposing E. radiata
tissue collected from intertidal environments (beach) ranged
between 0.74 and 1.31 μg g−1 dry mass (4–6% of total As)
with similar concentrations present across all three locations
(Fig. 2 and Table S4). These arsenolipid concentrations in
algae collected from beach environments were lower than
those in live and submerged E. radiata, which indicates that
the arsenolipids were starting to degrade. The arsenolipids,
however, were much more resistant to degradation than were
the water-soluble arsenicals investigated in our previous study
(Duncan et al. 2014c).

Fig. 1 Arsenic containing lipids found in Ecklonia radiata extracts. For
unsaturated AsPL980, we show only one possible isomer of the lipophilic
side-chains

�Fig. 2 Total lipid-soluble arsenic concentrations and distribution of indi-
vidual arsenolipids at three stages of naturally degrading Ecklonia radiata
collected at three locations. Concentrations were determined by RP-
HPLC-ICPMS (n = 1)
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Release and degradation of arsenolipid species

All the E. radiata samples contained AsHC388, constituting
3–13% of total arsenolipids, and four di-acyl AsPLs, which
together made up 86–95% of the total arsenolipids, while
mono-acyl AsPL720 (6–9%) was mainly found in samples
decomposing in the water column (submerged) (Fig. 2 and
Table S4). The proportions of arsenolipid species in live
E. radiata were similar across locations with AsPL958 the
dominant species (48–55%) followed by AsPL1014 (19–
27%), AsPL986 (10–13%), AsPL980 (6–11%), and
AsHC388 (3–6%). All the arsenolipids found here have been
reported previously in a range of macroalgal species (García-
Salgado et al. 2012; Raab et al. 2013; Yu et al. 2018) albeit in
different proportions.Most studies have observedAsPLs to be
abundant in macroalgae with lesser amounts of AsHCs
(García-Salgado et al. 2012; Al Amin et al. 2018), although
Petursdottir et al. (2015) observed the opposite pattern in
Ectocarpus spp.

The proportions and concentrations of arsenolipids in
decomposing E. radiata tissues collected in the water column
(submerged) were similar to those found in live E. radiata
tissues (Fig. 2, Fig. S2 and Table S4). There was, however,
one exception: AsPL720 was present in all E. radiata tissues
decomposing within the water-column, whereas this
arsenolipid was only detected in one live algal sample (Fig.
2 and Table S4). Unlike the other AsPLs detected here,
AsPL720 is a mono-acylated species and therefore it is likely
to arise as a first stage degradation product of the di-acylated
As-phospholipids. Mono-acyl arsenolipids have only rarely
been reported in algae (Yu et al. 2018).

In extensively decomposed (beach) E. radiata tissue sam-
ples, the AsPLs remained in similar proportions to those in
live and submerged tissues (Fig. 2 and Table S4). This pattern
was maintained even in the Burill Lake samples where the
total arsenolipid concentrations in beach algae were markedly
lower than those in the live samples. In contrast, the propor-
tion of AsHC388 increased more than twofold in the beach
decomposing samples (live 3–6%, submerged 4–6%, beach
9–13%) indicating that the AsHCs were more resistant to deg-
radation than were the AsPLs. But overall, the arsenolipids
were relatively stable in decomposing algal tissue, and thus
their fate was markedly different from the fate of the water-
soluble arsenic species, mainly arsenoribosides, which readily
degraded under the same conditions (Duncan et al. 2014c).

Arsenolipids in Ecklonia radiata decomposing
in microbially manipulated microcosms

Total arsenolipid concentrations

Initial total arsenolipid concentrations in the field collected
E. radiata tissue was ca 3 μg As g−1 dry mass. The total

lipid-soluble As in all microcosms decreased by more than
75% during the first 5 days of incubation, and by the conclu-
sion of the experiments (day 60), less than 10% of the initially
present arsenolipids was present in the decomposing
E. radiata tissues (Fig. 3 and Table S5). These rates of degra-
dation were much faster than those observed for the field-
based experiments, presumably reflecting increased microbial
activity in the microcosms. We observed the fastest and most
constant release of arsenolipids from E. radiata tissues under
conditions with natural sand and seawater (Fig. 3 and
Table S5).

Release and degradation of arsenolipid species

In live E. radiata, the proportions of arsenolipids were
AsHC (11%; 0.35 μg As g−1 dry mass), mono-acyl
AsPL (6%; 0.20 μg As g−1), and di-acyl AsPLs (83%;
2.63 μg As g−1) with the major components being
AsPL958, AsPL980, As PL986, AsPL1014, AsHC388,
and AsPL720 (Fig. 3, Fig. S2 and Table S5). In micro-
cosms with natural sand and seawater, the concentrations
of AsHC and di-acyl AsPLs reduced by 55 and 85%, re-
spectively after the first 5 days; while the mono-acyl
AsPL720 was not detected in any decomposing tissue
sample (Fig. 3 and Table S5). This rapid loss of
arsenolipids was similar to that found for water-soluble
arsenicals in decomposing algae as reported in our previ-
ous study (Duncan et al. 2014a) and by others (Edmonds
et al. 1982; Pengprecha et al. 2005; Navratilova et al.
2011; Ojo and Onasanya 2013). By the latter stages of
the experiment (days 45–60), almost all the AsPLs had
degraded and only AsHC388 was detected in measurable
concentrations (Fig. 3 and Table S5). This finding is con-
sistent with the data described earlier from the field col-
lected E. radiata, which showed that the AsHCs were more
resistant to degradation than the AsPLs.

In the three microcosms using sterile sand, sterile seawater,
or a combination of both, the degradation of the arsenolipids
was similar to that observed for the natural sand and seawater
microcosm, albeit less extensive. The AsHCswere again more
recalcitrant than the AsPLs; by the conclusion of the experi-
ments, more than 90% of all AsPLs had degraded whereas up
to 50% of the AsHCs remained associated with the E. radiata
tissues (Fig. 3 and Table S5). The similarity in arsenolipid
degradation across the various treatments (natural sand and
seawater versus sterile sand/seawater combinations) suggests
that microbes associated with the surfaces of E. radiata may
have re-colonized the initially sterile seawater and sand

�Fig. 3 Total lipid-soluble arsenic concentrations and distribution of indi-
vidual arsenolipids in Ecklonia radiata at various stages of degradation in
microcosms under four sets of conditions. Concentrations were deter-
mined by RP-HPLC-ICPMS (n = 1)
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environments. Thus, by day 60, differences in the overall mi-
crobial biomass and activity may have been minimal.
Alternatively, the decomposition of E. radiatamay have been
autocatalytic or abiotic in nature (Kolter and Sandhoff 2010;
Rontani et al. 2014).

This study is the first to document the arsenolipid species in
decomposing marine macroalgae and track the degradation of
arsenolipid species over time. Overall, the results show that
most of the AsPLs species (mono- and di-acylated) are rapidly
lost from tissue during the early stages of decomposition es-
pecially when detached algae are allowed to settle on the
ocean floor. As decomposition proceeds (i.e., within intertidal
zones or on the ocean floor), AsPLs are further degraded; and
over time, they are lost completely from algal tissues.
AsHC388, however, appears to be more persistent although
reasons for this are currently uncertain. Further research is
thus required to fully understand and characterize the
arsenolipid degradation pathways that occur in marine
environments.

Acknowledgments The authors would like to acknowledge the assis-
tance of the 2012 undergraduate Ecochemistry students from the
University of Canberra who assisted with the collection and preparation
of E. radiata samples. The authors thank Sophy Hart, Liz O’Connor and
Martin Campbell who assisted with the E. radiata degradation micro-
cosm preparation, experimentation, and sample preparation as part of
the 2011 Resource Science Project Unit at the University of Canberra.
We also thank the Austrian Science Fund (FWF) project number I2412-
B21 for financial support, and NAWI-Graz for supporting the Graz
Central Lab–Metabolomics.

Funding Information Open access funding provided by University of
Graz.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Al Amin MH, Xiong C, Glabonjat RA, Francesconi KA, Oguri T,
Yoshinaga J (2018) Estimation of daily intake of arsenolipids in
Japan based on a market basket survey. Food Chem Toxicol 118:
245–251

Amayo KO, Raab A, Krupp EM, Gunnlaugsdottir H, Feldmann J (2013)
Novel identification of arsenolipids using chemical derivatizations
in conjunction with RP-HPLC-ICPMS/ESMS. Anal Chem 85:
9321–9327

Amayo KO, Raab A, Krupp EM, Feldmann J (2014) Identification of
arsenolipids and their degradation products in cod-liver oil. Talanta
118:217–223

Duncan EG, Maher WA, Foster SD, Krikowa F, Mikac KM (2014a) The
degradation of arsenoribosides from Ecklonia radiata tissues
decomposed in natural and microbially manipulated microcosms.
Environ Chem 11:289–300

Duncan EG, Maher WA, Foster SD, Mikac KM, Krikowa F (2014b) The
influence of bacteria on the arsenic species produced by laboratory
cultures of the marine phytoplankton Dunaliella tertiolecta. J Appl
Phycol 26:2129–2134

Duncan EG, Maher WA, Foster SD, Krikowa F (2014c) Total arsenic
concentrations and arsenic species present in naturally decomposing
Ecklonia radiata tissues collected from various marine habitats. J
Appl Phycol 26:2193–2201

Duncan EG, Maher WA, Foster SD (2015) Contribution of arsenic spe-
cies in unicellular algae to the cycling of arsenic in marine ecosys-
tems. Environ Sci Technol 49:33–50

Edmonds JS, Francesconi KA (2003) Organoarsenic compounds in the
marine environment. In: Craig PJ (ed) Organometallic compounds
in the environment, 2nd edn. Wiley, Hoboken, pp 196–222

Edmonds JS, Francesconi KA, Hansen JA (1982) Dimethyloxarsylethanol
from anaerobic decomposition of brown kelp (Ecklonia radiata): a
likely precursor of arsenobetaine inmarine fauna. Experientia 38:643–
644

Foster SD, Maher WA (2016) Arsenobetaine and thio-arsenic species in
marine macroalgae and herbivorous animals: accumulated through
trophic transfer or produced in situ? J Environ Sci 49:131–139

Francesconi KA, Edmonds JS (1998) Arsenic species in marine samples.
Croat Chem Acta 71:343–359

García-Salgado S, Raber G, Raml R, Magnes C, Francesconi KA (2012)
Arsenosugar phospholipids and arsenic hydrocarbons in two species
of brown macroalgae. Environ Chem 9:63–66

Glabonjat RA, Raber G, Jensen KB, Ehgartner J, Francesconi KA (2014)
Quantification of arsenolipids in the certified reference material
NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemi-
cal derivatization. Anal Chem 86:10282–10287

Glabonjat RA, Raber G, Jensen KB, Guttenberger N, Zangger K,
Francesconi KA (2017) A 2-O-methylriboside unknown outside
the RNA world contains arsenic. Angew Chem Int Ed Eng 56:
11963–11965

Glabonjat RA, Ehgartner J, Duncan EG, Raber G, Jensen KB, Krikowa F,
Maher WA, Francesconi KA (2018) Arsenolipid biosynthesis by the
unicellular alga Dunaliella tertiolecta is influenced by As/P ratio in
culture experiments. Metallomics 10:145–153

Hanaoka K’i, Usui M (2014) Arsenic circulation in marine ecosystems. J
Natl Fish Univ 62:169–172

Hanaoka K’i, Nakamura O, Ohno H, Tagawa S, Kaise T (1995)
Degradation of arsenobetaine to inorganic arsenic by bacteria in
seawater. Hydrobiologia 316:75–80

Kolter T, Sandhoff K (2010) Lysosomal degradation of membrane lipids.
FEBS Lett 584:1700–1712

Maher WA, Ellwood MJ, Krikowa F, Raber G, Foster SD (2015)
Measurement of arsenic species in environmental, biological fluids
and food samples by HPLC-ICPMS and HPLC-HG-AFS. J Anal At
Spectrom 30:2129–2183

Morita M, Shibata Y (1988) Isolation and identification of arseno-lipid
from a brown alga, Undaria pinnatifida (Wakame). Chemosphere
17:1147–1152

Navratilova J, Raber G, Fisher SJ, Francesconi KA (2011) Arsenic cy-
cling in marine systems: degradation of arsenosugars to arsenate in
decomposing algae, and preliminary evidence for the formation of
recalcitrant arsenic. Environ Chem 8:44–51

Ojo AA, Onasanya A (2013) Closed anaerobic biotransformation prod-
ucts of organoarsenic compounds in Fucus distichus. ISRN Environ
Chem 2013:1–7

Pengprecha P, Wilson M, Raab A, Feldmann J (2005) Biodegradation of
arsenosugars in marine sediment. Appl Organomet Chem 19:819–
826

Petursdottir AH, Fletcher K, Gunnlaugsdottir H, Krupp E, Kuepper FC,
Feldmann J (2015) Environmental effects on arsenosugars and
arsenolipids in Ectocarpus (Phaeophyta). Environ Chem 13:21–33

3986 J Appl Phycol (2019) 31:3979–3987



Raab A, Newcombe C, Pitton D, Ebel R, Feldmann J (2013)
Comprehensive analysis of lipophilic arsenic species in a brown alga
(Saccharina latissima). Anal Chem 85:2817–2824

Raber G, Raml R, Goessler W, Francesconi KA (2010) Quantitative
speciation of arsenic compounds when using organic solvent gradi-
ents in HPLC-ICPMS. J Anal At Spectrom 25:570–576

Rahman MA, Hasegawa H, Lim RP (2012) Bioaccumulation, biotrans-
formation and trophic transfer of arsenic in the aquatic food chain.
Environ Res 116:118–135

Rontani J-F, Vaultier F, Bonin P (2014) Biotic and abiotic degradation of
marine and terrestrial higher plant material in intertidal surface sed-
iments from Arcachon Bay (France): a lipid approach. Mar Chem
158:69–79

Rumpler A, Edmonds JS, Katsu M, Jensen KB, Goessler W, Raber G,
Gunnlaugsdottir H, Francesconi KA (2008) Arsenic-containing
long-chain fatty acids in cod-liver oil: a result of biosynthetic infi-
delity? Angew Chem Int Ed Eng 47:2665–2667

Santosa SJ, Wada S, Tanaka S (1994) Distribution and cycle of arsenic
compounds in the ocean. Appl Organomet Chem 8:273–283

Sele V, Sloth JJ, Lundebye A-K, Larsen EH, BerntssenMHG, Amlund H
(2012) Arsenolipids in marine oils and fats: a review of occurrence,
chemistry and future research needs. Food Chem 133:618–630

Taleshi MS, Jensen KB, Raber G, Edmonds JS, Gunnlaugsdottir H,
Francesconi KA (2008) Arsenic-containing hydrocarbons: natural
compounds in oil from the fish capelin, Mallotus villosus. Chem
Commun 39:4706–4707

Taleshi MS, Seidler-Egdal RK, Jensen KB, Schwerdtle T, Francesconi
KA (2014) Synthesis and characterization of arsenolipids: naturally
occurring arsenic compounds in fish and algae. Organometallics 33:
1397–1403

Viczek SA, Jensen KB, Francesconi KA (2016) Arsenic-containing phos-
phatidylcholines: a new group of arsenolipids discovered in herring
caviar. Angew Chem Int Ed Eng 55:5259–5262

Yu X, Xiong C, Jensen KB, Glabonjat RA, Stiboller M, Raber G,
Francesconi KA (2018) Mono-acyl arsenosugar phospholipids in
the edible brown alga Kombu (Saccharina japonica). Food Chem
240:817–821

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

3987J Appl Phycol (2019) 31:3979–3987


	Transformation of arsenic lipids in decomposing Ecklonia radiata
	Abstract
	Introduction
	Materials and methods
	Live and naturally decomposing Ecklonia radiata
	Microbially manipulated microcosms
	Reagents and standards
	Arsenolipid measurements
	Total arsenic

	Results and discussion
	Arsenolipids present in live and naturally decomposing Ecklonia radiata tissues
	Total arsenolipid concentrations
	Release and degradation of arsenolipid species

	Arsenolipids in Ecklonia radiata decomposing in microbially manipulated microcosms
	Total arsenolipid concentrations
	Release and degradation of arsenolipid species


	References




