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Abstract A novel method to estimate the concentration of
Chlamydomonas reinhardtii biomass was developed. The
method employs the chord length distribution information
gathered by means of a focused beam reflectance probe im-
mersed in the culture sample and processes the data through a
feedforward multilayer perceptron. The multilayer perceptron
architecture was systematically optimised through the appli-
cation of a simulated annealing algorithm. The method devel-
oped can predict the concentration of microalgae with accept-
able accuracy and, with further development, it could be im-
plemented online to monitor the aggregation status and bio-
mass concentration of microalgal cultures.

Keywords Monitoring of microalgal cultures - Estimation of
microalgal biomass concentration - Focused beam reflectance
measurement - Artificial neural networks

Introduction

The production of microalgal biomass has received a great
deal of attention in the last years. Several unresolved
technical-economical aspects still hinder the transfer of
microalgae cultivation from laboratory photobioreactors to
industrial scale. Among them, harvesting constitutes a major
challenge. Those harvesting methods involving flocculation
of microalgal biomass, namely dissolved air flotation, bio-
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flocculation, flocculation assisted sedimentation and floccula-
tion assisted filtration, require a good accuracy in what con-
cerns both the degree of aggregation and the concentration of
the culture to apply the optimal dosage of flocculant, especial-
ly in large-scale facilities. The gravimetric determination of
biomass dry weight requires considerable time, and it is not
suitable as a monitoring method for continuous harvesting
installations. Conventional indirect monitoring techniques
are mostly based on associating light scattering or attenuation
properties of the medium to a given biomass dry weight
through an offline calibration (Reardon et al. 2013). Among
these techniques, optical density (OD) measurement is the
most popular one. This method, however, often yields inaccu-
rate estimations of dry biomass due to several facts. First, the
variable pigment contents that microalgae show during their
growth cycle and under different culture conditions may dis-
tort the OD measurement (Griffiths et al. 2011). Secondly, the
medium itself may undergo changes in turbidity, which will
affect the measurement. Finally, the fact that the absorbance
measured is a function of cell size, concentration and shape
makes that the OD measurements vary according to the culti-
vation conditions (Chioccioli et al. 2014). While the changes
in the quantity of pigments per cell and the intrinsic optical can
be overcome choosing a wavelength lying away from the
composite one of the culture, the effects of size, shape and
concentration factors are hardly avoidable. The literature iden-
tifies several techniques, namely 2D fluorometry, IR spectros-
copy, multiparameter FC, in situ microscopy and focused
beam reflectance measurement probe (FBRM), as a having
potential to become the basis of new online monitoring
methods (Hopfner et al. 2010; Reardon et al. 2013).

The work presented in this paper focuses on the evaluation
of a FBRM as a tool for devising a method to allow the online
estimation of biomass concentration in microalgal cultures.
The probe was developed to monitor crystallisation (e.g.
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Fig. 1 Schematic microalgal
cultures having the same
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length distributions
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Barrett and Glennon 1999; Li et al. 2014), although it has also
been used to monitor flocculation processes (e.g. Blanco et al.
1996, 2002; Jarabo et al. 2013). The FBRM probe is a device
that projects a laser beam moving in a circular path into an
aqueous medium and registers the backscattered beam pro-
duced when the laser path crosses a particle. The number of
crossing events is directly related with the density of particles
in the medium, and the duration of each event yields the cor-
responding chord length of the particle. The distribution of
chord lengths (CLD) constitutes a representation of the actual
particle length distribution (PLD) (Li and Wilkinson 2005).
Given that the FBRM device provides information of the
size of the particles in the medium, the probe takes into

account the aggregation of cells, thus avoiding the lack of
accuracy entailed in the characterisation of suspensions
through optical techniques when the concentration of particles
is so high that the overlapping effect cannot be compensated
or when such suspensions are made up of large particles.
Although the FBRM probe has been occasionally used in
flocculation studies of microalgal biomass (Danquah et al.
2010) or to characterise microalgal culture size distributions
(Uduman et al. 2011), at the time of writing this article, the
literature offers only two references in which the FBRM was
employed to estimate biomass concentration, in both cases of
plant cell suspensions (McDonald et al. 2001; Kieran et al.
2003). In these studies, starting suspension of plant cells were

Table 1 Codification of
network characteristics

Values Number of bits
Number of hidden layers lor2 1
Number of neurons in the first hidden layer 3to 18 4
Number of neurons in the second hidden layer 3to 18
(when applicable)
Bias in the first hidden layer Yes/no 1
Bias in the second hidden layer Yes/no 1
Bias in the output layer Yes/no 1
Initial magnitude order of the weights from the 1 2
input to the first hidden layer 0.1
0.01
0.001
Initial magnitude order of the biases in the hidden 1 2%2 layers
layers (if any) 0.1
0.01
0.001
Initial magnitude order of the weights in the 1 2*2 layers
hidden layers 0.1
0.01
0.001
Transfer function of the first hidden layer Log-sigmoid or hyperbolic tangent sigmoid 1
Transfer function of the second hidden layer Log-sigmoid or hyperbolic tangent sigmoid 1
Transfer function of the output layer Log-sigmoid or hyperbolic tangent sigmoid 1
Ratio of the mean square errors and the mean 1 2
square weights (regularisation) 0.5
0.1
0.01
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diluted several times with the culture medium and
characterised with the probe at each dilution point in order
to obtain a correlation between the number of particles per
second detected and the concentration of biomass. Those
works therefore do not take into account the fact that a given
biomass concentration can be measured in cultures having a
completely different distribution of aggregate sizes. Figure 1
represents three schematic microalgal cultures having the
same biomass concentration at different aggregation states.

The use of the FBRM probe to estimate dry biomass
concentration presents several drawbacks. First, the size dis-
tribution data gathered from microalgal cultures are
characterised for having a very wide range of particle chord
lengths and rate of particles detected. Second, the geometry
of the algal aggregates departs from the spherical shape.
This effect has been observed to be even more significant
when the number of cells in the aggregate becomes larger as
can be seen in the micrographs included in the “Results and
discussion” section of this paper (Fig. 6). When aggregation
takes place, the culture presents a highly heterogeneous dis-
tribution of particle sizes and shapes, and it is possible to
find large aggregates of irregular shape, small aggregates
and isolated cells of shape close to spherical. Finally, the
FBRM probe data only provide a transformed representation
of real chord particle length distributions. With these pre-
mises, it is not possible to find an analytical or semi-
analytical model to estimate algal biomass concentration
from CLD data, making it necessary to apply artificial intel-
ligence tools to approach the problem.

Start: Temp, iteration
Best network = initial random network

NO

The authors chose to model the relationship between CLD
data and dry biomass using artificial neural networks (ANN),
in particular feedforward multilayer perceptrons, given their
proven efficacy in solving problems related to sensing and
spectra interpretation in the fields of Biotechnology
(Strapasson et al. 2014) and Chemical Engineering
(Curteanu and Cartwright 2011; Pirdashti et al. 2013; Ali
et al. 2015). ANN have been employed occasionally to esti-
mate biomass concentration of yeasts in fermentation (e.g.
Vangk et al. 2004; Hocalar et al. 2011) based on the concen-
tration or production rates of the chemical species involved in
the process. Therefore, the use of ANN in the estimation of
microalgal biomass and the use of ANN to process CLD data
for estimating biomass concentration represent an important
innovation in this field.

The present study investigates the possibility of trans-
lating CLD data of Chlamydomonas reinhardtii suspen-
sions into a biomass concentration by means of artificial
neural networks.

Materials and methods

Chlamydomonas reinhardtii strain from CCAP (CCAP No.
11/32B) was used for this study. It was and cultivated with
TAP medium (Gorman and Levine 1965) in shake flasks
(115 rpm, 23 °C and 12 h cool while light). After a concen-
tration of biomass around 1 g L' was obtained, the cultures
were transferred to 5.5-L photobioreactors operated at a
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Fig. 2 Algorithm for the selection of the multilayer perceptron architecture
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Fig. 3 Chord length distributions of a 0.2 g L' C. reinhardtii culture

temperature between 23 and 25 °C with aeration (2 L min™ ")
and pH 7.5. pH was controlled through the automatic supply
of CO, (0.2 L min"). Light was provided by means of four
fluorescent cool while light in a 12-h cycle.

Flocculant

Chitosan from crab shells (Sigma-Aldrich) was used as
a flocculant. The flocculant stock solution was prepared
by dissolving chitosan in a solution of 1 % glacial
acetic acid in ultrapure water subject to mechanical stir-
ring at 400 rpm for 1 h. The solution was left to settle
for 1 day before use.

Experimental procedure
Dry biomass determination

The determination of dry biomass was carried in triplicate
following the method described in Beckmann et al. (2009).
Each sample of 20-mL medium was centrifuged at 8400 rpm
for 11 min and washed twice with ultrapure water. The
microalgal pellets obtained were transferred to previously
dried aluminium dishes and allowed to dry at 101.5 °C for
3 h. The samples were then placed in a desiccator for 45 min
and weighted afterwards. The concentration of biomass was
calculated as gramme dry biomass per litre of medium.
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5

Fig. 4 Chord length distributions of a 1.0 g L™" C. reinhardtii culture
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Fig. 5 Chord length distributions of a 2.7 g L™ C. reinhardtii culture

Characterisation of C. reinhardtii cultures through CLD
measurement

An M500L FBRM (Mettler Toledo) was employed to
gather data about the distribution of particle chord
length in the microalgal cultures. The FBRM is capable
of performing the real-time monitoring of the number of
particles in a suspension and classifies them in terms of
their chord length through a dedicated software system.
The software recorded the number of events detected
per second and classified them according to their length
in one of 90 bins of length intervals organised logarith-
mically and ranging from 1 to 1000 um. The cultures
were analysed in 10-s sampling intervals over a period
of 6 min, which represented 36 data points. In order to
represent a wide variety of concentration and aggrega-
tion states, the samples were collected at different stages
of microalgal growth within the reactor. Fifteen
microalgal cultures having different biomass concentra-
tions were considered.

With the purpose of having a wide variety of aggre-
gation states of the cells, each culture was partially
flocculated using several doses of 1 % chitosan.
Likewise, the original cultures and the flocculated ones
were characterised with the FBRM probe taking samples
of 200 mL. The samples were placed in 250-mL bea-
kers and mechanically stirred at 200 rpm.
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Fig.6 CLDsofa 1.0 gL C. reinhardtii sample at different aggregation
states
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Fig. 7 Chlamydomonas reinhardtii flocs

Data processing and network architecture selection

The set of data collected from each algal sample (flocculated
and “raw”) was exported to a spreadsheet application and
converted to a tabular data file. Each data file contained a set
of data corresponding to the biomass chord length distribution
of the medium sampled, i.e. a collection of vectors of 90
elements each. From the 36 data points gathered for each
suspension, the first 8 points and the 8 last ones were
discarded, what left a set of 20 consecutive measuring points
(vectors) for further processing. From this phase onwards, the
processing of data was carried out with the mathematical soft-
ware package Matlab R2014b. The 20 vectors of each medi-
um sampled were extracted with the mentioned software, and
each one was associated to its corresponding dry biomass
weight. The final dataset built consisted of a matrix having
1940 vectors of 90 elements (CLD data) and a vector of 1940
elements containing the biomass concentration data. The
whole set of data was randomly sorted preserving the corre-
spondence between CLD and biomass concentration.

Fig. 8 MSE of the perceptron 25

In order to find the optimal perceptron architecture to fit the
chord length distribution data, a simulated annealing algo-
rithm was employed. The algorithm creates a random network
architecture and evaluates it. Then, a random modification of
the architecture is carried out and the network is evaluated
again. If the new ensemble produces a better estimation of
the biomass concentration, it is accepted. If the new network
produces worse results, it can be accepted with a given prob-
ability that depends on the Boltzmann probability distribution
as shown in Eq. 1, which is itself dependent on an analog
temperature.

P(state) = e 7" (1)

P(state) represents the probability of accepting a solution,
AF is the difference between the error of the current network
(energy of the state) and the previous one, k is a constant (in
real systems the Boltzmann’s constant) and 7 is the tempera-
ture. In the present work, the cooling schedule chosen was
determined by Eq. 2.

Tl'+l = O(Ti (2)

T; is the temperature of the current state. 7}, ; represents the
temperature of the subsequent state and « is a reduction factor,
in the case concerned set to 0.99905.

To evaluate each architecture, a Matlab function taking the
characteristics of the network was implemented and called
within the main programme. This function took as input pa-
rameters the characteristics of the network, the input and the
output data. The characteristics of the network were codified
as strings of 27 bits (Table 1).

The function constructed the network, trained, validated
and tested it. The dataset was divided in three subsets to per-
form each procedure employing 70 % of the data for training
(1358 points), 15 % for validation (291 points) and 15 % for
testing (291 points). The function returned the network trained
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and mean squared error of the estimations of biomass concen-
tration corresponding solely to the test subset. Employing only
the test set to evaluate the predicting ability of the network
favours those networks having a generalisation capacity, thus
avoiding overfitting. All networks were trained using the
scaled conjugate gradient backpropagation method. The train-
ings were carried out using the CUDA (Compute Unified
Device Architecture) functionalities offered by Matlab to ac-
celerate the running time by employing the parallel computing
capabilities of the workstation’s GPU.

As mentioned above, the value of the error and the proba-
bility value calculated according to Eq. 1 served as a criterion
to accept or discard the model. The algorithm was left to carry
out 20,000 iterations.

Figure 2 depicts the algorithm implemented to select the
best neural network architecture.

Results and discussion
Biomass dry weight and chord length distributions

Dry microalgal biomass concentration ranged between 0.2
and2.7 gL ™"

To exemplify the results obtained through the FBRM
probe, three chord length distributions gathered with the de-
vice are presented in Figs. 3, 4 and 5 (0.2, 1.0 and 2.7 g dry
biomass L™"). In the figures, the vertical axis represents the
number of particles per second detected by the equipment and
the horizontal axis the midpoint of the chord length intervals.
The profundity axis corresponds to each of the 20 distributions
taken in the course of the sampling time.

Table 2 List of feature of the multilayer perceptron selected

Feature Value
Number of hidden layers 2
Number of neurons in the first hidden layer 18
Number of neurons in the second hidden layer 14
Bias in the first hidden layer No
Bias in the second hidden layer Yes
Bias in the output layer Yes
Initial value of the weights going from the 0.1
input to the first hidden layer
Initial value of the biases in the hidden layers 1
Initial value range of the weights going 1

from the first hidden layer to the second
hidden layer or output

Transfer function of the first hidden layer Hyperbolic tangent

Transfer function of the second hidden layer Logistic
Transfer function of the output layer Hyperbolic tangent

Ratio of the mean square errors and the mean 0.01
square weights (regularisation)
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Fig. 9 CLD-estimated biomass concentration vs. gravimetrically
determined biomass concentration in the training set

Figure 6 shows three different states (in increasingly lighter
hues of grey) produced with the same C. reinhardtii culture of
1.0 g L™" dry biomass. The cluster of lines in the nearest
position corresponds to the raw culture, and the next two ones
were obtained with the addition of 2 and 4 ppm of 1 % chito-
san, respectively. It can be observed that the lines of the sec-
ond and third clusters reach higher values of counts per second
and that the third cluster is slightly shifted towards higher
values of chord length. The increased number of parti-
cles detected in the second and third measurements can
be ascribed to the fact that the flocculation process ag-
gregates some cells that fall below the lower detection
threshold of the equipment into flocs that become visi-
ble for the probe. The shifting towards larger values of
chord length is due to the formation of larger particles
associated to a higher dosage of flocculant.

Figure 7 is a photomicrograph of a flocculated culture sam-
ple. Both the floc-formed and isolated microalgal cells are
visible. Isolated cells present an approximately spherical
shape while flocs are irregular.
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Fig. 10 CLD-estimated biomass concentration vs. gravimetrically
determined biomass concentration in the test set
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Perceptron selection

Figure 8 shows the evolution of the mean squared error of the
multilayer perceptron in the process of selection and the ana-
log temperature over the 20,000 iteration cycles.

The graph shows that at the early stages of iteration, the
MSE shows very ample oscillations. At iteration cycle 10,895
(analog temperature value of 0.0032), the error reaches a pla-
teau that corresponds to a MSE of 0.03764 (g L™")%. At itera-
tion 18,215, the error reaches its minimum, 0.0309 (g L)%
The network having this minimum error presents the features
listed in Table 2.

Figure 9 shows the correlation between the estimated bio-
mass dry concentration and the real one for the train subset.

Figure 10 shows the correlation between the estimated bio-
mass dry concentration and the measured one for the test
subset.

Conclusions

A method to estimate the dry biomass concentration of
C. reinhardtii cultures based on their aggregation state and
particle density was implemented. The developement of the
method involved selecting the adequate architecture of a mul-
tilayer perceptron to translate chord length distribution data
gathered though an FBRM probe into microalgal biomass
concentration. The optimal architecture of the perceptron
was found by applying a systematic selection of the model
parameters based on a simulated annealing algorithm that fa-
vours the generalisation capacity of the model. The artificial
neural network selected was capable to produce very good
estimations of the dry biomass concentration of
C. reinhardtii cultures (R*=0.9228 in the test set). In view of
the results, it can be ascertained that the method investigated
could be a useful tool for the online monitoring of microalgal
suspensions if the software is adapted to handle data streams
to perform the estimation of biomass concentration instanta-
neously. With such monitoring system, it would be possible to
estimate the concentration of microalgal biomass in a reliable
manner without the interferences of factors such as turbidity of
the medium, state of aggregation or phase of growth. Such
system should be calibrated to account for the particular char-
acteristics of the strain considered (size, aspect ratio) and hy-
drodynamic conditions of the culture since these affect the
flocculation (and auto-flocculation) process and determine
the probability of the particles traversing the FBRM probe
window.
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