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ASD is neurodevelopmental in origin and has multi-
faceted and diverse manifestations that impact multiple 
domains of an individual’s life (Abbas et al., 2020; Masi et 
al., 2017). While there are no known causes that influence 
the likelihood of being diagnosed with ASD, some research 
has suggested that genetics and exposure to certain envi-
ronmental conditions may be correlated with a diagnosis 
of ASD (Gaugler et al., 2014). In addition to impacting the 
individual having the disorder, families and caregivers fre-
quently experience economic and psychological repercus-
sions (Buescher et al., 2014; Fewster et al., 2019). Though 
most of the current epidemiological evidence regarding 
direct and indirect costs associated with ASD is historic due 
to lack of longitudinal estimates of costs associated with 
DSM-5-based diagnoses, a study by Leigh et al. estimates 
that the projected economic costs associated with ASD by 
2025 in the United States (US) to be $461B, which encom-
passes healthcare expenditures, expenditures not related to 
medical care (e.g., education services), and employment 
loss for individuals with the disorder and their caregivers 
(Leigh & Du, 2015). Significantly higher and continually 
increasing prevalence of ASD among individuals in general, 

Diagnostic criteria and categorization for disorders on 
the autism spectrum within the Diagnostic and Statistical 
Manual of Mental Disorders, 4th Edition (DSM-IV) were 
changed in the 2013 Diagnostic and Statistical Manual of 
Mental Disorders, 5th Edition (DSM-5). At this point, the 
term autism spectrum disorder (ASD) was introduced to 
replace older criteria and categorization, and to become a 
standalone diagnosis. Hereafter, we refer to the autism spec-
trum disorder as “ASD” in the context of the DSM-5 diag-
nostic criteria or to discuss ASD generally, outside of the 
context of DSM-IV diagnostic criteria. However, and owing 
to significantly greater availability, DSM-IV-based data and 
categorization are used for the purposes of analysis in this 
paper. Further, for the purposes of this paper, individuals 
who have not been identified as having a disorder on the 
autism spectrum are referred to as “non-spectrum.”
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Abstract
Purpose Disorders on the autism spectrum have characteristics that can manifest as difficulties with communication, execu-
tive functioning, daily living, and more. These challenges can be mitigated with early identification. However, diagnostic 
criteria has changed from DSM-IV to DSM-5, which can make diagnosing a disorder on the autism spectrum complex. We 
evaluated machine learning to classify individuals as having one of three disorders of the autism spectrum under DSM-IV, 
or as non-spectrum.
Methods We employed machine learning to analyze retrospective data from 38,560 individuals. Inputs encompassed clini-
cal, demographic, and assessment data.
Results The algorithm achieved AUROCs ranging from 0.863 to 0.980. The model correctly classified 80.5% individuals; 
12.6% of individuals from this dataset were misclassified with another disorder on the autism spectrum.
Conclusion Machine learning can classify individuals as having a disorder on the autism spectrum or as non-spectrum using 
minimal data inputs.
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including individuals with diverse ethnic makeup and 
females in comparison to epidemiological estimates from 
the previous 20 years (Maenner, 2023), may lead to more 
healthcare and service utilization. These increases have the 
potential to drive up costs associated with ASD (Matin et al., 
2022). However, accrual and analysis of more robust longi-
tudinal data will be needed to establish the true financial 
burden of ASD within the DSM-5 diagnostic era. Individu-
als with ASD also experience an increased number of health 
risks and challenges, including comorbidities and excess 
mortality at a rate of 2–10 times more than individuals with-
out ASD, owing to comorbid conditions, suicide, and acci-
dental injury (Guan & Li, 2017; Hirvikoski et al., 2016). As 
many of these comorbidities and social risk-taking behav-
iors increased in prevalence after diagnostic criteria was 
updated within DSM-5 (e.g., attention deficit hyperactivity 
disorder (ADHD) and risky driving, respectively) (Romero 
et al., 2016), it is possible that, as more longitudinal data 
becomes available, this excess mortality may change. For 
example, DSM-5 allows ADHD diagnosis as a comorbidity 
for individuals with ASD. Such a diagnosis may provide the 
opportunity of psychopharmacological treatment of symp-
toms of overactivity and inattention, which has been shown 
to reduce traits of ADHD (inattentiveness, impulsive behav-
iors) and improve co-occuring conditions (substance use 
disorders, mental health disorders, etc.). In turn, this may 
improve life expectancy (Barkley & Fischer, 2019; Boland 
et al., 2020). However, absent longitudinal mortality data, 
excess mortality for individuals with ASD by the DSM-5 
criteria is speculative.

As part of the diagnostic process, screening question-
naires such as the Autism Diagnostic Interview-Revised 
(ADI-R) and the Social Communication Questionnaire 
(SCQ) are used to identify characteristics of ASD (Eaves 
et al., 2006; Papanikolaou et al., 2009). However, they can 
not be used as standalone tools to yield a diagnosis as they 
require additional clinician assessment and interpretation 
(Eaves et al., 2006; Papanikolaou et al., 2009). Further, the 
combination of these assessments with additional clinical 
analysis is a time consuming process. Disagreement within 
the scientific communities regarding DSM-IV criteria ver-
sus DSM-5 criteria for diagnosis, classification, and treat-
ment recommendations for ASD adds an additional layer of 
complexity to the diagnostic process, though both have pros 
and cons in terms of their diagnostic capabilities.

DSM-IV encompassed distinct disorders on the autism 
spectrum, including autistic disorder, Asperger’s disorder1, 
and pervasive developmental disorder - not otherwise speci-
fied (PDD-NOS) (Neal et al., 2012; Singer, 2012; Volkmar 

1  We choose to use the term Asperger’s Disorder in this paper in order 
to be consistent with DSM-IV terminology, but acknowledge the con-
cerns raised about this term (Sheffer, n.d.; Singh, 2011).

& Reichow, 2013), allowing for a broad range of presenta-
tions and levels of severity. DSM-5 eliminated these DSM-
IV classifications and established a new diagnostic category 
termed ASD. Under DSM-5 diagnostic criteria, individuals 
with ADHD (previously precluded from an ASD diagnosis) 
and individuals with the DSM-IV categorization of Asperg-
er’s disorder were absorbed into the ASD diagnosis. This, 
and the increased identification of ASD among females and 
individuals of non-white ethnic backgrounds that occurred 
in more recent years (Maenner, 2023) may have contributed 
to broadening the overall size of the population of individu-
als with ASD. Concurrent with increasing ASD prevalence 
under DSM-5, the overall patient outcomes have changed 
as well. Particularly for individuals with co-occuring ASD 
and ADHD, DSM-5 provided the opportunity of thera-
peutic treatments (pharmacological and psychological) to 
address symptoms that overlap between ADHD and ASD, 
which may have led to improved patient outcomes (Ant-
shel & Russo, 2019). Additionally, individuals that would 
have been diagnosed with ASD later under DSM-IV, due 
to atypical presentation of characteristics (e.g., those with 
Asperger’s disorder) (Mandell et al., 2005), could experi-
ence improved outcomes if, as the increased prevalence of 
ASD suggests, these individuals can be captured with the 
DSM-5 criteria earlier.

The DSM-5 updated diagnostic criteria was intended to 
reflect the distinct and consistent presentation of two symp-
toms of disorders on the autism spectrum, social/commu-
nication and restrictive and repetitive behaviors (RRBs) 
and is viewed by some members of the medical community 
as being a more streamlined and less complex approach to 
diagnose ASD (Mahjouri & Lord, 2012). One con, however, 
as other members of the medical community point out, is 
that the ASD diagnostic criteria within DSM-5 were more 
restrictive than DSM-IV criteria (Hosseini & Molla, 2023; 
Singer, 2012). This resulted in many individuals being 
unable to meet the clinical criteria for an ASD diagnosis 
(Kulage et al., 2014; McPartland et al., 2012; Neal et al., 
2012; Singer, 2012; Volkmar & McPartland, 2014). With-
out such a diagnosis, individuals may experience limitations 
on access to healthcare services and educational disability 
services, which, in turn, can result in poor social and/or aca-
demic outcomes, lower rates of employment, and decreased 
assistance in eventual independent living (Lobar, 2016).

DSM-IV, in contrast to DSM-5, provided over 2,000 
combinations of criteria to diagnose the three disorders 
(i.e., autistic disorder, Asperger’s disorder, PDD-NOS) that 
are now encompassed under the single diagnostic category 
of ASD in DSM-5 (Lenart & Pasternak, 2021; Volkmar & 
Reichow, 2013). This provided flexibility in making a diag-
nosis to account for atypical presentations, including age at 
symptom onset, as well as language and intellectual abilities 
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(Mazurek et al., 2017). Under DSM-5, there are 11 criteria 
combinations, which led to many individuals not meeting 
the new threshold for a diagnosis of ASD (Lenart & Pas-
ternak, 2021; Volkmar et al., 2021; Volkmar & Reichow, 
2013). The sensitivity for identifying several disorders on 
the autism spectrum, including individuals who would have 
been diagnosed with PDD-NOS and Asperger’s disorder 
under DSM-IV were generally low (0.28 and 0.25, respec-
tively) (McPartland et al., 2012). Additionally, subsequent 
to implementation of DSM-5, the stability of PDD-NOS and 
Asperger’s disorder diagnoses decreased (Bent et al., 2017). 
Research has also demonstrated that females, young children, 
non-cognitively impaired individuals, and individuals over 
8 years of age are disproportionately unable to meet DSM-5 
criteria, even if they have a DSM-IV diagnosis (Mazurek 
et al., 2017; Neal et al., 2012; Singer, 2012). In response to 
expert criticism on the impact of these new criteria, particu-
larly as it relates to access to health services, multiple steps 
were taken. First, DSM-5 “grandfathered in” patients with a 
previous diagnosis of autistic disorder, Asperger’s disorder, 
or PDD-NOS under DSM-IV (Kulage et al., 2014; McPart-
land et al., 2012; Neal et al., 2012; Singer, 2012; Volkmar 
& McPartland, 2014; Volkmar & Reichow, 2013). This 
provided a resolution for patients with an existing DSM-IV 
diagnosis but did not address the issue of individuals who 
had yet to receive a DSM-IV diagnosis and were unable to 
meet DSM-5 criteria (Volkmar et al., 2021). Second, the 
National Institute of Mental Health developed the Research 
Domain Criteria (RDoC) framework (Mandy, 2018). RDoC 
encourages the evaluation of individuals for mental health 
conditions with consideration given to the numerous vari-
ables that may contribute to a disorder (About RDoC, n.d.; 
Garvey et al., 2016; Mandy, 2018). These include symptoms 
or behaviors that could potentially be attributed to multiple, 
and potentially inter-related disorders; the heterogenous 
range of functioning that individuals display within differ-
ent domains of functioning; and potential causation within 
different types of environments (About RDoC, n.d.; Garvey 
et al., 2016). However, the RDoC framework is not intended 
to contribute to the diagnostic process. Rather, it is designed 
for use in and to inform research, such that it encourages 
exploratory research as opposed to research that is restricted 
by traditional diagnostic classifications (Garvey et al., 2016; 
Knott et al., 2021).

There is ample literature focused on the challenges asso-
ciated with the redefined ASD diagnostic criteria under 
DSM-5. Mazurek et al. conducted a clinical study of pedi-
atric patients with features of ASD to investigate agree-
ment between DSM-IV and DSM-5 criteria (Mazurek et 
al., 2017). Out of 439 patients who were being assessed at 
multiple autism-focused centers, 278 participants were eli-
gible for a DSM-IV diagnosis of a disorder on the autism 

spectrum and 249 were eligible for a DSM-5 diagnosis of 
ASD. Only 1 participant with a DSM-5 diagnosis of ASD 
did not meet the DSM-IV diagnostic criteria, whereas 30 
individuals with a DSM-IV diagnosis did not meet the 
DSM-5 criteria for a diagnosis of ASD (Mazurek et al., 
2017). Further, 20% and 75% of individuals who were diag-
nosed with Asperger’s disorder or PDD-NOS, respectively, 
did not meet the diagnostic criteria for a DSM-5 diagnosis 
of ASD (Mazurek et al., 2017).

Machine learning (ML) is a powerful tool in personal-
ized medicine and has been validated for a variety of pre-
diction and diagnostic tasks for acute and chronic medical 
issues (Cognoa - Leading the Way for Pediatric Behavioral 
Health, n.d.; Hassan et al., 2022; Lam et al., 2022; Thapa 
et al., 2022; Tso et al., 2022; Varma et al., n.d.). Recent 
research has explored the use of ML to facilitate earlier 
diagnosis of individuals with ASD by addressing logisti-
cal and practical diagnostic barriers, to identify a minimal 
feature set of inputs that achieve high accuracy in aiding 
ASD diagnosis to determine if a simplified diagnosis pro-
cess is feasible, and to design ASD screening tools (Abbas 
et al., 2020; Cognoa - Leading the Way for Pediatric Behav-
ioral Health, n.d.; Duda et al., 2016; Kosmicki et al., 2015; 
Megerian et al., 2022; Tariq et al., 2018; Wall et al., 2012).

In the present study, we examine the use of ML to clas-
sify individuals as either having autistic disorder, Asperger’s 
disorder, PDD-NOS (based on DSM-IV criteria alone) or 
as not having such a disorder (i.e., non-spectrum) by using 
readily available patient information and with minimal 
demands on clinical teams and clinical workflow. Figure 1 
depicts the workflow of the prediction algorithm in clinical 
practice. The use of DSM-IV criteria was not intended to 
serve as a challenge or criticism to the validity of DSM-5. 
Rather, owing to limited access to DSM-5 ASD diagnostic 
data, only DSM-IV-based data were used in this study. Our 
proof-of-concept study provides the basis for future work 
using ML-based tools to evaluate DSM-5 diagnoses. Fur-
ther, our study may provide an avenue for the identifica-
tion of individuals with one of these three disorders (i.e., 
autistic disorder, Asperger’s disorder, PDD-NOS) that may 
not be classified as having ASD using DSM-5 criteria. This 
could facilitate an additional in-depth assessment and ear-
lier interventions, which are vital for improving outcomes 
for individuals with ASD or previously associated disorders 
of the autism spectrum. On a macro-level, our research on 
the use of ML to identify patients that fall within a DSM-
IV-based ASD classification may contribute to a body of 
research regarding comparative effectiveness approaches 
for patient evaluation (Esmail et al., 2020), as our machine 
learning algorithm (MLA) can be broadly implemented into 
electronic health record (EHR) systems, runs autonomously, 
and may provide a cost-effective and personalized approach 
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a DSM-IV diagnosis but who did not have relevant diag-
nostic assessments data, such as SCQ (SPARK) or ADI-R 
(ABIDE), were also removed. The final dataset included 
36,965 individuals for SPARK and 1,595 individuals for 
ABIDE (Fig. 2 and Online Resource Supplementary Fig. 1, 
respectively).

Individuals identified as non-spectrum held the highest 
prevalence in both datasets, with ~ 62% in SPARK (pri-
mary dataset) and ~ 55% in ABIDE (supplementary data-
set), whereas PDD-NOS held the lowest prevalence in both 
datasets, with ~ 8% in SPARK and ~ 6% in ABIDE. SPARK 
includes data from a pediatric population with age range 
2–19, with mean age of 9.2 and median age of 9.0 [Online 
Resource Supplementary Fig. 2], whereas ABIDE includes 
data from a general population with age range of 5–64, with 
mean age of 15.6 and median age of 13.2 [Online Resource 
Supplementary Fig. 3].

For the SPARK dataset, a required institutional review 
board (IRB) determined the project to be exempt from the 
US federal regulations for the protection of human subjects 
(22-MONT-101). For the ABIDE dataset, no IRB review or 
approval was required as follows. Within ABIDE, as data 
were de-identified to maintain compliance with Health 
Insurance Portability and Accountability Act (HIPAA), this 
did not constitute human subjects research per 45 US Code 
of Federal Regulations 46.102.

The filtered dataset was randomly split into a training 
dataset and a hold-out testing dataset (i.e., testing dataset), 
such that 80% of the data was in the training dataset and 
the remaining 20% of the data was in the testing dataset. 
The training and testing datasets remained completely inde-
pendent of each other. In other words, there was no overlap 
between the individuals in the training dataset and the indi-
viduals in the testing dataset. The training dataset was used 

for evaluation of patients with symptoms of neurodevelop-
mental disorders.

Methods

Data for this study were obtained from two publicly 
available datasets: Simons Foundation Powering Autism 
Research for Knowledge (SPARK) and Autism Brain Imag-
ing Data Exchange (ABIDE). SPARK, the primary dataset 
used for development and validation of our MLA, contains 
phenotypic data from over 280,000 individuals and contains 
demographic information, comorbidities, and diagnostic 
assessment tests (SPARK: A US Cohort of 50,000 Fami-
lies to Accelerate Autism Research - PMC, n.d.) ABIDE, 
the supplementary dataset used to further support our main 
results, is primarily a database containing functional mag-
netic resonance imaging data, but also includes some types 
of phenotypic data (e.g., demographic information, comor-
bidities, medication status, and intelligence quotient (IQ) 
assessment with a breakdown of full scale intelligence quo-
tient (FIQ), verbal intelligence quotient (VIQ), and perfor-
mance intelligence quotient (PIQ). (Martino et al., 2014). In 
order to be identified as having autistic disorder, Asperger’s 
disorder, or PDD-NOS, both datasets required individuals to 
have a professional diagnosis of a condition based on DSM-
IV criteria. (Martino et al., 2014; SPARK: A US Cohort of 
50,000 Families to Accelerate Autism Research - PMC, 
n.d.). These diagnoses, or being identified as non-spectrum 
by a lack of such diagnostic codes within the datasets, were 
utilized as the ground truth for our models. Both datasets 
underwent an initial filtration, where only the individuals 
who were either identified as non-spectrum or had a DSM-
IV diagnosis were selected. Similarly, individuals having 

Fig. 1 Workflow of the prediction algorithm in clinical practice. Inputs 
(depicted on the left) for an individual are analyzed by the MLA to 
create a prediction about the classification in which that particular indi-
vidual will fall. The four possible classifications (i.e., MLA outputs) 
are depicted on the right. Abbreviations: attention deficit hyperactivity 

disorder (ADHD), oppositional defiant disorder (ODD), obsessive-
compulsive disorder (OCD), Social Communication Questionnaire 
(SCQ), Autism Diagnostic Interview-Revised (ADI-R), machine 
learning algorithm (MLA), pervasive developmental disorder - not 
otherwise specified (PDD-NOS). Figure created using Lucidchart
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Recent studies have shown that gradient-boosted tree algo-
rithms can be used for a variety of clinical prediction tasks, 
including sepsis onset prediction, long-term care fall pre-
diction, non-alcoholic steatohepatitis or fibrosis, neurologi-
cal decompensation, classification of appropriate treatment 
plan intensity for ASD patients, and have demonstrated 
strong algorithm performance (Barton et al., 2019; Ghan-
dian et al., 2022; S.-H. Kim et al., 2021; Li et al., 2021; 
Maharjan et al., 2023; Mao et al., 2018; Thapa et al., 2022). 
Tree-based models utilize the values of a subset of inputs to 
build a path to a specific classification (e.g., autistic disorder 
classification, Asperger’s disorder classification, PDD-NOS 
classification, non-spectrum classification) in which a par-
ticular set of inputs belongs. This set of paths connecting 
the values of the subset of features to a particular classifica-
tion is known as a decision tree. The process of constructing 
trees is repeated to develop a series of decision trees which 
are utilized in combination to determine the final output of 
the model. As the complete model contains several trees, 
each with a subset of the input data and input features, it 
is able to perform classifications that account for the het-
erogeneity of feature values that an individual diagnosed 
with a DSM-IV disorder on the autism spectrum may pres-
ent. As an example, while one individual diagnosed with a 
DSM-IV disorder on the autism spectrum may present with 
relatively more verbal communication deficits, another indi-
vidual with an identical diagnosis may present with rela-
tively more RRBs. The combination of multiple trees within 
the model can accurately discriminate between the different 

to train and optimize the MLA and the testing dataset was 
used solely to evaluate model results to determine MLA’s 
efficacy.

Two types of models were developed to highlight the 
ability of the ML models to achieve different tasks: a binary 
classifier and a multi-class classifier. The binary classi-
fier showcases the ability of the ML model to discriminate 
between individuals with any DSM-IV disorder on the 
autism spectrum vs. individuals who are non-spectrum (e.g., 
autistic disorder vs. non-spectrum, Asperger’s disorder vs. 
non-spectrum, PDD-NOS vs. non-spectrum), thus enabling 
providers to administer further assessment and develop an 
appropriate therapy plan. The multi-class classifier pro-
vides additional insight on the specific DSM-IV disorder 
on the autism spectrum a patient may have, which can fur-
ther inform the therapy plan and allow it to be tailored to 
the patient’s specific needs. The specific utility of each of 
the binary classifier and multi-class classifier showcases a 
potential workflow of using the models in practice in a real-
world scenario.

During the training process, a gradient-boosted tree 
algorithm was utilized for the multi-class classification of 
individuals having autistic disorder, Asperger’s disorder, 
PDD-NOS, or non-spectrum individuals. Similarly, a gra-
dient-boosted tree algorithm was also utilized to build the 
binary classification model which classified individuals as 
having any DSM-IV disorder on the autism spectrum. The 
binary and multi-class models are both classifier models, 
therefore enabling the use of similar modeling techniques 
and the same training and testing sets to train the models. 

Fig. 2 Attrition chart for primary 
dataset. To build our primary 
dataset, we selected individuals 
with a DSM-IV diagnosis of a 
disorder on the autism spectrum 
and those identified as non-
spectrum. The individuals with 
a DSM-IV diagnosis were also 
required to have an SCQ score. 
The resulting primary dataset 
was split 80/20 into training and 
testing datasets, respectively. 
Abbreviations: Diagnostic and 
Statistical Manual of Mental 
Disorders, 4th Edition (DSM-IV), 
Social Communication Question-
naire (SCQ), pervasive develop-
mental disorder - not otherwise 
specified (PDD-NOS). Figure 
created using Lucidchart
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exception of language disorder (primary dataset) and pho-
bias (supplementary dataset). Further, only the supplemen-
tary dataset contained information about current medication 
usage and IQs. It should be noted that DSM-IV did not allow 
for a concurrent diagnosis of ADHD (one of the included 
comorbidities) (Ghanizadeh, 2010). Thus, it is likely that 
the presence of ADHD diagnoses in the datasets was the 
result of ADHD diagnoses delivered starting in 2013 (when 
DSM-5 criteria were instated) to patients already holding 
a diagnosis under DSM-IV of autistic disorder, Asperger’s 
disorder, or PDD-NOS. Additionally, although perhaps 
less likely, it may be possible that some individuals were 
diagnosed after 2013 under DSM-IV with autistic disorder, 
Asperger’s disorder, or PDD-NOS, and also received a diag-
nosis of ADHD.

Statistics

To calculate the CI for the AUROC, a bootstrapping method 
was utilized, in which a random sample of patients was 
selected from the testing dataset and the AUROC was com-
puted solely with those patients (Liu et al., 2022, 2016; On 
Bootstrapping the ROC Curve | Proceedings of the 21st 
International Conference on Neural Information Processing 
Systems, n.d.). This process of randomly selecting patients 
and computing an AUROC was repeated 1,000 times. Ran-
dom sampling of testing dataset patients was performed 
with replacement. From these 1,000 bootstrapped AUROC 
values, the middle 95% range was selected to be the 95% CI 
for the AUROC. As the sample size of each of our datasets 
(i.e., primary dataset and supplementary dataset) was suffi-
ciently large, the CIs for other metrics were calculated using 
normal approximation (Hazra, 2017). Similarly, the differ-
ence between various groups was studied using a two-sided 
t-test with a 95% significance level.

presentations and diagnose both individuals with the correct 
classification per the DSM-IV criteria.

A hyperparameter optimization was performed on the 
training dataset using a 5-fold cross-validation grid search 
and confirmed by evaluating the area under the receiver 
operating characteristic curve (AUROC) for different com-
binations of hyperparameters included in the grid search. 
The hyperparameters which were optimized included maxi-
mum tree depth, number of estimators, L1 regularization, 
and learning rate. The optimal hyperparameters were identi-
fied as the hyperparameters which, in combination, resulted 
in the strongest performing model across the cross-valida-
tions folds [Online Resource Supplementary Table 1].

Following model training, performance was evaluated 
on the 20% hold-out testing dataset (i.e., testing dataset). 
Primary performance metrics included AUROC, sensitiv-
ity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV), which were all evaluated at 
a single operating sensitivity point, set at 0.85. The single 
operating sensitivity point was selected such that all classi-
fications were evaluated at a similar sensitivity, allowing for 
a more direct comparison between the performance of the 
model for each classification. In addition, 95% confidence 
intervals (CIs) were computed for each metric with the 
method described in the Statistics section below. A SHapely 
Additive exPlanations (SHAP) analysis (Lundberg & Lee, 
2017) was performed to evaluate the importance of each 
feature for generating model output by examining the ways 
in which the feature values of each element of the training 
dataset affect the classification of the training examples. The 
SHAP plot ranks features by importance to model predic-
tions top to bottom in the decreasing order of importance.

The final set of input features that were used to train 
and test the MLA are shown in Table 1. The inputs for the 
supplementary dataset can be found in the Supplement 
[Online Resource Supplementary Table 2]. Though these 
inputs shared many features across both datasets, the pri-
mary dataset used SCQ as the scoring system, whereas the 
supplementary dataset used ADI-R. Both datasets contained 
five comorbidities, all of which were identical - with the 

MLA Inputs
Demographics
● Age
● Sex

Comorbidities
Attention Deficit Hyperactivity Disorder (ADHD)
Oppositional Defiant Disorder (ODD)
Obsessive-Compulsive Disorder (OCD)
Anxiety/Generalized Anxiety Disorder
Language Disorder

Assessment Data
● Social Communication Questionnaire (SCQ)
   ○ 40 Questions
   ○ Social Total
   ○ Restricted, Repetitive Behaviors Total
   ○ Communication Total
   ○ Total

Handedness
● Left
● Right
● Ambidextrous

Table 1 Data used from the 
primary dataset to generate 
algorithm inputs. Inputs included 
demographic information, 
assessment data, comorbidities, 
and handedness. Abbreviations: 
attention deficit hyperactivity dis-
order (ADHD), machine learning 
algorithm (MLA), oppositional 
defiant disorder (ODD), Social 
Communication Questionnaire 
(SCQ).
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ADHD, oppositional defiant disorder (ODD), obsessive 
compulsive disorder (OCD), anxiety, and language disorder. 
In the primary testing dataset (Online Resource Supplemen-
tary Table 3), ADHD was the most frequent comorbidity for 
individuals classified as non-spectrum (15.2%) and individ-
uals with Asperger’s disorder (55.7%). For individuals clas-
sified as having autistic disorder or PDD-NOS, language 
disorder was the most frequent comorbidity and was pres-
ent in 64.5% and 52.2% of individuals, respectively. The 
demographic distribution for the training dataset is shown 
in Table 2. As we have added in the footnotes2, within the 
demographics tables (Table 2 and Online Resource Supple-
mentary Tables 3–5), the values for age are intended to be 
viewed across the classifications as opposed to across the 
demographic group. In the primary testing dataset, indi-
viduals having autistic disorder (n = 1249) had the highest 
prevalence in the age group of 4–13 years old (63.8%) fol-
lowed by the prevalence in the age group of 13–20 years old 
(22.9%). Individuals from the primary testing dataset hav-
ing Asperger’s disorder (n = 934) and PDD-NOS (n = 634), 
had the highest prevalence in the age group of 4–13 years 
old (54.6% and 57.3%, respectively). In the supplementary 
testing dataset, individuals having autistic disorder (n = 89) 
had the highest prevalence in the age group of 5–13 years 
old (39.3%). Individuals from the supplementary testing 
dataset having Asperger’s disorder (n = 34) and PDD-NOS 

Results

Demographic information and the total number of indi-
viduals in each classification in the primary training and 
testing datasets are shown in Table 2 and Online Resource 
Supplementary Tables 3, respectively. Online Resource 
Supplementary Tables 4 and 5 contain the corresponding 
information for the supplementary training and testing data-
sets, respectively. Table 3; Fig. 3 present results from the 
primary testing dataset. Online Resource Supplementary 
Fig. 4 and Online Resource Supplementary Table 6 contain 
the corresponding information for the supplementary testing 
dataset2.

In the primary testing dataset, of the DSM-IV disor-
ders on the autism spectrum, autistic disorder was most 
frequently observed in individuals who were aged 4–13, 
and whose race-ethnicity was White non-Hispanic, Native 
American, Native Hawaiian, and others (i.e., a race or eth-
nicity not classified as one of the categories in our demo-
graphics Table 2 and Online Resource Supplementary 
Table 3). A majority of individuals with a DSM-IV diagno-
sis of a disorder on the autism spectrum were male (> 75%), 
whereas females were more frequently classified as non-
spectrum than males (51.7% and 48.3%, respectively), a dif-
ference that was statistically significant (p-value = 0.0007). 
Five comorbidities were observed in the primary dataset: 

2  For some categories in our results (e.g., comorbidities), percentages 
do not add up to 100%. This is attributed to overlapping features.

Table 2 Demographics table using Simons Foundation Powering Autism Research for Knowledge (SPARK) training dataset showing the break-
down of individuals in each classification by age, gender, and race/ethnicity. This table also shows the comorbidities present within each classifica-
tion. Abbreviations: attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), oppositional defiant disorder (ODD), 
pervasive developmental disorder - not otherwise specified (PDD-NOS).
Category Demographics TRAINING DATASET (N = 29,572)

Non-Spectrum 
(N = 18,389)

Autistic Disorder 
(N = 4,951)

Asperger’s Disorder 
(N = 3,731)

PDD-NOS 
(N = 2,523)

Age (years) 2–4 2906 (15.8%) 658 (13.3%) 58 (1.5%) 108 (4.3%)
4–13 11260 (61.2%) 3116 (62.9%) 2002 (53.7%) 1444 (57.2%)
13–20 4223 (23.0%) 1177 (23.8%) 1671 (44.8%) 971 (38.5%)

Gender Male 8980 (48.8%) 3915 (79.1%) 2914 (78.1%) 1931 (76.5%)
Female 9409 (51.2%) 1036 (20.9%) 817 (21.9%) 592 (23.5%)

Race/
Ethnicity

White and Non-Hispanic 4672 (25.4%) 2266 (60.7%) 2485 (50.2%) 1379 (54.7%)
Black and Non-Hispanic 496 (2.7%) 148 (4.0%) 395 (8.0%) 148 (5.9%)
Asian and Non-Hispanic 315 (1.7%) 67 (1.8%) 140 (2.8%) 70 (2.8%)
Hispanic 1254 (6.8%) 428 (11.5%) 861 (17.4%) 344 (13.6%)
Native American 131 (0.7%) 110 (2.9%) 115 (2.3%) 48 (1.9%)
Native Hawaiian 45 (0.2%) 25 (0.7%) 31 (0.6%) 13 (0.5%)
Others 68 (0.4%) 18 (0.5%) 45 (0.9%) 19 (0.8%)
Unknown 11408 (62.0%) 669 (17.9%) 879 (17.8%) 502 (19.9%)

Comorbidities ADHD 2856 (15.5%) 1595 (32.2%) 2129 (57.1%) 1168 (46.3%)
ODD 486 (2.6%) 329 (6.6%) 533 (14.3%) 279 (11.1%)
OCD 314 (1.7%) 438 (8.8%) 519 (13.9%) 255 (10.1%)
Anxiety 1651 (9.0%) 823 (16.6%) 1314 (35.2%) 622 (24.7%)
Language Disorder 1482 (8.1%) 3213 (64.9%) 804 (21.5%) 1398 (55.4%)
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(n = 20) had the highest prevalence in the age group of 5–13 
years old (61.8% and 85%, respectively).

The MLA achieved strong performance for classify-
ing individuals as non-spectrum in both datasets, with 
an AUROC of 0.980 in the primary testing dataset (CI: 
0.978–0.983) (Fig. 3; Table 3) and 0.969 (CI: 0.951–0.984) 
in the supplementary testing dataset [Online Resource 
Supplementary Fig. 4 and Online Resource Supplemen-
tary Table 6]. In the primary testing dataset, this was fol-
lowed by classification of autistic disorder, which achieved 
an AUROC of 0.932 (CI: 0.926–0.938). For classification 
of Asperger’s disorder and PDD-NOS, the MLA achieved 
AUROC values of 0.918 (CI: 0.911–0.926) and 0.863 (CI: 
0.853–0.874), respectively. All algorithms substantially 
outperformed the baseline (AUROC of 0.500). Our results 
displayed in Table 3 as well as in Online Resource Supple-
mentary Table 6 present the performance of the MLA when 
the model is tuned to a sensitivity of 0.85 in order to have 
a consistent set of comparisons across the different classi-
fications. A fixed sensitivity was selected to prioritize true 
positive classifications and limit false negative classifica-
tions. The aim of this fixed sensitivity was to prevent false 
negatives as much as possible. While a false positive result 
may prompt further investigation, a false negative classifi-
cation may lead to a lack of further analysis, which could 
impactfully diminish the chances of diagnosing that particu-
lar individual.

In the primary testing dataset, the top three features 
impacting the MLA’s performance were SCQ (total score 
and RRB) and age at which the SCQ was given (Fig. 4). 
Similarly, the top three features in the supplementary test-
ing dataset included two questions from the ADI-R (social 
and RRB) and age (demographic) [Online Resource Supple-
mentary Fig. 5].

The machine learning model was additionally trained for 
multi-class classification of four classes: autistic disorder, 
Asperger’s disorder, PDD-NOS, and non-spectrum. The 
datasets were split similarly as for the binary classification: 
random split, with 80% of the data in the training dataset and 
the remaining 20% of the data in the testing dataset, where 
the training and testing datasets remained completely inde-
pendent of each other. Training for the multi-class model 
was performed as described for the binary classifier model. 
Figure 5 displays the confusion matrix for the multi-class 
model for the primary testing dataset, showing the perfor-
mance of the model for each class. Similarly, the confusion 
matrix for the multi-class model for the supplementary test-
ing dataset is displayed in Online Resource Supplementary 
Fig. 6, showing the performance of the model for each class. 
Both the binary and multi-class models were optimized via 
the hyperparameter optimization described in the Methods 
section above for the binary classifier model.
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categorization in terms of its ability to accurately and con-
sistently identify individuals with ASD, including those who 
exhibit atypical characteristics and are thus difficult to cat-
egorize. Such data could inform future diagnostic standards. 
At the patient level, these classifications may prompt a cli-
nician to conduct further evaluation of symptoms and help 
identify patients in need of interventions as well as tailoring 
therapeutic strategies for these individuals to ensure that the 
most effective approaches, in terms of patient outcomes and 
cost, are utilized (Clancy & Collins, 2010). Though health 
insurance coverage for ASD treatments may not be avail-
able without a DSM-5 ASD diagnosis, identifying individu-
als with a DSM-IV disorder falling on the autism spectrum 
could allow these individuals to access specialized educa-
tional services (CDC, 2022). Further, a diagnosis of ASD, 
regardless of the DSM criteria used, may decrease bullying, 
peer victimization, and self-harm (e.g., suicide) (Hosseini 
& Molla, 2023; Suicidality in Autism, n.d.; Volkmar et al., 
2021). This classification MLA may also contribute to the 
scientific community broadly, as it can provide evidence for 
the utility of a cost-effective and personalized ML-based 
approach to evaluate patients with traits of neurodevelop-
mental disorders. Our MLA could further inform research 

Online Resource Supplementary Figs. 7–14 show confu-
sion matrices to provide an additional visual representation 
of the model’s estimated outputs for both the primary and 
the supplementary testing datasets for the binary classifiers.

Discussion

In the present study, we evaluated the performance of an 
MLA to provide one of four classifications, including autis-
tic disorder, Asperger’s disorder, or PDD-NOS based on 
the DSM-IV criteria, and one classification indicating non-
spectrum. The use of the DSM-IV diagnostic designations 
was not intended to undermine the validity of the DSM-5 
definition of these disorders. Rather, the intent was to con-
tribute to the scientific knowledge about the validity of an 
ML-based decision support aid to provide support for iden-
tifying individuals with ASD. As ASD data derived from 
DSM-5 criteria become more robust, this research could 
provide the proof-of-concept basis for a modified MLA to 
identify patients with ASD per DSM-5 diagnostic criteria. 
This research may also contribute to the body of field-trial 
data on the appropriateness of ASD diagnostic criteria and 

Fig. 3 Area under receiver 
operating characteristic curve 
(AUROC) demonstrating the 
machine learning algorithm’s 
(MLA’s) performance for clas-
sifying individuals into the four 
output classifications using 
Simons Foundation Powering 
Autism Research for Knowledge 
(SPARK) testing dataset. For all 
four classifications, the MLA per-
formed better than the baseline. 
The baseline curve represents 
a model that is not able to dif-
ferentiate between classifications, 
effectively equivalent to random 
coin-flip. Abbreviation: pervasive 
developmental disorder - not 
otherwise specified (PDD-NOS). 
Figure created using Seaborn and 
Matplotlib in Python
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individuals classified as having PDD-NOS (52.2%). Devel-
opmental language disorders are a known feature of neu-
rodevelopmental disorders generally, and ASD specifically, 
as indicated in research and by the DSM-5 criteria (Autism 
Diagnosis Criteria, n.d.; Georgiou and Spanoudis, 2021). In 
the primary testing dataset, individuals classified as having 
Asperger’s disorder had the highest prevalence of co-occur-
ring ADHD (55.7%). This was followed in the primary 
dataset by individuals with PDD-NOS (47.3%) and autis-
tic disorder (32.1%). Overall, these findings are consistent 
with studies estimating that ADHD co-occurs in 50–70% 
of individuals with ASD (Hours et al., 2022). Males were 
more frequently classified as having one of the three disor-
ders (i.e., autistic disorder, Asperger’s disorder, PDD-NOS) 
than females. However, there were more males included in 
the dataset than females, therefore, this observation is rela-
tive to the number of male and female study participants. 
While there is no definitive explanation for a higher ASD 
prevalence in males, some research has suggested that the 
origin of these differences may be genetic mutations that 
differ between the sexes or social gender stereotypes that 
impact diagnosis (Gockley et al., 2015; Jacquemont et al., 
2014). In the supplementary testing dataset, ADHD was the 
most prevalent comorbidity in all three DSM-IV classifica-
tions of disorders on the autism spectrum (11.2% for autistic 
disorder, 32.4% for Asperger’s disorder, 20% for PDD-
NOS). These variations in prevalence of comorbidities may 

by identifying a subset of patients with traits of a neuro-
developmental disorder for whom a diagnosis of ASD per 
DSM-5 criteria would not apply, which could suggest the 
need for alternative or auxiliary ASD evaluation strategies 
in clinical and research settings based on individual traits 
and trends that the MLA can reveal in the data (Clancy & 
Collins, 2010).

To our knowledge, few studies have used ML techniques 
to identify the autism spectrum-related classifications. Al-
Hiyali conducted a multi-site study in which a convolutional 
neural network was used to analyze magnetic resonance 
imaging data to classify individuals with the same DSM-IV 
diagnostic designations used within our study (Al-Hiyali et 
al., 2021). Accuracy was acceptable, ranging from 81.7% to 
89.2% (Al-Hiyali et al., 2021). Performance of our MLAs 
is also favorable, with all predictions performing substan-
tially better than baseline (primary testing dataset AUROC 
range: 0.863–0.980; supplementary testing dataset AUROC 
range: 0.904–0.969). Our MLAs also displayed favorable 
values for sensitivity, specificity, PPV, and NPV for all clas-
sifications and for each of the datasets (i.e., primary test-
ing dataset and supplementary testing dataset). Of the four 
classifications in the primary testing dataset, non-spectrum 
was the most prevalent, followed by autistic disorder and 
Asperger’s disorder. In the primary testing dataset, lan-
guage disorder was the most prevalent comorbidity for indi-
viduals classified as having autistic disorder (64.5%) and 

Fig. 4 Feature plot for primary 
testing dataset showing the input 
features that contributed the 
most to the machine learning 
algorithm’s predictions. Abbre-
viations: pervasive develop-
mental disorders - not otherwise 
specified (PDD-NOS), restrictive 
and repetitive behavior (RRB), 
Social Communication Question-
naire (SCQ). Figure created using 
Seaborn and Matplotlib in Python
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non-spectrum and 31 were incorrectly classified as hav-
ing one of the other two DSM-IV disorders on the autism 
spectrum. Among the 176 individuals who were classified 
as non-spectrum in the supplementary testing dataset, the 
model correctly identified 172 as non-spectrum and only 
misclassified 4 individuals as having a DSM-IV disorder on 
the autism spectrum (1.3% of the non-spectrum individu-
als) [Online Resource Supplementary Fig. 6]. Of all of the 
misclassifications of individuals who had a ground truth of 
a DSM-IV disorder on the autism spectrum, the majority 
fell within another of the three classifications for which we 
evaluated (75.5% in the primary testing dataset and 58.5% 
in the supplementary testing dataset). These results dem-
onstrate that the MLA achieved relatively high prediction 
accuracy within both datasets, with the majority of individ-
uals being correctly classified. Further, because most mis-
classifications for individuals with a DSM-IV disorder on 
the autism spectrum occurred within those three disorders 
(i.e., individuals were misclassified as having autistic disor-
der, Asperger’s disorder, or PDD-NOS), the algorithm may 
still provide a clinical benefit, as it would ideally prompt 
further evaluation under DSM-5.

be attributed to the difference in size of each of the datas-
ets, wherein the primary dataset analyzed information from 
36,965 individuals and the supplementary dataset analyzed 
information from 1,595 individuals.

For the SPARK dataset, the model correctly classified 
5,951 individuals (80.5% of the primary testing dataset). 
Among the 1,236 individuals with a DSM-IV disorder on 
the autism spectrum (16.7% of the primary testing dataset) 
who were misclassified by the model, 303 individuals were 
incorrectly classified as non-spectrum and 933 were incor-
rectly classified as having one of the other two DSM-IV 
disorders on the autism spectrum. Among the 4,598 indi-
viduals identified as non-spectrum in the primary testing 
dataset, the model incorrectly classified only 206 individu-
als (4.5% of the individuals identified as non-spectrum in 
the primary testing dataset) with a DSM-IV disorder on the 
autism spectrum (Fig. 5). Similarly, for the ABIDE dataset, 
the model correctly classified 262 individuals (82.1% of the 
supplementary testing dataset). Among the 53 individuals 
with a DSM-IV disorder on the autism spectrum (16.6% of 
the supplementary testing dataset) who were misclassified 
by the model, 22 individuals were incorrectly classified as 

Fig. 5 Confusion matrix show-
ing machine learning model 
multi-classifier outputs for 
Simons Foundation Powering 
Autism Research for Knowl-
edge (SPARK) dataset for all 
classifications. Cells shaded in 
blue indicate correct predictions 
for each of the four classes and 
would be considered a full true 
positive or full true negative 
under a binary classification 
scheme. Cells shaded in red indi-
cate a ground truth non-spectrum 
individual receiving a prediction 
to be classified as having autistic 
disorder, Asperger’s disorder, 
or PDD-NOS; or alternatively 
an individual having the ground 
truth of autistic disorder, 
Asperger’s disorder, or PDD-
NOS receiving a prediction to be 
classified as non-spectrum. These 
red cells would be considered full 
false positives or full false nega-
tives under a binary classification 
scheme. Pink cells indicate those 
individuals correctly identified as 
having a disorder on the autism 
spectrum, but were misidentified 
as having the wrong disorder 
on the autism spectrum (e.g., an 
individual having the ground 
truth of Asperger’s disorder 
being classified as having autistic 
disorder). Figure created using 
Lucidchart
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movements to identify atypical patterns when an individ-
ual is scanning faces (Al-Hiyali et al., 2021; Eslami et al., 
2021; Liu et al., 2016; Santana et al., 2022). In contrast, our 
MLA demonstrates that DSM-IV disorders on the autism 
spectrum (i.e., autistic disorder, Asperger’s disorder, and 
PDD-NOS) can be classified using minimal inputs from 
EHR data and with no disruption to the clinical workflow. 
Rather, the MLA receives an individual’s data encompass-
ing medical records, patient demographics, and diagnostic 
assessments from a database or manually input into the 
software, analyzes each individual’s data with the MLA to 
provide a classification as the output, and alerts a clinician 
that an individual has an increased likelihood of having 
autistic disorder, Asperger’s disorder, or PDD-NOS; or is 
classified as likely non-spectrum. Such a tool may be ideal 
for use in pediatric primary care settings to screen patients 
who present with symptoms of a neurodevelopmental dis-
order but may not have a clear path to an ASD diagnosis 
per DSM-5 criteria, which can prompt further evaluation. 
We identified only one other study in which ML models 
for ASD risk assessment used more readily-available data 
from EHRs (Rahman et al., 2020). In this study, Rahman et 
al. used EHR data from the parents of newborns to assess 
the risk of ASD. The three models used (logistic regres-
sion, artificial neural networks, and random forest) yielded 
AUROC values ranging from 0.693 to 0.727 for early pre-
diction of ASD (Rahman et al., 2020). The most important 
feature contributing to Rahman’s algorithm predictions was 
the age gap between the mother-father sets (Rahman et al., 
2020), whereas the most important features identified in the 
primary dataset by our MLA was the total score and RRB 
on the SCQ evaluation. This may be attributed to the data 
used for assessment, as Rahman’s algorithm analyzed data 
from the parents of newborns to assess risk. In contrast, our 
MLA used data from individuals 2 years of age and older, 
on whom the questionnaire is appropriate to provide assess-
ment of risk of disorders on the autism spectrum. While 
Rahman’s study indicates promise for the use of EHRs in 
ASD diagnostics, the robust number of inputs required to 
make a prediction and modest performance may limit clini-
cal utility in its reported format (Rahman et al., 2020).

Study Limitations

Our study presents itself with certain limitations. First, the 
study was conducted using retrospective data, therefore, it 
is unknown how the MLA would perform in a clinical set-
ting. Future research should involve a prospective clinical 
analysis to determine the real-world performance of the 
MLA. Another limitation is that the datasets did not have 
straightforward overlap of features to allow us to train on 
one dataset and test on a different dataset. In future research, 

The multi-class classifier models (Fig. 5 and Online 
Resource Supplementary Fig. 6) are an extension of the 
binary classification of DSM-IV disorders on the autism 
spectrum, reflecting the ability of the models to not just 
classify DSM-IV disorders on the autism spectrum, but 
also provide more detailed insight into the specific disor-
der type an individual may have, thus enabling a provider 
to further specialized treatment or guidance for each indi-
vidual. In addition, and as detailed above, the majority of 
misclassifications, in both the primary and supplemental 
testing datasets, are still correctly classified in a binary clas-
sification scheme (DSM-IV disorders on the autism spec-
trum vs. non-spectrum) as these particular individuals are 
classified as having a different DSM-IV disorder, but still 
fall within a diagnosis of autism spectrum. In the primary 
testing dataset, 6,884 (93.1%) of individuals are correctly 
classified under a binary scheme. In the supplementary test-
ing dataset, 293 (91.8%) of individuals are correctly classi-
fied under a binary scheme. Therefore, the models presented 
excel at general diagnosis of autism spectrum disorders with 
a further benefit of offering strong insight to providers on 
the specific type of disorder an individual may have.

In the primary and supplementary datasets, the top three 
features contributing to the MLA’s predictions included data 
from the SCQ and ADI-R questionnaires and age informa-
tion. This feature overlap across different datasets may indi-
cate the possibility of developing a future MLA which is 
tailored to a different or broader input availability. RRBs as 
a significant feature in both datasets reflect that this distinc-
tive set of symptoms has been associated with disorders on 
the autism spectrum since these disorders were first identi-
fied, enough to warrant carrying this forward from DSM-
IV to DSM-5 (Iversen & Lewis, 2021; Mahjouri & Lord, 
2012). Kim et al. conducted a multi-cohort study of pediatric 
patients aged ≤ 56 months with typical developmental pat-
terns, patients designated as non-spectrum, or patients with 
a diagnosis of autistic disorder or PDD-NOS (S. H. Kim & 
Lord, 2010). Patients with autism had a higher prevalence 
of RRBs that was statistically significant when compared 
to patients who displayed developmental behaviors on par 
with age expectations or were non-spectrum (S. H. Kim & 
Lord, 2010). With regards to age, several studies have indi-
cated that the worldwide mean age of diagnosis for disor-
ders on the autism spectrum is between 3.2 and 10 years of 
age (Daniels & Mandell, 2014; van’t Hof et al., 2021). Our 
findings regarding feature importance are consistent with 
literature, which we believe adds to the confidence of the 
model’s predictions.

Other examples of ML employed in ASD diagnosis or 
risk stratification by other research groups rely on more 
invasive and/or intensive inputs to make predictions, such 
as using magnetic resonance imaging or analysis of eye 
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and DSM codes for identifying ASD (Wilson et al., 2013). 
Such an investigational strategy would also allow us to 
integrate diverse socio-demographic sub-groups than what 
is currently represented in epidemiological research, as the 
use of ICD codes for identification of disorders and diseases 
is largely limited to private healthcare systems. This may 
further allow us to integrate results from our data analysis 
using ICD codes with data analysis using DSM diagnoses 
and thereby contribute to new or existing datasets.

Conclusions

This research has demonstrated the potential value of ML to 
identify the specific classifications in which individuals fall 
on the autism spectrum per DSM-IV for the purpose of guid-
ing clinical practice. This tool may enable clinicians to iden-
tify individuals who face an unclear or borderline diagnosis 
based on the current DSM-5 diagnostic criteria and should 
prompt deeper or specialized evaluation in these cases. Fur-
ther, this tool may support clinicians during the diagnostic 
process by utilizing DSM-IV classification for disorders on 
the autism spectrum to assess symptoms and help identify 
patients that may be eligible for a DSM-5 diagnosis of ASD. 
Reducing or eliminating the challenges in reaching an ASD 
diagnosis is of vital importance given the complexity of the 
current ASD diagnostic process and the potential implica-
tions of missed diagnosis. For example, it has been posited 
that adults who receive a late or missed diagnosis are at a 
high risk for suicide attempts, which some research suggests 
occurs more frequently with females, particularly when they 
do not demonstrate an intellectual deficit (Fusar-Poli et al., 
2022). Consequently, the earlier a diagnosis of ASD can be 
made, the better the prognosis and overall quality of life for 
the affected individual.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10803-
023-06121-4.
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we plan to focus on increasing the generalizability of the 
inputs of the MLA beyond the datasets used in this project. 
Though most metrics demonstrated excellent performance, 
the PPV for PDD-NOS was 0.391 for SPARK and 0.333 
for ABIDE. This may be, in part, due to the relatively low 
PDD-NOS prevalence within the datasets, and the correla-
tion between prevalence and PPV and NPV - in that a lower 
prevalence can lead to lower PPV and vice versa (Tenny 
& Hoffman, 2022). Additionally, this low PPV may be par-
tially attributed to the fact that the MLA disproportionately 
misclassified individuals with PDD-NOS as having autistic 
disorder and Asperger’s disorder. Therefore, the low PPV 
cannot entirely be attributed to low prevalence in the data 
as a whole and misclassification of these individuals as non-
spectrum. Further, the low PPV may be additionally exac-
erbated by the low prevalence of PDD-NOS relative to the 
prevalence of the other disorders on the autism spectrum as 
well.

In terms of comorbidities, the datasets were unbalanced 
in terms of their representation of comorbidities, particu-
larly ADHD. We expect that this was due to the primary 
dataset (SPARK) and supplementary (ABIDE) dataset 
being distinctly different in regards to the type of data they 
collect. SPARK is comprised of genetic, clinical, and behav-
ioral assessment information. ABIDE is comprised of imag-
ing (functional magnetic resonance image) and phenotypic 
data. It may therefore be possible that, owing to different 
recruiting strategies, SPARK and ABIDE enrolled patients 
with somewhat different characteristics. Additionally, it may 
be possible that the smaller number of individuals in ABIDE 
has more statistical variance. Finally, the SPARK dataset did 
not provide DSM-5 diagnoses data for any of the individu-
als that were filtered into the primary dataset, and thus, we 
could not analyze the performance of our model in light of 
the current standard of practice. However, it should be noted 
that, within the supplementary dataset derived from ABIDE, 
a total of 103 individuals had a diagnosis under both DSM-
IV and DSM-5, i.e., these 103 individuals had been diag-
nosed as having a disorder on the autism spectrum under 
DSM-IV, and were also diagnosed with ASD under DSM-5. 
Out of these 103 individuals, 20 were randomly placed into 
the supplementary testing dataset and our prediction algo-
rithm was able to accurately classify all of these 20 individ-
uals as having one of the disorders on the autism spectrum 
(i.e., autistic disorder, Asperger’s disorder, or PDD-NOS). 
Future research should examine concordance between the 
MLA’s identification of a DSM-IV diagnosis of a disorder 
of the autism spectrum and the DSM-5-defined diagnoses 
of ASD, and should evaluate the MLA for individuals diag-
nosed with ASD based on DSM-5 criteria. Future research 
may also incorporate International Classification of Dis-
eases (ICD) codes to evaluate concordance between ICD 
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