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Abstract
Metabolic disturbance may be implicated in the pathogenesis of autism. This study aimed to investigate the gut metabolomic 
profiles of autistic children and to analyze potential interaction between gut metabolites with autistic symptoms and neurode-
velopment levels. We involved 120 autistic and 60 neurotypical children. Autistic symptoms and neurodevelopment levels 
were assessed. Fecal samples were analyzed using untargeted liquid chromatography-tandem mass spectrometry methods. 
Our results showed the metabolic disturbances of autistic children involved in multiple vitamin and amino acid metabolism 
pathways, with the strongest enrichment identified for tryptophan metabolism, retinol metabolism, cysteine-methionine 
metabolism, and vitamin digestion and absorption. Differential gut metabolites were correlated to autistic symptoms and 
neurodevelopment levels. Our findings improved the understanding of the perturbations of metabolome networks in autism.
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Abbreviations
5-HIAA  5-Hydroxyindoleacetic acid
5-HT  5-Hydroxytryptamine
5-HTP  5-Hydroxytryptophan
5-MTHF  5-Methyltetrahydrofolate

8-OHdG  8-Hydroxy-deoxyguanosine
ABC  Autism Behavior Checklist
ASD  Autism spectrum disorder
BMI  Body mass index
CARS  Childhood Autism Rating Scale
DHF  Dihydrofolate
DQ  Developmental quotient
GABA  γ-Aminobutyric acid
GDS  Gesell Developmental Scale
GI  Gastrointestinal
Hcy  Homocysteine
LC–MS  Liquid chromatography-mass spectrometry
NAC  N-acetylcysteine
PLS-DA  Partial least squares discriminant analysis
SRS  Social Responsiveness Scale
TD  Typically developing
TPP  Thiamine-pyrophosphate
VAD  Vitamin A deficiency
VIP  Variable important in projection

Introduction

Autism spectrum disorder (ASD) is a complex neurodevel-
opmental disorder characterized by early-appearing social 
communication deficits and restricted or repetitive behaviors 
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(Hyman et al., 2020). Besides the core deficits, ASD is often 
accompanied with other developmental or behavioral disor-
ders, sleep problems, and gastrointestinal (GI) symptoms 
(Hyman et al., 2020). Currently, the precise etiology and 
mechanism of ASD remain unclear, thus hindering the 
development of available laboratory diagnostic and effec-
tive cure for the condition (Muhle et al., 2018).

Accumulated evidence has supported metabolic dis-
turbance may be implicated in the pathogenesis of ASD. 
Metabolomics studies of urines, plasma, and fecal samples 
from ASD patients have shown disturbances of metabolism 
related to amino acids, oxidative stress, purine intermedi-
ates, and gut microbiota (Glinton & Elsea, 2019; Shen et al., 
2020; Mohamadkhani, 2018; Kang et al., 2018). Despite 
the high interest, previous studies are mainly focused on the 
metabolomic analysis of urines and blood, and analysis of 
gut microbiota composition, while studies of fecal metabo-
lism are relatively rare in the context of ASD (Kang et al., 
2018; Shen et al., 2020).

Gut metabolomics can provide comprehensive informa-
tion about the final products of interactions among dietary 
intake, metabolism, and microbial functions. Studies have 
shown that short-chain fatty acids (SCFAs) altered in the gut 
of ASD children (Liu et al., 2019; Thomas et al., 2012), and 
SCFAs could regulate gut immunity and genes expression 
of the host (Chang et al., 2014). Abnormal glutamate and 
γ-aminobutyric acid (GABA) metabolism were observed in 
the feces of children with ASD, which may influence exci-
tation-inhibition balance (Kang et al., 2018; Wang et al., 
2019). Abnormal tryptophan metabolism and increased 
serotonin (5-hydroxytryptamine, 5-HT) have been observed 
in in the gut of ASD patients (Muller et al., 2016). Also, 
isopropanol and phenol substances, including phenol and 
p-cresol, were found higher in fecal of children with ASD 
(De Angelis et al., 2013; Kang et al., 2018).

Although the above reports suggest that altered gut 
metabolomics may contribute to the pathogenesis of ASD, 
the specific alterations in individual compounds were incon-
sistent between studies owing to multiple potential con-
founders (e.g., ethnicity, age, diet, disease, medicine, and 
methodology used) that can influence the metabolism out-
comes. Inconsistent and scattered changes in single metabo-
lites have a limited role in elucidating the pathophysiology 
of ASD. Therefore, a comprehensive interpretation of the 
metabolism pathway network is required.

This study aimed to determine the gut metabolomic pro-
files of children with ASD and identify the potential asso-
ciations of gut metabolites with ASD symptoms and neu-
rodevelopment levels. We analyzed the fecal metabolomic 
profiles of preschool children with ASD and age-, sex-, 
region- matched typically developing (TD) children with liq-
uid chromatography-tandem mass spectrometry (LC–MS/
MS) methods. We found that the differential metabolites 

between the ASD and TD groups were mainly involved in 
multiple vitamin and amino acid metabolism pathways. We 
also investigated the possible correlations of the altered gut 
metabolites with symptoms and neurodevelopment levels of 
ASD children, and postulated the interconnection of vita-
mins and amino acids in the metabolism network of ASD.

Subjects and Methods

Subject Selection

A total of 120 children with ASD (ages, 2–6 years) were 
enrolled for this study from the Maternal and Child Care 
Health Hospital of Hainan Province, China, after a compre-
hensive assessment. The inclusion criteria were a diagnosis 
of ASD made by a developmental pediatrician through a 
series of structured interviews according to the Diagnos-
tic and Statistical Manual of Mental Disorders (Fifth Edi-
tion, DSM-5) criteria (American Psychiatric Association, 
2013). The Childhood Autism Rating Scale (CARS) (Rellini 
et al., 2004) was used to assist diagnosis (scores > 30). The 
exclusion criteria included other developmental disorders, 
neurological or psychiatric diseases, genetic metabolic dis-
ease, major physical illness, a recent history of (i.e., within 
3 months before sampling) infection, special diets, or anti-
biotic/probiotic use.

ASD symptoms were assessed using the Autism Behav-
ior Checklist (ABC) (Rellini et al., 2004), Social Respon-
siveness Scale (SRS) (Cen et al., 2017) and CARS, and 
higher scores indicated more severe symptoms. Neurode-
velopment level in ASD children was assessed using the 
revised Gesell Developmental Scale (GDS) (Jin et al., 2007), 
which is extensively used in China to evaluate cognitive and 
behavioral development. Development quotient scores (DQ) 
of GDS were used to assess the levels of intellectual and 
behavioral development. DQ scores < 75 indicated develop-
mental delay, and the lower the DQ score, the more severe 
the developmental delay. Gastrointestinal (GI) symptoms 
were evaluated with the six-item Gastrointestinal Severity 
Index (6-GSI), and higher scores indicated more severe GI 
symptoms.

A control group of 60 TD children was recruited and 
matched to the ASD group by age, gender, and region. The 
TD children underwent health examinations at the Depart-
ment of Child Health in the Maternal and Child Care Health 
Hospital of Hainan Province. All control subjects were 
healthy, and showed no sign of developmental disorders, 
psychiatric diseases, or GI symptoms. Other exclusion cri-
teria were the same as those for the ASD group.

Participation in this research was voluntary. The study 
protocol was approved by the Medical Ethic Committee. 
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This cross-sectional study was based on a clinical trial 
which was registered in the Chinese Clinical Trial Registry 
(ChiCTR-ROC-14005442).

Fecal Sample Collection and LC–MS Metabolomics 
Analysis

Fecal Sample Collection and Metabolites Extraction

Fresh fecal samples from each participant were placed in 
sterile tubes, immediately frozen, and stored at − 80 °C until 
metabolomics analysis. The 100 mg of stool for each sample 
was separately ground with liquid nitrogen, and the resulting 
homogenate was resuspended in prechilled 80% methanol 
and 0.1% formic acid by vortexing thoroughly. The sam-
ples were incubated on ice for 5 min and then centrifuged 
at 15,000 rpm/min at 4 °C for 5 min. The supernatant was 
diluted with LC–MS-grade water (final concentration, 60% 
methanol), transferred into a fresh Eppendorf tube through 
a 0.22-μm filter, and centrifuged again at 15,000 rpm/min 
at 4 °C for 10 min. Finally, the filtrate was injected into the 
LC–MS/MS system for analysis.

LC–MS/MS Analysis

LC–MS/MS analyses were performed using a Vanquish 
UHPLC system (Thermo Fisher, USA) and an Orbitrap Q 
Exactive HF-X mass spectrometer (Thermo Fisher). Briefly, 
the metabolites were separated and characterized using 
LC system and further detected with MS system. Samples 
were injected onto an Hyperil Gold column (100 × 2.1 mm, 
1.9 μm) at a flow rate of 0.2 mL/min and separated using a 
16-min linear gradient. The eluents for the positive polar-
ity mode were 0.1% formic acid in water (eluent A) and 
methanol (eluent B). The eluents for the negative polarity 
mode were 5 mM ammonium acetate, pH 9.0 (eluent A) and 
methanol (eluent B). The solvent gradient was set as follows: 
2% B,1.5 min; 2 – 100% B, 12.0 min; 100% B, 14.0 min; 
100 – 2% B, 14.1 min; and 2% B, 16 min. The Q Exactive 
HF-X mass spectrometer was operated in the positive/nega-
tive polarity mode with 3.2 kV spray voltage, 35 arb sheath 
gas-flow rate, 10 arb aux gas-flow rate, and 320 °C capillary 
temperature.

Metabolite Analysis

Compound Discoverer v3.0 (CD 3.0, Thermo Fisher) was 
used to process and normalize the raw data files generated 
by UHPLC–MS/MS and to perform peak alignment, peak 
selection, and quantification for each metabolite. The main 
parameters were set as follows: retention time tolerance, 
0.2 min; actual mass tolerance, 5 ppm; signal intensity tol-
erance, 30%; signal/noise ratio, 3; and minimum intensity, 

100,000. Peak intensities were normalized against the total 
spectral intensity, and normalized data were used to predict 
the molecular formula based on additive ions, molecular 
ion peaks, and fragment ions. Peaks were matched with 
the mzCloud (https:// www. mzclo ud. org/) and ChemSpider 
(http:// www. chems pider. com/) databases to obtain accurate 
qualitative and relative quantitative results.

The normalized metabolism data were analyzed using 
the CentOS (release 6.6), R (vR-3.4.3), and SPSS (v19.0, 
USA). With individual metabolites dataset, Partial least 
squares discriminant analysis (PLS-DA) models were built 
to visualize the metabolic alteration patterns between the 
ASD and TD groups. Furthermore, the cross-validation 
analysis of variance was performed to assess the reliabil-
ity of the models. Differential metabolites between the two 
groups were selected using combined multivariate and uni-
variate analyses. Gut metabolites with a fold change > 1.5, a 
variable importance in projection score (VIP score) > 1, and 
a false discovery rate-corrected p value < 0.05 for the Stu-
dent’s t test or Mann–Whitney U test were considered sig-
nificantly differentially expressed between the two groups. 
To further demonstrate the biological functions of the dif-
ferential metabolites, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways enrichment analysis was 
performed (http:// www. genome. jp/ kegg/). A hypergeomet-
ric test was used to assess the significance of the enriched 
KEGG pathway.

Metabolomics analysis was carried out according to the 
standard protocols recommended by Novogene Technology 
Co., Ltd. (Beijing, China).

Statistical Analysis

Demographics and clinical assessment data were analyzed 
using SPSS (v19.0). Continuous variables were described as 
the means with standard deviations or medians (interquar-
tile ranges) as appropriate, and categorical variables were 
described as percentages. The two-tailed Student’s t test, 
Mann–Whitney U test, and the chi-square test were used to 
compare between groups. Correlations of metabolites levels 
with clinical assessment scores were analyzed by Spearman 
correlation. p value < 0.05 indicated statistical significance.

Results

Subject Characteristics

A total of 120 ASD children (ages, 2–6 years) and 60 TD 
children were enrolled for this study. The demographic 
and clinical features of the participants are presented in 
Table 1. There were no significant differences in age-gender 

https://www.mzcloud.org/
http://www.chemspider.com/
http://www.genome.jp/kegg/
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composition and z-score of the body mass index (BMI) 
between the two groups. Of the 120 children with ASD, 80 
(66.67%) showed food selectivity, and 58 (48.33%) had GI 
symptoms.

Alterations in Gut Metabolism Profiles of ASD 
Children

To explore the gut metabolic patterns associated with 
ASD status, a fecal metabolome analysis was performed 
by LC–MS/MS method. A total of 6936 peaks of com-
pounds were obtained, among which 4531 were explored 
in the positive ion mode (ESI+) and 2405 in the negative 

ion mode (ESI−). PLS-DA showed that the ASD and TD 
groups were well clustered with particular metabolic profiles 
for each (ESI+ :  R2Y = 0.73,  Q2 = 0.61, p < 0.0001; ESI−: 
 R2Y = 0.76,  Q2 = 0.65, p < 0.0001; Fig. 1a, b). The permu-
tation test with p < 0.001 indicated that the classification of 
global metabolite profiles between the ASD and TD groups 
was significantly different. We identified 96 differential 
metabolites between the ASD and TD groups, including 
35 significantly increased metabolites and 61 significantly 
decreased metabolites in the ASD group (Table S1).

KEGG pathway analysis revealed 27 KEGG pathways 
associated with ASD status (Table S2). Interestingly, the 
differential metabolites were mainly enriched in multiple 
vitamin and amino acid metabolism pathways, with the 
strongest enrichment identified for tryptophan metabolism 
(p = 0.0006), retinol metabolism (p = 0.009), cysteine and 
methionine metabolism (p = 0.008), and vitamin digestion 
and absorption (p = 0.01; Fig. 1c). In addition, some differ-
ential metabolites were involved in arachidonic acid, steroid 
hormone, citrate cycle, and purine metabolism.

Disturbances in various vitamin metabolism pathways 
were found in children with ASD, as shown in Table 2 
and Fig. 2. In the retinol metabolism pathway, abnormal 
levels of precursors and intermediates of vitamin A were 
found in the ASD group. The 4′-apo-beta-carotenal, b,e-
carotene-3,3′-diol, and retinal levels were increased, while 
retinol level was decreased. The concentrations of multiple 
B vitamins and their derivatives were decreased, includ-
ing thiamine pyrophosphate (TPP), riboflavin (vitamin 
B2) and its intermediate lumichrome, phosphopantothenic 
acid (vitamin B5 derivative), pyridoxamine (vitamin B6), 
1,4,5,6-tetrahydro-6-oxonicotinic acid, dihydrofolate (DHF), 
and 5-methyltetrahydrofolate(5-MTHF). The vitamin C level 
was also decreased in the children with ASD.

Aberrant amino acid metabolisms were also associated 
with ASD (Fig. 2), and tryptophan metabolism pathway 
was the most affected. The concentrations of xanthurenic 
acid, 5-hydroxy-N-formylkynurenine, 5-hydroxytrypto-
phan (5-HTP), serotonin (5-hydroxytryptamine, 5-HT), 
and N-feruloyl serotonin were significantly increased in the 
ASD group, while the 6-hydroxymelatonin and 5-hydroxyin-
doleacetic acid (5-HIAA) levels were decreased in the ASD 
group. Besides, some indole derivatives, including indole 
acrylic acid and indole-2-carboxylic acid, were decreased in 
the ASD group. The cysteine-methionine metabolism path-
way is closely related to folate metabolism. Both pathways 
showed abnormalities in the ASD group, with lower levels 
of DHF, 5-MTHF, N-acetylcysteine (NAC), and S-aminoe-
thyl-L-cysteine, and excessive accumulation of homocyst-
eine (Hcy). In the case of arginine metabolism pathway, the 
concentrations of polyamines, including agmatine, sper-
mine, and glutathione spermidine, were lower in children 
with ASD. We also found abnormal glutamate and glycine 

Table 1  Demographic and clinical characteristics of participants

The two-tailed Student’s t test, and the chi-square test were used for 
analysis
TD typically developing, ASD autism spectrum disorders.
** p < 0.01

TD ASD p value

Age (years), mean ± SD 4.01 ± 1.12 3.86 ± 1.03 0.2182
Sex (male/female) 39/21 99/21 0.079
Family annual income per capita (RMB), n (%)
  ≤20,000 31 (51.67) 67 (55.83) 0.597
  > 20,000 29 (48.33) 53 (44.17)

Height (ZHA) 0.01 ± 0.94 −0.14 ± 1.0 0.2429
Weight (ZWA) −0.02 ± 0.98 0.06 ± 0.96 0.5771
BMI (ZBMI) 0.26 ± 0.92 0.33 ± 1.07 0.6646
Picky eating, n (%) 26 (43.33) 80 (66.67) 0.003**

GI symptoms, n (%) 0 58(48.33)
ABC
 Sensory – 8.37 ± 5.04
 Social withdrawal – 14.13 ± 7.74
 Stereotypic behavior – 7.63 ± 7.01
 Inappropriate speech – 13.57 ± 5.98
 Laggard daily living ability – 11.28 ± 5.18
 Total ABC scores – 54.98 ± 22.74

SRS
 Social awareness – 11.83 ± 3.09
 Social cognition – 18.68 ± 4.52
 Social communication – 33.29 ± 8.82
 Social motivation – 14.96 ± 4.4
 Autistic mannerisms – 13.71 ± 5.58
 Total SRS scores – 92.47 ± 21.65
 CARS – 37.18 ± 5.86

GDS
 Adaptive behavior – 57.01 ± 17.94
 Gross motor – 64 ± 14.22
 Fine motor – 57.45 ± 17.05
 Language – 43.62 ± 19.97
 Personal-social behavior – 48.47 ± 15.24
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metabolism, with decreased glutamine, GABA, and glycine 
levels in children with ASD.

Disturbances were also detected in the biologically 
active metabolites of arachidonic acid, which are crucial 
regulators of oxidative stress and inflammation. Arachidic 

Fig. 1  Alterations of the gut metabolome in children with ASD com-
pared with TD children. a, b The clustering analyses of partial least-
squares discriminant analysis (PLS-DA) of gut metabolome data in 
the positive ion mode (a) and negative ion mode (b). c Top 20 KEGG 
pathways enriched by differential gut metabolites between the ASD 

and TD children. Count, the number of differential metabolites in the 
pathway. Ratio, the ratio of number of differential metabolites to all 
detected metabolites in the pathway. p value, p value of hypergeomet-
ric test. ASD autism spectrum disorders, TD typically developing
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acid and 20-hydroxy-leukotriene E4 levels were increased, 
while leukotriene B4 and 5-trans prostaglandin F2β levels 
were decreased in children with ASD. Besides, the purine 
metabolite 8-hydroxy-deoxyguanosine (8-OHdG), which 

is a sensitive marker of oxidative DNA damage (Valava-
nidis et al., 2009), was significantly increased (6.86-fold; 
p = 0.001) in the ASD group.

Table 2  Aberrant gut metabolites relevant to vitamins and cofactors in children with ASD

ab  Fold change and regulation mode in the ASD group compared with the typically developing group
ASD autism spectrum disorders

Vitamins metabolites Metabolism pathway Fold  changea p value Regula-
tion 
 modeb

4′-Apo-beta-carotenal Vitamin digestion and absorption, retinol metabolism 1.55 9.24E-05 up
b,e-Carotene-3,3′-diol Vitamin digestion and absorption, retinol metabolism 1.56 0.0043 up
All-trans-retinal Retinol metabolism 1.56 0.0262 up
Retinol Retinol metabolism 0.64 0.0149 down
Tocopherol Vitamin E metabolism 3.19 0.002 up
Thiamine pyrophosphate Thiamine metabolism 0.45 0.0224 down
Riboflavin tetrabutyrate Riboflavin metabolism 0.21 0.0085 down
(+)-Riboflavin Riboflavin metabolism 0.62 0.0305 down
Lumichrome Riboflavin metabolism 0.64 0.005 down
Pyridoxamine Vitamin digestion and absorption, vitamin B6 metabolism 0.63 0.0035 down
Phosphopantothenic acid Vitamin B5 metabolism 0.64 0.0181 down
5-Methyltetrahydrofolate Folate biosynthesis 0.56 0.0068 down
Dihydrofolic acid Vitamin digestion and absorption, folate biosynthesis 0.49 0.006 down
1,4,5,6-Tetrahydro-6-oxoni-

cotinic acid
Nicotinate and nicotinamide metabolism 0.66 0.0036 down

Vitamin C Vitamin digestion and absorption, ascorbate and aldarate metabolism 0.58 0.0148 down
L-Ascorbic acid Ascorbate and aldarate metabolism 0.51 0.0031 down

Fig. 2  Metabolism pathway 
networks of the differential 
metabolites between the ASD 
and TD group. Gut metabo-
lites with a fold change > 1.5, 
a variable importance in 
projection score(VIP) > 1, 
and a FDR-corrected p val-
ues < 0.05 for the Student’s 
t test or Mann–Whitney U 
test were considered signifi-
cantly differentially expressed 
between the two groups. Red 
font (↑), metabolites increased 
in the ASD group; Green font 
(↓), metabolites decreased in 
the ASD group; black font, 
no significant difference 
between the ASD and TD 
groups; grey font, undetected. 
DHF, dihydrofolate; 5-MTHF, 
5-methyltrahydrofolate; SAM, 
S-adenosylmethionine; SAH, 
S-adenosylhomocysteine. ASD 
autism spectrum disorders; TD 
typically developing
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Correlation of Gut Metabolites with ASD Symptoms 
and Neurodevelopment Levels

Spearman correlation analysis was performed to explore the 
potential links between key fecal metabolites and clinical 
assessment scores of children with ASD. Agmatine, S-ami-
noethyl-L-cysteine, 6-Hydroxymelatonin, pyridoxamine, 
GABA, and 5-trans prostaglandin F2β were negatively cor-
related with partial subscales or total ABC, SRS or CARS 
scores. Conversely, retinal, Hcy, serotonin, N-feruloyl ser-
otonin, and 5-HIAA in the gut were positively correlated 
with ASD symptoms. S-aminoethyl-L-cysteine, 5-trans pros-
taglandin F2β, and retinol were positively correlated with 
neurodevelopment scores, while 8-OHdG, Hcy, 5-hydroxy-
N-formylkynurenine, and serotonin were negatively corre-
lated with neurodevelopment scores (Fig. 3; Table S3).

Impact of GI Problems on the Metabolic Patterns 
in ASD Children

Gastrointestinal (GI) problems is often co-occurred with 
ASD and we found 48.33% of ASD children suffered 
from GI symptoms. The impact of GI problems on the gut 

metabolic patterns of children with ASD was evaluated. 
The supervised PLS-DA showed that the ASD children 
with GI symptoms (ASD-GI, n = 58) and non-GI symptoms 
(ASD-nonGI, n = 62) were not partly clustered with specific 
metabolic profiles for each (ESI+ :  R2Y = 0.27,  Q2 = 0.10, 
p = 0.14; ESI-:  R2Y = 0.25,  Q2 = 0.06, p = 0.045),while the 
metabolic profiles of the both groups were different from 
the TD group (all p value < 0.001; Figure S1a-b). We found 
most differential metabolites revealed between ASD and TD 
groups were not different between ASD-GI and ASD-nonGI 
groups (data not shown). The results showed GI problems 
had a limited impact on the metabolic patterns and presence 
of differential metabolites.

Spearman correlation analysis revealed that serotonin and 
N-feruloyl serotonin levels were positively correlated with 
6-GSI scores (rs = 0.185, p = 0.044; rs = 0.276, p = 0.002). 
We found a positive association between dihydrofolic acid 
levels and 6-GSI scores (rs = 0.341, p < 0.001), which indi-
cated GI problems may affect the absorption of folic acid.

Fig. 3  Correlations of gut metabolites with ASD symptoms and neu-
rodevelopment levels. The Spearman correlation coefficient is indi-
cated by a color gradient from green (negative correlation) to red 
(positive correlation). The * symbol in each lattice represent a sig-

nificant correlation. *p < 0.05, **p < 0.01. GDS Gesell Developmen-
tal Scale, ABC autism behavior checklist, SRS Social Responsiveness 
Scale, CARS Childhood Autism Rating Scale, DQ development quo-
tient scores.
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Discussion

This study showed that gut metabolomic profiles signifi-
cantly differed between young children with ASD and TD 
children. The differential fecal metabolites were mainly 
involved in vitamin and amino acid metabolism pathways, 
with the strongest enrichment identified for tryptophan 
metabolism, retinol metabolism, cysteine and methionine 
metabolism, and vitamin digestion and absorption. Some 
metabolic perturbations were associated with ASD symp-
toms and neurodevelopment levels, and may contribute to 
the pathogenesis of ASD through the gut-brain axis.

Vitamin A is required for functional systemic develop-
ment in children (McLean et al., 2020), and studies have 
showed that children with ASD are more vulnerable than 
neurotypical children to vitamin A deficiency (Guo et al., 
2018; Ranjan et  al. 2015). In our study, the increased 
4′-apo-beta-carotenal and b,e-carotene-3,3′-diol levels and 
decreased retinol level may indicate that children with ASD 
had a decreased capacity for the absorption and bioconver-
sion of plant-origin precursors of vitamin A. Vitamin A has 
three active forms in humans: retinal, retinol, and retinoic 
acid (RA) (Kedishvili, 2016). RA, the main active form of 
vitamin A, is a crucial signaling molecule that regulates mul-
tiple fundamental biological processes (Kedishvili, 2016). 
The increased retinal level in our study may imply that the 
conversion of retinal to RA was suppressed in the gut of 
children with ASD. Excessive retinal may damage the nerv-
ous system. We found that in children with ASD, the retinol 
level was positively correlated with neurodevelopment lev-
els, and the retinal level was positively correlated with the 
social withdrawal subscale of SRS. The ALDH1A family 
consists of key enzymes that oxidize retinal into RA, and 
XX Xu et al. (Xu et al., 2018) found that ASD patients with 
excessive UBE3A (an autism-related gene and molecule) 
may have congenital errors of retinol metabolism, as exces-
sive UBE3A can inhibit ALDH1A activity and compromise 
the oxidation of retinal to RA. Moreover, the gut microbiota 
can participate in the alternative biotransformation of retinal 
to retinol or RA (Hong et al., 2016).

B vitamins are important cofactors implicated in multiple 
biochemical reactions. TPP, a derivative of thiamine (vita-
min B1), is a cofactor of various enzymes in the mitochon-
dria. Anwar A et al. (Anwar et al., 2016) found that plasma 
TPP concentrations were significantly lower in children with 
ASD than in controls. Consistent with this, we found lower 
levels of TPP in the feces of children with ASD than in TD 
children. Decreased TPP can lead to reduced mitochondrial 
anti-oxidative potential and energy production, and subse-
quently cellular damage (Altuner et al., 2013; Cinici et al., 
2018). Vitamins B2 and B6 also participate in multiple 
amino acids metabolism processes. We found the level of 

pyridoxamine, a form of vitamin B6, was slightly negatively 
correlated to ABC and CARS scores.

The pathways of cysteine and methionine cycle, 
folate(vitamin B9) metabolism, and Hcy transsulfuration 
are interrelated and together constitute the folate-related 
metabolism pathway (Zou et al., 2019), which is critical for 
cell proliferation, DNA synthesis, immune function, and 
neural development (Sun et al., 2016). Vitamins B6 and B12 
are cofactors in these biological processes. Decreased folate 
and vitamin B6 levels may lead to Hcy accumulation and 
decreased methyl production. Much of evidence suggested 
that folate deficit and excessive Hcy are risk factors for neu-
ral tube defects and neurodevelopmental disorders (Türksoy 
et al., 2014), and children with ASD have decreased folate 
levels and elevated Hcy levels in the blood and urine (Paşca 
et al., 2006; Yektaş et al., 2019). In our study, Hcy levels 
were negatively correlated with neurodevelopment scores, 
indicating the adverse impact of excessive Hcy on brain 
development and function. Moreover, NAC is an antioxidant 
with potential benefits in treating the irritability in children 
with ASD (Nikoo et al., 2015).

Abnormal tryptophan metabolism pathway in ASD has 
been reported in multiple studies, which was characterized 
by decreased tryptophan concentrations (Ormstad et al., 
2018) and increased serotonin levels in the blood (Muller 
et al., 2016). In the gut, there are three main tryptophan 
metabolism pathways, which lead to kynurenine, seroto-
nin, and indole derivatives (Agus et al., 2018; Kałużna-
Czaplińska et al., 2019). Through the kynurenine pathway, 
kynurenic acid, xanthurenic acid, and quinolinic acid are 
generated (Agus et al., 2018). In our study, xanthurenic acid 
and 5-hydroxy-N-formylkynurenine levels were significantly 
increased in the ASD group. Vitamin B6 is a cofactor of 
kynureninase and kynurenine aminotransferase; therefore, 
the decrease of B6 may have contributed to the increased 
xanthurenic acid and 5-hydroxy-N-formylkynurenine levels. 
In the serotonin pathway, 5-HTP, serotonin, and N-feruloyl 
serotonin were significantly increased in feces of children 
with ASD, while 6-hydroxymelatonin and 5-HIAA were 
decreased. Reproducible evidence suggested serotonin-mela-
tonin pathway in ASD is impaired, leading to hyperserotone-
mia and melatonin deficit in plasma (Abdulamir et al., 2018; 
Pang et al., 2014; Muller et al., 2016). However, few studies 
have reported altered tryptophan metabolism and serotonin-
melatonin levels in the gut of ASD patients. Angelis et al. 
(De Angelis et al., 2013) found increased tryptophan and 
3-methylindole levels in the feces of children with ASD. Dan 
Z et al. (Dan et al., 2020) also reported abnormal tryptophan 
metabolism in the gut of children with ASD. An mice model 
of autism found decreased serotonin in intestine mucosal 
(Golubeva et al., 2017). However, given that 95% of the ser-
otonin in the body is generated in the intestine (Colle et al., 
2020), it is likely that blood serotonin levels are correlated 
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with enteric serotonin. Likewise, the GI tract, in addition to 
the pineal gland, is an important source of melatonin besides 
the pineal gland (Gagnon & Godbout, 2018). Melatonin can 
regulate sleep patterns, immunity, as well as GI function 
(Gagnon & Godbout, 2018). Serotonin can be catabolized 
to 5-HIAA, and this process depends on riboflavin (vitamin 
B2) as a cofactor, so riboflavin deficiency may be related 
to the increase of serotonin. Moreover, dysbiosis of the gut 
microbiota has been linked to abnormal tryptophan metabo-
lism (Agus et al., 2018). We found a negative correlation 
between gut serotonin levels and neurodevelopment scores 
of ASD children, while serotonin and N-feruloyl serotonin 
levels were positively correlated with the sensory subscales 
of ABC and GI problems. Many studies have indicated that 
the blood serotonin levels are correlated with the severity of 
autism severity (Abdulamir et al., 2018). A balanced amount 
of enteric serotonin is beneficial to the functioning of the 
intestine, nervous system, and gut-brain axis, while excess 
serotonin may play a harmful role in the ASD progression.

We found decreased GABA, glutamine, glycine, and poly-
amines in fecal of children with ASD. GABA was negatively 
correlated with ABC scores, and agmatine was negatively 
correlated with SRS scores. These amino derivatives are 
crucial neurotransmitters or neuromodulators in the nerv-
ous system, and are important for immunity and inflamma-
tion (Ueland et al., 2017). GABA and glycine are inhibitory 
neurotransmitters, and their decrease may impact the exci-
tation-inhibition balance of the nervous system (Nelson & 
Valakh, 2015). Our findings are partially supported by Kang 
DW et al. 2018 and Angelis et al. (De Angelis et al., 2013), 
who reported possibly lower GABA concentrations in the 
gut of children with ASD compared with healthy controls. 
Ford et al. (2020) found that aberrant glutamate and GABA 
processes were linked with impaired psychosocial function. 
Particularly, the synthesis of both GABA and glycine depend 
on vitamin B6 as a cofactor (Sato, 2018).

Biologically active metabolites of arachidonic acid 
showed disturbance, which are key regulators in oxidative 
stress and inflammation (Sergeant et al., 2016). Besides, 
8-OHdG, a purine metabolite, is a sensitive marker of oxi-
dative DNA damage (Valavanidis et al., 2009). Elevated 
8-OHdG levels has been found in the cerebellar (Sajdel-
Sulkowska et al., 2009) and urinary excretion (Ming et al., 
2005) of ASD patients. In the present study, 8-OHdG was 
significantly increased (6.86-fold) in autistic children com-
pared to TD children. These results indicates that children 
with ASD may have a higher risk of gastrointestinal damage 
by oxidative stress and inflammation.

Gut metabolism is the result of interactions of multi-
ple genetic and environmental factors, including disease, 

microbiome, and diet (Alexander & Turnbaugh, 2020). Gut 
microbiota are important for gut metabolism, as microflora 
can produce vitamins and participate in the metabolism of 
numerous substances (Hong et al., 2016; LeBlanc et al., 
2013). Picky eating is almost one of important characteriza-
tions of children with ASD, so inadequate intake from food 
could also partly explain the decreased in multiple vitamins 
and amino acids. In addition, GI problems may affect the 
absorption of nutrients. Furthermore, vitamin abnormalities/
deficiencies may contribute to altered amino acid metabo-
lism, for vitamins B are implicated in multiple biochemical 
reactions (Sato, 2018). Metabolic interventions for ASD 
include supplementation of prebiotics and probiotics, vita-
mins (e.g., A, C, D, B6, B12, folate), amino acids, and their 
derivatives (e.g., glycine, NAC) (Bjørklund et al. 2019; 
DeFilippis, 2018; Höfer et al., 2017; Mierau & Neumeyer, 
2019). These approaches could sometimes correct intestinal 
dysbiosis and nutritional deficiencies in ASD, and partly 
improve the downstream metabolic consequences. However, 
these interventions were not always effective (Bjørklund 
et al., 2019), for some inborn errors of metabolism are hard 
to rectify, and single-compound supplementation may be 
insufficient to overcome the extensive abnormalities of meta-
bolic networks in ASD. Therefore, detailed evaluation and 
individualized interventions for ASD children are required.

Limitations

There are limitations in the present study. First, this cross-
sectional study revealed correlations, but our data do not 
allow to prove the causation of symptoms and gut metabo-
lites outcome. In addition, the correlations were not very 
strong (correlation coefficients, 0.2–0.4), as the metabolic 
disturbance is only one of many factors related to neuro-
logical function and ASD symptoms. Second, fecal metabo-
lism may reflect the final results of the interactions of diet, 
microbiota, and intestinal function; however, the metabolic 
activity of each intestinal segment and the absorption and 
utilization of metabolites remain unclear, and it was difficult 
to distinguish whether the metabolites are derived from the 
host or the gut microbiota. Thus, the simultaneous analysis 
of fecal, intestinal contents, blood, microbiota, and other 
biological samples may lead to a deeper understanding of 
metabolomics networks. Third, our participants were pre-
school children from an island of China with a comparably 
biological backgrounds; therefore, these findings may not be 
generalizable to all ASD patients in different regions, races, 
and ages. Finally, ASD is a group of complex neurodevel-
opmental disorders, and studies involving different ASD 
subtypes and other related diseases are needed to evaluate 
the disease specificity of the metabolomic disturbances (age, 
sex, with our without food selectivity, developmental delay, 
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etc.). Some metabolic disturbances may be nonspecific for 
various neurodevelopmental diseases and have an extensive 
impact on brain function and neurodevelopment.

Conclusions

Children with ASD exhibit gut-metabolism perturbations 
that mainly involve amino acid and vitamin metabolism. 
These perturbations are related to ASD symptoms and neu-
rodevelopment levels, and may be the result of the interac-
tion of multiple factors, including congenital metabolism 
errors, decreased intake due to abnormal eating patterns, 
and intestinal microflora imbalance (Fig. 4). Notably, in 
the interrelated metabolism networks, vitamin metabolism 
abnormalities and decreased vitamin intake may disturb the 
amino acid metabolism, as B vitamins are essential cofac-
tors implicated in multiple biochemical reactions. The dif-
ferential metabolites may affect the brain development and 
function, and subsequently behavior via nutrition, neuro-
transmitter, immune-inflammation modulatory, and other 
pathways. Approaches such as nutritional supplementation 
and regulation of the intestinal flora may partially benefit the 
gut metabolism, nutritional status, and symptoms in ASD. 
It is essential to perform a detailed evaluation and provide 

comprehensive and individualized interventions for children 
with ASD. Our findings provided an extensive understand-
ing of the disturbances in metabolism networks in ASD.
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