Skip to main content
Log in

CGH Findings in Children with Complex and Essential Autistic Spectrum Disorder

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a strong genetic basis. We accurately assessed 209 ASD subjects, categorized in complex (47) and essential (162), and performed array comparative genomic hybridization to identify pathogenic and recurrent Copy Number Variants (CNVs). We found 117 CNVs in 75 patients, 11 classified as pathogenic. The complex ASD subjects have higher frequency of pathogenic CNVs with a diagnostic yield of 12.8%. Familiality, cognitive and verbal abilities, severity of autistic symptoms, neuroimaging and neurophysiological findings are not related to genetic data. This study identifies loci of interest for ASD and highlights the importance of a careful phenotypic characterization, as complex ASD is related to higher rate of pathogenic CNVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison, C., Auyeung, B., & Baron-Cohen, S. (2012). Toward brief “red flags” for autism screening: The short autism spectrum quotient and the short quantitative checklist for autism in toddlers in 1,000 cases and 3,000 controls. Journal of the American Acad of Child & Adolescent Psychiatry, 51(2), 202-212.e7.

    Article  Google Scholar 

  • Al-Mamari, W., Al-Saegh, A., Al-Kindy, A., Bruwer, Z., Al-Murshedi, F., & Al-Thihli, K. (2015). Diagnostic yield of chromosomal microarray analysis in a cohort of patients with autism spectrum disorders from a highly consanguineous population. Journal of Autism and Developmental Disorders, 45(8), 2323–2328.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Publishing.

    Book  Google Scholar 

  • Beaudet, A. L. (2013). The utility of chromosomal microarray analysis in developmental and behavioral pediatrics. Child Development, 84(1), 121–132.

    Article  PubMed  Google Scholar 

  • Bremer, A., Giacobini, M., Eriksson, M., Gustavsson, P., Nordin, V., Fernell, E., et al. (2011). Copy number variation characteristics in subpopulations of patients with autism spectrum disorders. American Journal of Medical Genetics Neuropsychiatric Genetics, 156, 115–124.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York, NY: Routledge Academic.

    Google Scholar 

  • Dabell, M. P., Rosenfeld, J. A., Bader, P., Escobar, L. F., El-Khechen, D., Vallee, S. E., et al. (2013). Investigation of NRXN1 deletions: Clinical and molecular characterization. American Journal of Medical Genetics Part A, 161A, 717–731.

    Article  PubMed  Google Scholar 

  • Devlin, B., & Scherer, S. W. (2012). Genetic architetcture in autism spectrum disorder. Current Opinion in Genetics & Development, 22, 229–237.

    Article  Google Scholar 

  • Duong, L., Klitten, L. L., Møller, R. S., Ingason, A., Jakobsen, K. D., Skjødt, C., et al. (2012). Mutations in NRXN1 in a family multiply affected with brain disorders: NRXN1 mutations and brain disorders. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 159, 354–358.

    Article  Google Scholar 

  • Eapen, V., Crnčec, R., & Walter, A. (2013). Exploring links between genotypes, phenotypes, and clinical predictors of response to early intensive behavioral intervention in autism spectrum disorder. Frontiers in Human Neuroscience, 11(7), 567.

    Google Scholar 

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Girirajan, S., Rosenfeld, J. A., Cooper, G. M., Antonacci, F., Siswara, P., Itsara, A., et al. (2010). A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nature Genetics, 42, 203–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • IBM Corp. (2011). Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.

    Google Scholar 

  • Ingram, D. G., Takahashi, T. N., & Miles, J. H. (2008). Defining autism subgroups: A taxometric solution. Journal of Autism and Developmental Disorders, 38(5), 950–960.

    Article  PubMed  Google Scholar 

  • Jacquemont, M. L., Sanlaville, D., Redon, R., Raoul, O., Cormier-Daire, V., Lyonnet, S., et al. (2006). Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. Journal of Medical Genetics, 43, 843–849.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews: Neurology, 10(2), 74–81.

    PubMed  Google Scholar 

  • Kearney, H. M., Thorland, E. C., Brown, K. K., Quintero-Rivera, F., & South, S. T. (2011). Working Group of the American College of medical genetics laboratory quality assurance committee. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genetics in Medicine, 13, 680–685.

    Article  PubMed  Google Scholar 

  • Levy, D., Ronemus, M., Yamrom, B., Lee, Y. H., Leotta, A., Kendall, J., et al. (2011). Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 70, 886–897.

    Article  PubMed  Google Scholar 

  • Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York, NY: Oxford University Press.

    Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.

    Article  PubMed  Google Scholar 

  • Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. L. (2012). Autism diagnostic observation schedule (ADOS-2) (2nd ed.). Torrance, CA: Western Psychological Services.

    Google Scholar 

  • Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possibile pervasive develpmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.

    Article  PubMed  Google Scholar 

  • Lovrečić, L., Rajar, P., Volk, M., Bertok, S., Gnidovec Stražišar, B., Osredkar, D., et al. (2018). Diagnostic efficacy and new variants in isolated and complex autism spectrum disorder using molecular karyotyping. Journal of Applied Genetics, 59, 179–185.

    Article  PubMed  Google Scholar 

  • Maenner, M. J., Shaw, K. A., Baio, J., et al. (2020). Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summary, 69, 1–12.

    Article  Google Scholar 

  • Miles, J. H., & Hillman, R. E. (2000). Value of a clinical morphology examination in autism. American Journal of Medical Genetics, 91(4), 245–253.

    Article  PubMed  Google Scholar 

  • Miles, J. H., Takahashi, T. N., Bagby, S., Sahota, P. K., Vaslow, D. F., Wang, C. H., et al. (2005). Essential versus complex autism: Definition of fundamental prognostic subtypes. American Journal of Medical Genetics, 135(2), 171–180.

    Article  PubMed  Google Scholar 

  • Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P., et al. (2010). Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. The American Journal of Human Genetics, 86, 749–764.

    Article  PubMed  Google Scholar 

  • Napoli, E., Russo, S., Casula, L., Alesi, V., Amendola, F. A., Angioni, A., et al. (2018). Array-CGH analysis in a cohort of phenotypically well-characterized individuals with “essential” autism spectrum disorders. Autism spectrum disorders. Journal of Autism and Developmental Disorders, 48, 442–449.

    Article  PubMed  Google Scholar 

  • O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246–250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozonoff, S., Young, G. S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., et al. (2011). Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics, 128, e488-495.

    Article  PubMed  PubMed Central  Google Scholar 

  • Persico, A. M., & Napolioni, V. (2013). Autism genetics. Behavioural Brain Research, 251, 95–112.

    Article  PubMed  Google Scholar 

  • Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., et al. (2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. The American Journal of Human Genetics, 94, 677–694.

    Article  PubMed  Google Scholar 

  • Rizzo, A., Alfei, E., Zibordi, F., Saletti, V., Zorzi, G., Freri, E., et al. (2018). The non-coding RNA AK127244 in 2p16.3 locus: A new susceptibility region for neuropsychiatric disorders. The American Journal of Human Genetics Part B, 177, 557.

    Article  Google Scholar 

  • Robinson, E. B., Samocha, K. E., Kosmicki, J. A., McGrath, L., Neale, B. M., Perlis, R. H., & Daly, M. J. (2014). Autism spectrum disorder severity reflects the average contribution of de novo and familial influences. Proceedings of the National Academy of Sciences, USA, 111, 15161–15165.

    Article  Google Scholar 

  • Ronald, A., & Hoekstra, R. (2014). Progress in understanding the causes of autism spectrum disorders and autistic traits: Twin studies from 1977 to the present day. Behavior Genetics of Psychopathology, 2, 33–65.

    Article  Google Scholar 

  • Ronemus, M., Iossifov, I., Levy, D., & Wigler, M. (2014). The role of de novo mutations in the genetics of autism spectrum disorders. Nature Reviews Genetics, 15, 133–141.

    Article  PubMed  Google Scholar 

  • Rosenberg, R. E., Law, J. K., Yenokyan, G., McGready, J., Kaufmann, W. E., & Law, P. A. (2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics & Adolescent Medicine, 163, 907–914.

    Article  Google Scholar 

  • Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70, 863–885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237–241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer, G. B., Mendelsohn, N. J., Practice, P., & Committee, G. (2013). Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013guideline revisions. Genetics in Medicine, 15(5), 399–407.

    Article  PubMed  Google Scholar 

  • Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., & Wigler, M. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445–449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava, S., & Sahin, M. (2017). Autism spectrum disorder and epileptic encephalopathy: Common causes, many questions. Journal of Neurodevelopmental Disorders, 9, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stankiewicz, P., & Lupski, J. R. (2012). Structural variation in the human genome and its role in disease. Annual Review of Medicine, 61, 437–455.

    Article  Google Scholar 

  • Toriello, H. V. (2012). Approach to the genetic evaluation of the child with autism. Pediatric Clinics of North America, 59, 113–128.

    Article  PubMed  Google Scholar 

  • Vicari, S., Napoli, E., Cordeddu, V., Menghini, D., Alesi, V., Loddo, S., et al. (2019). Copy number variants in autism spectrum disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 92, 421–427.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mariani Foundation for its support to the assistance and research taking place in our Unit related to complex neuro- developmental disabilities. A special thanks to Flavia Faccio, PsyD, for her precious help in revising the English writing of the final draft.

Author information

Authors and Affiliations

Authors

Contributions

AS study design and manuscript writing, care of the patients. ES manuscript writing and revision for intellectual content, care of the patients. DS, SV, AE, PC manuscript revision for intellectual content, care of the patients. BS, TM manuscript revision for intellectual content, assessment and interpretation of neuropsychological data, statistical data analysis. SFL, RA manuscript revision for intellectual content, assessment and interpretation of genetic findings. RD study design and manuscript revision for intellectual content.

Corresponding author

Correspondence to Silvia Esposito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Research Ethics Committee of Fondazione IRCCS Istituto Neurologico Carlo Besta.

Informed Consent

Written informed consent to the research and to publication of the results was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annunziata, S., Bulgheroni, S., D’Arrigo, S. et al. CGH Findings in Children with Complex and Essential Autistic Spectrum Disorder. J Autism Dev Disord 53, 615–623 (2023). https://doi.org/10.1007/s10803-020-04833-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-020-04833-5

Keywords

Navigation