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Abstract
The Möbius function of the subgroup lattice of a finite group has been introduced by
Hall and applied to investigate several questions. In this paper, we consider theMöbius
functiondefinedon anorder ideal related to the lattice of the subgroups of an irreducible
subgroup G of the general linear group GL(n, q) acting on the n-dimensional vector
space V = F

n
q , where Fq is the finite field with q elements. We find a relation between

this function and the Euler characteristic of two simplicial complexes �1 and �2, the
former raising from the lattice of the subspaces of V , the latter from the subgroup
lattice of G.
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1 Introduction

In this paper, motivated by recent and less recent results about the Möbius function
μ for the subgroup lattice L(G) of a finite group G, we give a result which relates
the Möbius function for a subgroup G of GL(n, q) to two simplicial complexes: one
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defined from the lattice of the subspaces fixed by a reducible subgroup H ≤ G and
the second from the lattice L(G) of the subgroups of G.

We will introduce in the Preliminaries all the definitions and details useful for
reading the paper.

In his PhD thesis [8], Shareshian considers the problem of computing μ(1, G) for
several finite classical groups G; the idea is to approximate μ(1, G) through a good
function fG,n,p(u, 1) , such that:

μ(1, G(n, pu)) = fG,n,p(u, 1) +
∑

K∈C9
μ(1, K ) . (1)

Here, G = G(n, pu) denotes a family of finite classical groups with the same defining
classical form, which act in a natural way on the vector space V of finite dimension n
over the finite field Fq of order q = pu . If C1, . . . , C8, C9 are the Aschbacher classes
of maximal subgroups of a finite classical group (see [4]), C9 is the class of almost-
simple groups not belonging to the first 8 classes of “geometric type” and the function
fG,n,p(u, 1) provides an estimate of μ(1, G) with respect to the contributions given
by the subgroups of G which belong to the classes Ci , for i ∈ {1, . . . , 8}.

Actually, Shareshian’s approach focuses on the first class C1(G), that is, the class
of reducible subgroups of G.

In particular, the reducible subgroups of G contribute to fG,n,p(u, 1) through the
computation of the Möbius function of

Î1(G) := {K ≤ G | K ≤ M for some M ∈ C1(G)} ∪ {G} ,

which is obtained by adjoining the maximum G to the order ideal

I1(G) := {K ≤ G | K ≤ M for some M ∈ C1(G)},

that is,
μÎ1(G)(1, G) = −

∑

K∈I1(G)

μ(1, K )

and

μ(1, G) = μÎ1(G)(1, G) −
∑

K<G
K /∈I1(G)

μ(1, K ) . (2)

In this paper, we will consider irreducible subgroups G of the general linear group
GL(n, q), that is, groups of linear automorphisms of a vector space V of dimension
n over the finite field Fq with q elements, which fix no non-trivial subspace of V .
In this hypothesis, we will take a reducible subgroup H of G (that is, H fixes some
proper subspace of V ) and we will work on the analogue of μÎ1(G)(1, G), namely
μÎ(G,H)(H , G), so that
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μ(H , G) = μÎ(G,H)(H , G) −
∑

K /∈I(G,H)
H≤K<G

μ(H , K ) (3)

(see Sects. 2 and 3 for all precise definitions).
The subject of this paper is somehow motivated by the following conjecture:

Conjecture 1.1 (Mann, [6]) Let G be a PFG group and μ the Möbius function on the
lattice of open subgroups of G. Then, |μ(H , G)| is bounded by a polynomial function
in the index |G : H | and the number of subgroups of G of index m with μ(H , G) �= 0
grows at most polynomially in m.

Indeed, although the problem is still open in its general setting, it was reduced
by Lucchini in [5] to the study of similar growth conditions for finite almost-simple
groups.

The following theorem is the main result of the present paper:

Theorem 4.5 Consider a vector space V of finite dimension over Fq . Let G be an
irreducible subgroup of GL(V ) and H ≤ G. Then,

− μÎ(G,H)(H , G) =
∑

E∈� ′(G,H)

(−1)|E | =
∑

X∈�(G,H)

(−1)|X | = −χ̃ (�1) = −χ̃ (�2). (4)

Î(G, H), � ′(G, H), �(G, H), �i , and χ̃ (�i ) (for i = 1, 2) are defined in Sect. 3,
also for irreducible subgroups H . This will allow us to avoid the restriction to only
reducible subgroups H of G in the statement of the Theorem.

In the final section,wewill useTheorem4.5 to dealwithμ(H , G) in someparticular
case. In [1], Theorem 4.5 is used to attack Conjecture 1.1 for some class of subgroups
H of linear and projective groups.

We thank Andrea Lucchini and Johannes Siemons for many useful discussions.

2 Preliminaries

In this paper, all the groups and sets are finite.
For main results about posets and lattices, we refer to [9]. Here, we just recall some

basic fact, useful for reading the paper.

Definition 2.1 Let P be a finite poset. TheMöbius function associated with P is the
map μP : P × P → Z satisfying

μP (x, y) = 0 unless x ≤ y,

and defined recursively for x ≤ y by

μP (x, x) = 1 and
∑

x≤t≤y

μP (x, t) = 0 if x < y . (5)
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Notation If P is the subgroup lattice L(G) of G, we will write μ(H , K ) instead of
μL(G)(H , K ).

Definition 2.2 An (abstract) simplicial complex � on a vertex set T is a collection �

of subsets of T satisfying the two following conditions:

• if t ∈ T , then {t} ∈ �;
• if F ∈ � and G ⊆ F , then G ∈ �.

An element F ∈ � is called a face of �, and the dimension of F is defined to be
|F | − 1. In particular, the empty set ∅ is a face of � (provided � �= ∅) of dimension
−1.

Definition 2.3 The Euler characteristic χ(�) of the simplicial complex � is so
defined:

χ(�) :=
∑

i≥0

(−1)iFi = F0 − F1 + F2 − F3 + . . .

where Fi denotes the number of the i-faces that is of the faces of dimension i , in �.

We recall here the definition of an order ideal:

Definition 2.4 Let (P,≤) be a poset. An order ideal of P is a subset I ⊆ P such that

∀ x ∈ I , ∀ t ∈ P t ≤ x ⇒ t ∈ I . (6)

In particular, if A is a subset of P , then the set

P≤A := {s ∈ P | s ≤ a for some a ∈ A} ⊆ P

is the order ideal of P generated by A.

Observe that a simplicial complex on a set of vertices T is just an order ideal of the
Boolean algebra BT that contains all one element subsets of T .

Definition 2.5 Let � be a simplicial complex, and χ(�) be the Euler characteristic
of �. The reduced Euler characteristic χ̃(�) of � is defined by χ̃ (∅) = 0, and
χ̃(�) = χ(�) − 1 if � �= ∅. See also Equation (3.22) in [9].

It is possible to build a simplicial complex from a poset P in the following way:
The order complex �(P) ofP is defined as the simplicial complex whose vertices

are the elements of P and whose k-dimensional faces are the chains a0 ≺ a1 ≺ · · · ≺
ak of length k of distinct elements a0, . . . , ak ∈ P .

Now, denote by P̂ the finite poset obtained from P by adjoining a least element 0̂
and a greatest element 1̂. The Möbius function μP̂ (0̂, 1̂) is related to χ̃(�(P)) by a
well-known result by Hall in [3] about the computation of μP̂ (0̂, 1̂) by means of the
chains of even and odd length between 0̂ and 1̂.

Proposition 2.6 (see [9], Proposition 3.8.6) Let P be a finite poset. Then,

μP̂ (0̂, 1̂) = χ̃ (�(P)).
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3 The ideal I(G,H) and the complexes 1i in Theorem 4.5

In this section, and in the rest of the paper, G is an irreducible subgroup of the general
linear group GL(n, q) over the vector space V = F

n
q of finite dimension n over the

finite field Fq with q elements. We consider the natural action of G on the set of
subspaces of V .

We define the order ideal I(G, H) and the simplicial complexes �i (for i = 1, 2)
that we consider in Theorem 4.5. In Remark 2, we will explicitly observe that the two
complexes �i are not the order simplicial complex rising from I(G, H).

Given a subgroup G of GL(n, q) and a subgroup H of G, put

L(G)≥H := {K ≤ G | H ≤ K }

and

C(G, H) := { stabG(W ) | 0 < W < V , H ⊆ stabG(W ) }.

Definition 3.1 The reducible subgroup ideal inL(G)≥H is the order ideal ofL(G)≥H

generated by C(G, H) . Namely,

I(G, H) = {K ≤ G | H ≤ K ≤ M for some M ∈ C(G, H)} .

Remark 1 If H is reducible, that is, H fixes some non-trivial subspace W of V , then
H ∈ I(G, H). Otherwise, if H is irreducible, H /∈ I(G, H) and I(G, H) is empty.
The subspaces fixed by H are said to be H -invariant.

Definition 3.2 If H is reducible, we set

Î(G, H) := I(G, H) ∪ {G}

by adjoining the maximum G to I(G, H), which has minimum H . Otherwise, if
H is irreducible, we set Î(G, H) := {H , G} by adjoining the minimum H and the
maximum G to the empty poset ∅.
Remark 2 Here, we just note that the poset I(G, H) has already a minimum if H is
reducible, so that μÎ(G,H)(H , G) is not, in general, the reduced Euler characteristic
of the order complex �(I(G, H)) of I(G, H).

To define the simplicial complexes �i of Theorem 4.5, we begin with fixing some
more notation. We denote by S(V , H) the lattice of H -invariant subspaces of V and
define

S(V , H)∗ := S(V , H) \ {0, V }.
Moreover, given an irreducible group G ≤ GL(V ), and H ≤ G, we will consider the
following three sets:

(a) �(G, H) := {X ⊆ C(G, H) | ⋂
M∈X M �= H } ;

(b) �(G, H)� := {Y ⊆ C(G, H) | ⋂
M∈Y M = H } ;
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(c) � ′(G, H) := {E ⊆ S(V , H)∗ | ⋂
W∈E stabG(W ) �= H}.

Observe that ∅ ∈ �(G, H) and ∅ ∈ � ′(G, H), but ∅ /∈ �(G, H)� .

Remark 3 If H is an irreducible subgroup of G, then S(V , H)∗ = ∅ and � ′(G, H) =
{∅} = �(G, H). Since for irreducible H we have that Î(G, H) = {H , G}, then
Theorem 4.5 is trivially verified in this case.

Definition 3.3 The simplicial complexes �i of Theorem 4.5 are so defined:
�1:

• The set of vertices T1 is given by the subspaces W ∈ S(V , H)∗ for which H �=
stabG(W );

• the set of faces of �1 is given by � ′(G, H).

�2:

• The set of vertices T2 is given by the subgroups M ∈ C(G, H) such that H �= M ;
• the set of faces of �2 is given by �(G, H).

We explicitly observe what happens in the special case when, for some proper non-
trivial subspace W of V , the subgroup H = stabG(W ) is maximal with respect to the
property of being a stabilizer of a proper non-trivial subspace of V in G. In this case,
we note that, by definition, T1 = T2 = ∅ and the set of faces of �1 and �2 is {∅}.
Then, Theorem 4.5 is trivially verified.

4 Computing �
̂I(G,H)(H,G)

In order to prove Theorem 4.5, we need Proposition 4.2 that gives a link between
�(G, H) and � ′(G, H) and also shows that the reduced Euler characteristics of the
complexes �i coincide. The proof of Proposition 4.2 follows at once from Lemma
4.1.

Lemma 4.1 Let T be a subgroup of a finite group L acting on a finite set X, and let
X ′ ⊆ X be a subset such that T ≤ Lx for all x ∈ X ′. (As usual, Lx denotes the
stabilizer of x in L.) Set

• L := {Lx | x ∈ X ′} ;
• R := {E ⊆ L | ⋂

K∈E K �= T } ;
• S := {Q ⊆ X ′ | ⋂

x∈Q Lx �= T } .

Then, ∑

E∈R
(−1)|E | =

∑

Q∈S
(−1)|Q|.

Proof If Q ∈ S and E ∈ R, set

LQ = {Lx | x ∈ Q} and SE = {Q ∈ S | E = LQ}.
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It is immediate to realize that
S =

⊔

E∈R
SE

is the disjoint union of all the SE . So, it suffices to show that for each E ∈ R the
following identity is verified:

(−1)|E | =
∑

Q∈SE

(−1)|Q| . (7)

For E = ∅, the identity (7) is trivially true. Now, fix a non-empty E ∈ R, and for each
K ∈ E define

X ′
K = {x ∈ X ′ | Lx = K } ⊆ X ′.

Let Q ∈ SE and observe that Q can be represented as the following disjoint union:

Q =
⊔

K∈E

QK ,

where QK = {x ∈ Q | Lx = K } ⊆ X ′
K and QK �= ∅. (This property characterizes

the elements Q of SE .) Since
∑

∅�=QK ⊆X ′
K
(−1)|QK |= −1 (see Remark 4), we get

∑

Q∈SE

(−1)|Q| =
∑

Q∈SE

(−1)
∑

K∈E |QK | =
∏

K∈E

⎛

⎝
∑

∅�=QK ⊆X ′
K

(−1)|QK |
⎞

⎠

=
∏

K∈E

(−1) = (−1)|E |

and we obtain the identity (7). ��
Proposition 4.2 Let V be a vector space of finite dimension over Fq and consider a
subgroup H ≤ G ≤ GL(V ). We have:

∑

E∈� ′(G,H)

(−1)|E | =
∑

X∈�(G,H)

(−1)|X | . (8)

Equivalently, χ̃ (�1) = χ̃(�2).

Proof Consider the natural action of G on the set of subspaces of V . By Lemma 4.1,
the equality follows at once from the definitions of S(V , H)∗, C(G, H), �(G, H)

and � ′(G, H) .
With previous notation, we take T = H , L = G, R = �(G, H), S = � ′(G, H).

��
To prove Theorem 4.5, we need Proposition 4.4 which is achieved through Theorem

4.3 (Crosscut Theorem, see [9, Corollary 3.9.4]) and Remark 4.
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Remark 4 For every finite set A of cardinality n > 0, we have

∑

S⊆A

(−1)|S| =
n∑

k=0

(
n

k

)
(−1)k = (1 − 1)n = 0.

Theorem 4.3 (Crosscut Theorem) Let L be a finite lattice with minimum 0̂ and max-
imum 1̂, so that 0̂ �= 1̂. Let M be the set of all coatoms in L. Let X ⊆ L be a subset
such that M ⊆ X and 1̂ /∈ X.

Given Y := {Y ⊆ X | Y �= ∅ and
⋂

Y∈Y Y = 0̂}, the following equality holds:

μL(0̂, 1̂) =
∑

Y∈Y
(−1)|Y |.

Proposition 4.4 Let V be a vector space of finite dimension over Fq . Let H ≤ G ≤
GL(V ). Then, we have that

μÎ(G,H)(H , G) =
∑

Y∈�(G,H)�
(−1)|Y | . (9)

Proof We observe that Î(G, H) ⊆ L(G)≥H is a lattice because the join of two
subgroups K1, K2 ∈ I(G, H) is either in I(G, H) or equal to G. The meet of
K1, K2 ∈ I(G, H) is K1 ∩ K2 . Hence, Î(G, H) is a finite lattice, whose set of
coatoms is contained in C(G, H), and its maximum G /∈ C(G, H), because G is
assumed to be irreducible. Since

�(G, H)� = {Y ⊆ C(G, H) | Y �= ∅ and
⋂

M∈Y

M = H },

by Theorem 4.3 we immediately obtain (9). ��

Now, observe that the disjoint union �(G, H) ∪ �(G, H)� is the power set of
C(G, H), so that by Remark 4 we have

∑

X∈�(G,H)

(−1)|X | +
∑

Y∈�(G,H)�
(−1)|Y | = 0. (10)

If we put together Eqs. (8), (9), and (10), we get:

Theorem 4.5 Let V be a vector space of finite dimension over Fq . Let H ≤ G ≤
GL(V ). Then,

− μÎ(G,H)(H , G) =
∑

E∈� ′(G,H)

(−1)|E | . (11)
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Proof By (10), we have

∑

X∈�(G,H)

(−1)|X | = −
∑

Y∈�(G,H)�
(−1)|Y |.

Then, by Proposition 4.2 and Proposition 4.4,

∑

E∈� ′(G,H)

(−1)|E | =
∑

X∈�(G,H)

(−1)|X | = −
∑

Y∈�(G,H)�
(−1)|Y |

= −μÎ(G,H)(H , G) .

��

5 Final remark

Going back to Conjecture 1.1, we observe that the knowledge of

∑

E∈� ′(G,H)

(−1)|E |

coming from (11) can be exploited to estimate the value μ(H , G) of the Möbius
function μ of G for H ≤ G, at least in some particular case. Here, we just give an
example for a particular reducible H , taking G = GL(n, q).

Following the idea suggested by Shareshian in [8], one could write

μ(H , G) = fG,n,q(H) +
∑

K∈C9
μ(H , K ) , (12)

where fG,n,q(H) depends on the classes Ci (G, H), for i = 1, . . . , 8, in Aschbacher’s
classification. In some lucky case, H is not contained inmaximal subgroups belonging
to classes (Ci ), i �= 1, 9. This happens, for example, in the following case:

Let V � F
n
q be a vector space of finite dimension n over Fq and fix the following

basis of V :
E := {w1, . . . , wm, vm+1, . . . , vn},

so that

V = 〈w1, . . . , wm〉 ⊕ 〈vm+1, . . . , vn〉

If W = 〈w1, . . . , wm〉, H is the subgroup of GL(n, q) acting as GL(m, q) on W and
fixing all the elements vm+1, . . . , vn .

We do not give in this context the details of the proof of the following theorem,
which needs many technical arguments. In [1], all the details are given.
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Theorem 5.1 ([2]) Let G = GL(n, q), and let H ≤ G be such that

H = GL(m, q) ⊕ In−m .

Let q = p be an odd prime, and let the dimension n be prime. If n − m + 1 is prime,
then

μÎ(G)(H , G) = 0 = fG,n,p(H)

so that
μ(H , G) =

∑

K∈C9(G,H) , H⊆K

μ(H , K ) .

In general, we do not have much information about the ninth class. Just to give an
example, we considered the groups of low dimension studied by Schröder in her PhD
thesis ([7]), and we saw that in dimension n = 13 also class C9(G, H) is empty for
p > 5. In this case, μ(H , G) = 0.

All the details and data needed to prove Theorem 5.1 are contained in [2] and are
available if requested.
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