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Abstract
We continue the study of intersection bodies of polytopes, focusing on the behavior
of I P under translations of P . We introduce an affine hyperplane arrangement and
show that the polynomials describing the boundary of I (P + t) can be extended to
polynomials in variables t ∈ R

d within each region of the arrangement. In dimension
2, we give a full characterization of those polygons such that their intersection body
is convex. We give a partial characterization for general dimensions.

Keywords Intersection bodies · Polytopes · Convexity · Hyperplane arrangements ·
Parametric volume computation
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1 Introduction

In the field of convex geometry, intersection bodies have been widely studied from
an analytical viewpoint, and mainly in the context of volume inequalities. Origi-
nally introduced by Lutwak [18], they have played a significant role in solving the
Busemann–Petty problem, which asks to compare the volume of two convex bodies
based on the volumes of their linear sections [11–13, 16, 23]. The goal of this article
is to investigate the behavior of intersection bodies of polytopes under translations,
and to determine under which translations the intersection body is convex.
Unlike its more famous counterparts, the projection body, the intersection body I K

of a star body K is not invariant under affine translation, and it may be convex or
non-convex. Convexity is certified by Busemann’s theorem [7], which states that I K
is convex if K is a convex body centered at the origin (i.e., K is centrally symmetric,
where the center of symmetry is the origin), and this statement has been generalized
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to L p-intersection bodies [3]. On the other hand, given a convex body K ⊆ R
d , there

always exists some t ∈ R
d such that I (K + t) is not convex [10, Thm. 8.1.8]. For

more negative results, see [8].
The occurrence of non-convex intersection bodies has motivated considerations of

various measures for capturing the magnitude of their non-convexity, leading to the
study of p-convexity of intersection bodies both over the complex numbers and over the
reals [15, 17]. Another direction of research concerns an adaptation of the construction
of intersection bodies in order to get convexity, which resolves in convex intersection
bodies [21, 22]. A different relative of intersection bodies is the cross section body
[19, 20]; however, this star-shaped set turned out to be non-convex as well, in the
general case [4]. Summarizing, many of the positive results toward convexity in all
theseworks concern intersection bodies of centrally symmetric star bodies. In contrast,
we focus on affine translates, and consider objects which are not necessarily centrally
symmetric.
In our previous work [2], we exhibit rich semialgebraic structures of intersection

bodies of polytopes. However, in general, the intersection body I P of a polytope P is
not a basic semialgebraic set, and there exists a central hyperplane arrangement which
describes the regions in which the topological boundary of I P is defined by a fixed
polynomial. Taking advantage of these combinatorial and semialgebraic structures
opens up new possibilities to study the question of convexity in the present work. In
particular, exploiting this semialgebraicity, we are able to characterize convexity by
using elementary geometric arguments.
In this article, we introduce an affine hyperplane arrangement associated to a fixed

polytope P . We prove that for translation vectors t ∈ R
d within a region of this

arrangement, the polynomials defining the boundary of I (P + t) can be extended to
polynomials in t1, . . . , td (Theorem3.5). In dimension 2,wegive a full characterization
of those polygons with a convex intersection body. We give a partial characterization
for general dimension.

Results Let P be a full-dimensional polytope in R
d .

(i) If d = 2 then I P is convex if and only if P = −P.
(ii) If P ⊂ R

d is a cuboid, then I P is convex if and only if P = −P.

A full classification of the 2-dimensional case is given in Theorem 4.4, and the remain-
ing statements can be found in Proposition 5.4 and Remark 5.5. The above results
may suggest that intersection bodies of polytopes are either non-convex or polyhe-
dral. However, an example of a strictly convex intersection body is given in Example
5.6.

1.1 Overview

The article is structured as follows. In Sect. 2,we review themain concepts and notation
from [2]. In Sect. 3, we introduce an affine hyperplane arrangement and describe how it
governs the behavior of I P under translation of P .We then turn to the characterization
of convexity, where Sect. 4 concerns the 2-dimensional case, and Sect. 5 the case of
general dimensions.
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2 Preliminaries

We will rely on methods and results which were developed in [2]. In this section, we
review the most important concepts and results we are going to make use of.
Let P ⊆ R

d be a convex polytope. The intersection body I P of P is the star-shaped
set

I P =
{

x ∈ R
d

∣∣∣ ρI P (x) ≥ 1
}

,

where the radial function ρI P : Rd → R of I P is

ρI P (x) = 1

‖x‖ vold−1(P ∩ x⊥).

Here, vold−1 denotes the (d − 1)-dimensional Euclidean volume, and x⊥ ⊆ R
d

denotes the linear hyperplane which is orthogonal to x ∈ R
d , namely the set x⊥ =

{y ∈ R
d | 〈x, y〉 = 0}. To obtain meaningful results, wemay thus assume that P ⊆ R

d

is a d-dimensional polytope throughout this article. The topological boundary of the
intersection body I P is defined by the equation ∂ I P = {x ∈ R

d | ρI P (x) = 1}. Since
the radial function satisfies ρI P (λx) = 1

λ
ρI P (x) for every λ > 0, it is completely

determined by its restriction to the unit sphere.
The intersection body I P of a polytope is governed by the central hyperplane

arrangement

H(P) =
⋃

v �=0 is a
vertex of P

v⊥.

We denote the set of vertices of P by vert(P), and the origin is denoted by 0 ∈ R
d .

An open chamber C ofH(P) is a connected component of Rd \H(P). Given such a
chamber C , all hyperplanes x⊥ for x ∈ C intersect P in the interiors of a fixed set of
edges. The radial function restricted to such a chamber is a quotient of polynomials

ρI P |C = pC

‖x‖2qC
, (1)

where pC is divisible by ‖x‖2. Therefore, the topological boundary ∂ I P ∩ C is the
zero-set of the (irreducible) polynomial pC

‖x‖2 − qC . We repeat a key argument in the

proof of (1). Let x ∈ C and Q = P ∩x⊥. The value ρI P (x) is by definition the volume
of Q. This computation is done by considering a triangulation T of the boundary of
Q. We extend this to a covering of conv(Q, 0) by considering the set conv(�, 0) for
every simplex � ∈ T such that 0 /∈ �. Note that if 0 ∈ P , then this induces a central
triangulation of Q. Denoting v1, . . . , vd the vertices of a simplex � ∈ T , the volume
of conv(�, 0) = conv(v1, . . . , vd , 0) is, up to a constant scaling factor, given by the
determinant of the matrix
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M�(x) =

⎡
⎢⎢⎢⎢⎢⎣

〈bi1 ,x〉ai1−〈ai1 ,x〉bi1〈bi1−ai1 ,x〉
...

〈bid−1 ,x〉aid−1−〈aid−1 ,x〉bid−1
〈bid−1−aid−1 ,x〉

x

⎤
⎥⎥⎥⎥⎥⎦

,

where the vertices vi arise as intersection of x⊥ with edges of P , i.e., vi =
conv(ai , bi ) ∩ x⊥ for ai , bi ∈ vert(P). Assigning sgn(�) ∈ {−1, 1} to each simplex,
this gives

ρI P (x) = vold−1(Q) = 1

‖x‖2(d − 1)!
∑
�∈T

sgn(�) det(M�(x)).

3 Translations and affine hyperplane arrangements

Let P ⊆ R
d be a polytope. In this section, we consider how the intersection body

of P + t transforms under variation of t ∈ R
d . Recall from Sect. 2 that the combi-

natorial structure of the boundary of I (P + t) is described by the central hyperplane
arrangement H(P + t). We thus begin by studying the behavior of this hyperplane
arrangement under translation of P . For this, we introduce a new affine hyperplane
arrangementL (P), which captures the essence ofH(P + t) under variation of t . We
show that within a region R of L (P), the polynomials describing the boundary of
I (P + t), for t ∈ R, can be extended to polynomials in the variables t1, . . . , td .
Let P ⊆ R

d be a polytope and let vert(P) be the set of its vertices. Denote by
Hv = v⊥ ⊆ R

d the hyperplane through the origin that is orthogonal to a vertex
v ∈ vert(P).As described in the previous section, the collectionof all suchhyperplanes
forms a central hyperplane arrangement H(P) in R

d . For each such hyperplane, we
define its positive and negative side as

H+
v =

{
x ∈ R

d | 〈x, v〉 > 0
}
and H−

v =
{

x ∈ R
d | 〈x, v〉 < 0

}
.

We now choose a translation vector t ∈ R
d and consider the vertices{

v + t
∣∣∣ v ∈ vert(P)

}
of the translated polytope P + t . The hyperplane arrangement

H(P + t) is given by the hyperplanes (v + t)⊥, where v ranges over the vertices of
P . The hyperplane Hv+t can be obtained from Hv by a rotation rv,t : R

d → R
d

such that rv,t

(
v

||v||
)

= v+t
||v+t || , and thus rv,t (Hv) = Hv+t , rv,t (H+

v ) = H+
v+t and

rv,t (H−
v ) = H−

v+t .
We label each maximal chamber C of H(P + t) with a sign vector s(C) ∈
{+,−}vert(P+t) indexed by the vertices w = v + t of P + t , where

s(C)w = + if C ⊆ H+
w ,

s(C)w = − if C ⊆ H−
w .
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Fig. 1 The hyperplane arrangements of P + t from Example 3.1

The set {s(C) | C maximal chamber of H(P + t)} describes the chirotope or signed
cocircuits of the underlying oriented matroid of the hyperplane arrangement [14,
Chapter 6.2.3].

Example 3.1 Let P = conv (v1, v2, v3) be the triangle with vertices

v1 =
(
0
1

)
, v2 =

(−1
−1

)
, v3 =

(
1

−1

)
.

Figure1 shows the hyperplane arrangements H(P + t) for t0 = 0, t1 = (0, 2), and
t2 = (0,−2). Note that the underlying oriented matroids of H(P + t) for t = t1 and
t = t2 are the same. We continue with this in Example 3.3.

We begin by showing that the signed cocircuit s(C) of a chamberC fully determines
the set of edges of P which are intersected by x⊥ for any x ∈ C .

Lemma 3.2 Let P ⊆ R
d be a polytope and let t ∈ R

d . Let C be a maximal open
chamber of H(P), and Ct be a maximal open chamber of H(P + t) such that s(C) =
s(Ct ), i.e., their signed cocircuits agree. Given x ∈ C, xt ∈ Ct consider

E = {e ⊆ P | e is an edge of P, x⊥ ∩ e �= ∅},
Et = {et ⊆ P + t | et is an edge of P + t, x⊥

t ∩ et �= ∅}.

Then, Et = {e + t | e ∈ E}.
Proof Let e = conv (v1, v2) ∈ E be an edge of P . Since x⊥ ∩ e �= ∅, we have that
v1, v2 lie on different sides of x⊥. Equivalently, we have s(C)v1 = −s(C)v2 , and
without loss of generality s(C)v1 = +. Thus, x ∈ H+

v1
∩ H−

v2
. Since H(P + t) is

obtained from H(P) by rotating the hyperplanes individually, and s(C) = s(Ct ), it
follows that xt ∈ H+

v1+t ∩ H−
v2+t . Since e + t is an edge of P + t if and only if e is an

edge of P , the claim follows. ��
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Fig. 2 The arrangementL (P)

of the triangle from Examples
3.1 and 3.3

We consider the affine hyperplane arrangement

L (P) = {aff(−v1, . . . ,−vd) | v1, . . . , vd are affinely independent vertices of P},

where aff(−v1, . . . ,−vd) denotes the unique affine hyperplane containing the points
−v1, . . . , −vd . An open region R ofL (P) is a connected component ofRd \L (P).
We emphasize that there are two hyperplane arrangements in R

d which we consider
simultaneously.Wehave the central hyperplane arrangementH(P+t), which depends
on the choice of t , and subdivides Rd into open d-dimensional cones, which we call
chambers ofH(P + t). On the other hand, we have the affine hyperplane arrangement
L (P), which subdivides R

d into open d-dimensional components, which we call
regions of L (P). Note that L (P + t) = L (P) − t by construction.

Example 3.3 Let P be the triangle from Example 3.1. The affine line arrangement
L (P) is shown in Fig. 2. Note that the translation vectors t = t0, t1, t2 all lie in
different regions of the arrangement, despite the fact that the signed cocircuits of
H(P + t1) and H(P + t2) agree, as displayed in Fig. 1.

In the following, we show that L (P) captures the characteristics of H(P + t)
under variation of t . More precisely, we show that within a region R of L (P) the
polynomials describing the boundary of I (P + t), for t ∈ R, can be extended to
polynomials in t1, . . . , td .

Proposition 3.4 Let P ⊆ R
d be a polytope and R be an open region of L (P). Then,

the set of signed cocircuits of H(P + t) is fixed for all t ∈ R.

Proof Let v1, . . . , vd be affinely independent vertices of P . By construction ofL (P),
R does not intersect A = aff(−v1, . . . ,−vd), i.e., R is strictly contained in one
side of this hyperplane. Without loss of generality, we assume R ⊆ A+. The points
wk = vk + t , for k = 1, . . . , d, are linearly independent vertices of P + t for all
t ∈ R

d \ A. Hence, the subarrangement of H(P + t) consisting of hyperplanes
w⊥
1 , . . . , w⊥

d is a simplicial arrangement which dissects Rd into 2d open chambers,
where each chamber is the image of an orthant of Rd under the linear map f defined
by ei �→ wi for all i = 1, . . . , d. Note that the signed cocircuits are fixed for every
t ∈ A+. We now consider H(P + t) as common refinement of all subarrangements
formed by d hyperplanes with linearly independent normals. The signed cocircuit
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of a chamber of H(P + t) is uniquely determined by the signed cocircuits of all
subarrangements, and the cocircuits of the subarrangements are fixed for all t ∈ R.
Thus, the cocircuits of H(P + t) are fixed for all t ∈ R. ��

Based on the above statement, we can prove the main result of the paper. This can
be interpreted as a generalization of [9, Thm. 6], where P is the standard simplex with
centroid at the origin and the hyperplane sections are linear.

Theorem 3.5 Let R be an open region of L (P), t ∈ R, and let Ct be an open chamber
of H(P + t). Then, the radial function ρI (P+t)|Ct of I (P + t) restricted to the chamber
Ct and for t ∈ R is a polynomial in the variables t1, . . . , td of degree at most d − 1.

Proof By Proposition 3.4, for a fixed region R the set of signed cocircuits ofH(P + t)
is fixed. Lemma 3.2 then implies that given a region R, t ∈ R, and a chamber Ct

of H(P + t), for any vector x ∈ Ct the set of edges of P + t which intersect x⊥ is
fixed. Let Q = P ∩ x⊥, for a certain x ∈ Ct , and let T be a triangulation of ∂ Q,
as explained in Sect. 2. Let � ∈ T be a maximal simplex with vertices v1, . . . , vd−1
such that 0 /∈ � and, for each i = 1, . . . , d − 1, let ai , bi ∈ vert(P) such that
vi = conv(ai + t, bi + t)∩ x⊥. The volume of the d-dimensional simplex conv(�, 0)
is, up to a multiplicative factor of ±1

‖x‖(d−1)! , the determinant of the matrix

M�(x, t) =

⎡
⎢⎢⎢⎢⎣

〈b1+t,x〉(a1+t)−〈a1+t,x〉(b1+t)
〈b1−a1,x〉

.

.

.
〈bd−1+t,x〉(ad−1+t)−〈ad−1+t,x〉(bd−1+t)

〈bd−1−ad−1,x〉
x

⎤
⎥⎥⎥⎥⎦

= M�(x, 0) +

⎡
⎢⎢⎢⎢⎣

〈t,x〉(a1−b1)〈b1−a1,x〉 + t
.
.
.

〈t,x〉(ad−1−bd−1)
〈bd−1−ad−1,x〉 + t

0

⎤
⎥⎥⎥⎥⎦

.

The determinant of this matrix is a polynomial in the variables t1, . . . , td of degree at
most d − 1. Since the volume of Q can be computed as

vol(Q) = 1

‖x‖(d − 1)!
∑
�∈T

sgn(�) det(M�(x, t)),

the claim follows. ��
Remark 3.6 The result by Filliman [9, Thm. 6] uses a slightly different language, since
it deals with linear sections of any dimension of simplices. In this setting, the natural
ambient space is therefore the Grassmannian, and the volume function is shown to be
piecewise rational in the Plücker coordinates. A generalization of this statement for
any polytope is expected to hold true, and it is left for future research.

Example 3.7 Figure3 shows the continuous deformation of the intersection body
I (P + t) of the unit square P = [−1, 1]2 under translation by t ∈ R

2 within each
bounded region of the affine line arrangementL (P). The figure shows the 6 lines of
the affine line arrangement in black. For choices of translation vectors t ∈ R

2 from the
interior of a maximal region, the corresponding intersection body I (P + t) is drawn
in red at the position t in the picture. Whenever t is chosen from a point on a line of
the arrangement, then I (P + t) is drawn next to the line with a gray arrow indicating
the position of t .
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Fig. 3 The arrangement L (P) of affine lines for P = [−1, 1]2, in black, together with I (P + t) for
different choices of t , in red, as in Example 3.7

4 Convexity in dimension 2

For each fixed region R of the affine line arrangementL (P), Theorem3.5 implies that,
as we move t ∈ R continuously, the intersection body I (P + t) deforms continuously
as well. We now characterize under which circumstances the intersection body of a
polygon is convex. Note that I P cannot be convex if the origin lies outside of P or
is a vertex of P (the argument for general dimensions will be given in Remark 5.1).
We thus consider the distinct cases of when the origin lies in the interior of P , and
when the origin lies in the interior of an edge. Figure3 indicates that in the case of the
square, the intersection body of P + t is convex (up to Euclidean closure, see Remark
4.5) for precisely 5 translation vectors: the center of symmetry and the midpoints of
the four edges. In Theorem 4.4, we show that the number of such translation vectors
is always finite, and that parallelograms maximize this number.
The goal of this section is to give a characterization of polygons whose intersection

bodies are convex. In the following Propositions 4.1 and 4.2, we consider polygons
with the origin in the interior, and characterize the geometry of the boundary of I P .
More precisely, we will see that the chambers in which I P is convex correspond to
pairs of parallel edges of P , and that the polynomials defining the boundary of I P are
linear in this case.

Proposition 4.1 Let P ⊆ R
2 be a polygon. Let C be a chamber of H(P), and consider

x ∈ C. We denote by v1(x), v2(x) the points of intersection x⊥∩∂ P = {v1(x), v2(x)}.
Let conv (a1, b1) , conv (a2, b2) be edges of P such that v1(x) ∈ conv (a1, b1) and
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v2(x) ∈ conv (a2, b2). Then, the polynomial defining ∂ I P in the chamber C is linear
if and only if the segments conv (a1, b1) and conv (a2, b2) are parallel.

Proof We want to prove that {x ∈ C | ρI P |C (x) = 1} is a line segment if and only
if the two edges conv (ai , bi ) are parallel. Assume that v1(x) = λa1 + (1 − λ)b1 and
v2(x) = μa2 + (1 − μ)b2 for some λ,μ ∈ (0, 1). Since v1(x), v2(x) ∈ x⊥, we have

λ = 〈b1, x〉
〈b1 − a1, x〉 , μ = 〈b2, x〉

〈b2 − a2, x〉 .

We compute the length of conv(v1(x), v2(x)), or equivalently of conv(0, v1(x) −
v2(x)). We do this via the area of the triangle with vertices 0, v1(x) − v2(x) and x

‖x‖2 .
Hence, the radial function can be computed by the determinantal expression

ρI P |C (x) = 1

‖x‖2
∣∣∣∣det

[
v1(x) − v2(x)

x

]∣∣∣∣ .

We compute the radial function explicitly. First,

v1(x) − v2(x)

= (〈b2 − a2, x〉 (〈b1, x〉a1 − 〈a1, x〉b1) − 〈b1 − a1, x〉 (〈b2, x〉a2 − 〈a2, x〉b2))
〈b1 − a1, x〉〈b2 − a2, x〉 .

The boundary ∂ P ∩ C is given by the set of points x ∈ C such that ρI P |C (x) = 1,
i.e., the points which satisfy

1

‖x‖2 det

[〈b2 − a2, x〉 (〈b1, x〉a1 − 〈a1, x〉b1) − 〈b1 − a1, x〉 (〈b2, x〉a2 − 〈a2, x〉b2)
x

]

= 〈b1 − a1, x〉〈b2 − a2, x〉, (2)

assuming that the determinant in the left hand side is positive in C (otherwise it gets
multiplied by −1). This determinant is a cubic polynomial in x , which by [2, Prop.
5.5] is divisible by ‖x‖2. Hence, the left hand side of (2) is a homogeneous linear
polynomial in x . It divides the right hand side if and only if (b2 − a2) = κ(b1 − a1)
for some κ ∈ R, i.e., if the two edges conv (ai , bi ) are parallel. In this case, (2) is a
linear equation, and hence, the curve defined by (2) is a line; otherwise, it is a conic,
passing through the origin. ��
Proposition 4.2 Let P ⊆ R

2 be a polygon with the origin in its interior. If there exists
a line through the origin which intersects ∂ P in two non-parallel edges, then I P is
not convex.

Proof Let C be a chamber of H(P) such that x⊥ intersects two non-parallel edges
�1, �2 of P . Consider ua, ub ∈ C ∩ S1. As shown in Fig. 4, we denote

u⊥
a ∩ �1 = a = ( a1

a2

)
, u⊥

b ∩ �1 = b =
(

b1
b2

)
,
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Fig. 4 The proof of Propositions 4.2 in a picture. Left: the lines orthogonal to ua , ub, ua+b and their
intersections with the edges �1, �2 of P . Right: the points pa , pb, pa+b ∈ ∂ I P , and the point q ∈
conv (pa , pb), but q /∈ I P

u⊥
a ∩ �2 = −αa, u⊥

b ∩ �2 = −βb,

for some positive real numbers α, β > 0. Since �1 and �2 are not parallel, we have

α �= β. We can choose a, b such that ua = 1
‖a‖

( a2−a1

)
and ub = 1

‖b‖
(

b2−b1

)
. The

lengths of the line segments u⊥
a ∩ P = conv (a,−αa) and u⊥

b ∩ P = conv (b,−βb)

are

‖u⊥
a ∩ P‖ = ‖a − (−αa)‖ = (1 + α)‖a‖,

‖u⊥
b ∩ P‖ = ‖b − (−βb)‖ = (1 + β)‖b‖.

Thus, the boundary points of I P in directions ua, ub are

pa := ρI P (ua) ua = (1 + α)‖a‖ ua = (1 + α)

(
a2

−a1

)
,

pb := ρI P (ub) ub = (1 + β)‖b‖ ub = (1 + β)

(
b2

−b1

)
,

respectively. Consider the midpoint a+b
2 ∈ �1 and let ua+b be the unit vector in C

orthogonal to a+b (and thus also to a+b
2 ). Then, ua+b = 1

‖a+b‖
(

a2+b2−a1−b1

)
, u⊥

a+b∩�2 =
− αβ

α+β
(a + b) and the boundary point of I P in direction ua+b is

pa+b = ρI P (ua+b) ua+b =
(
1

2
+ αβ

α + β

)
‖a + b‖ ua+b =

(
1

2
+ αβ

α + β

) (
a2 + b2

−a1 − b1

)
.

Let q = conv (pa, pb) ∩ cone (ua+b), as in Fig. 4. We want to prove that I P ∩ C is
not convex, by showing that ‖q‖ > ‖pa+b‖. Indeed, we can compute that

q = (1 + α)(1 + β)

2 + α + β
(a2 + b2,−a1 − b1),
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and therefore

‖q‖ − ‖pa+b‖ = (1 + α)(1 + β)

2 + α + β
‖a + b‖ −

(
1

2
+ αβ

α + β

)
‖a + b‖

= (α − β)2

2(2 + α + β)(α + β)
‖a + b‖.

Since α �= β, this expression is strictly positive, and so q /∈ I P . This proves that
pa, pb ∈ I P , but the segment conv (pa, pb) is not contained in I P . Hence, I P is not
convex.

��
We are now ready to move toward a full classification of convexity of intersection
bodies of polygons for any translation. Note that if P is centrally symmetric, then
the convexity of P and the description of I P follow from the following classical
statement.

Theorem 4.3 [10, Theorem 8.1.4] Let K ⊆ R
2 be a centrally symmetric convex body

centered at the origin. Then, I K = r π
2
(2K ), where r π

2
is a counter-clockwise rotation

by π
2 .

Our goal is to classify also the cases inwhich P is not centrally symmetric and centered
at the origin. We now prove the main result of this section.

Theorem 4.4 Let P ⊆ R
2 be a polygon. Then, I P is a convex body if and only if

P = −P.

Proof As noted in Remark 5.1, I P is not convex if the origin lies in R2 \ P , or if the
origin is a vertex of P . We are left to analyze the cases in which the origin lies in the
interior of P or in the interior of an edge of P .
We first consider the case in which the origin lies in the interior of P and show that
I P is convex if and only if P = −P . If P = −P , then Theorem 4.3 implies that
I P is convex. Assume now that I P is convex, and the origin lies in the interior of P .
Then, C ∩ I P is convex for every chamber C ofH(P). In particular, by Propositions
4.2, every line u⊥, u ∈ S1, which does not intersect a vertex of P intersects ∂ P in the
interior of two parallel edges. Hence, the edges of P come in pairs of parallel edges.
We rotate u ∈ S1 continuously.Whenever u⊥ crosses a vertex of one edge, it must also
cross a vertex in the parallel edge, since otherwise this results in a pair of non-parallel
edges. This implies that for every vertex v of P , there exists a vertex w of P such that
w = −λv for some λ > 0. Since all edges are pairwise parallel, this positive scalar λ

is the same for all vertices. Therefore, we also get that v = −λw, which implies that
λ = 1. Hence, P = −P .
Consider now the case in which the origin lies in the interior of an edge of P with
normal vector e ∈ R

2. Thus, ρI P (x) = 1
2ρI (P∪−P)(x) for all x ∈ R

2 \ Re and
ρI P (e) > 1

2ρI (P∪−P)(e). Here,Re denotes the line spanned by e. Since the origin lies
in the interior of the star body P ∪−P , its radial function is continuous, which implies
that also 1

2ρI (P∪−P) is continuous. Hence, ρI P is discontinuous, and therefore, I P is
not convex. ��
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Fig. 5 Examples of positions of the origin (orange bullet) in which I P is almost convex, as described in
Remark 4.5. From left to right: a parallelogram, an acute triangle, a diamond shape, a panettone shape, and
a centrally symmetric polygon (which has no admissible positions)

Remark 4.5 The last case of the proof of Theorem 4.4 can be made more precise.
Using the notion of chordal symmetral from [10, Chapter 5.1], we deduce that

1

2
I (P ∪ −P) = P ∪ −P.

Therefore, I (P ∪ −P) is convex if and only if P ∪ −P is convex. This is the case if
and only if the origin is the midpoint of an edge and the sum of the angles adjacent to
this edge is at most π . Using elementary properties of the sums of interior and exterior
angles of polygons, it can be shown that a polygon admits at most 4 such edges, and
equality is realized exactly when P is a parallelogram. Figure5 shows a collection of
examples of polygons, together with the possible positions of the origin on such edges.
In this case, the argument from the proof of Theorem 4.4 implies that the Euclidean
closure of I P \ Re is convex. Here, Re denotes the line spanned by e.

We close this section by pointing out that many arguments made in this section do
not generalize to higher dimensions: In contrast to Propositions 4.1 and 4.2, in higher
dimensions there exist convex pieces I P ∩ C which are not linear. Furthermore, the
identification with the chordal symmetral body, as in Remark 4.5, does not hold in
general. However, these insights in the 2-dimensional case will turn out to be essential
for arguments on the general case in the following section.

5 Convexity in higher dimensions

We devote this section to discuss the convexity of intersection bodies of polytopes of
dimension d > 2.Wemake use of the results obtained in section 4 to show that, similar
to the 2-dimensional case, the intersection body of a d-dimensional cuboid is convex
if and only if the origin is its center of symmetry. Notice that this result was partially
proven in [8], when the origin lies in the interior of the polytope. Our results complete
the analysis for boundary points. Moreover, we provide computational evidence that
there exist intersection bodies of polytopes that are strictly convex.

Remark 5.1 To obtain an intersection body I P which is convex, the origin must lie in
the interior of P . If the origin lies in the interior of a facet, the argument from Theorem
4.4 applies analogously, i.e.,ρI P (x) = 1

2ρI (P∪−P)(x) for all x ∈ R
2 except for the two

normals of the facet, for which a strict inequality holds. Hence, ρI P is discontinuous,
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and therefore I P is not convex. If the origin lies on a lower-dimensional face F , there
exists a hyperplane x⊥ such that P ∩ x⊥ = F and thus the radial function of I P in
direction x has value 0. The set of such x is a cone V = C ∪ −C , where C ⊂ R

d is
a convex pointed cone. Then, given x ∈ C , there exist x1, x2 ∈ R

d \ V such that x
is a convex combination of x1 and x2. Since ρI P (x) = 0, the segment with extrema
ρI P (x1) x1 and ρI P (x2) x2 is not entirely contained in the intersection body I P , but
its extrema are.

The next result connects the intersection body of a convex body to the intersection
body of a prism over the given convex body.

Proposition 5.2 Let L ⊆ R
d−1 be a convex body and K = L ×[a, b] ⊆ R

d−1 ×R ∼=
R

d be a prism over L. Then, the intersection of I K with the hyperplane H = {x ∈
R

d | xd = 0} is the (b − a)th dilate of I L, i.e.,

I K ∩ H = (b − a) I L.

Proof Let u = (̃u, 0) ∈ H and consider its orthogonal complement u⊥ ⊆ R
d , which

in this case can be interpreted as ũ⊥ × R ⊆ R
d−1 × R. Then

K ∩ u⊥ = (L × [a, b]) ∩ (̃u⊥ × R) = (L ∩ ũ⊥) × [a, b].

We can therefore compute the radial function of I K as

ρI K (u) = vold−1(K ∩ u⊥) = vold−1
(
(L ∩ ũ⊥) × [a, b]) = (b − a) · ρI L (̃u)

for u ∈ H . Equivalently, I K ∩ H = (b − a) I L . ��
It follows that if I L is non-convex, then so is I K . This behavior can be observed in
the following example.

Example 5.3 Consider the unit cube P = [−1, 1]3, which is a prism over a square.
With the translation t = (1, 1, 1), we obtain the cube P + t = [0, 2]3, and I (P + t)
is displayed in Fig. 6, from two different points of view. Proposition 5.2 implies that
I (P + t) ∩ (0, 0, 1)⊥ is the second dilation of the intersection body of the square
[0, 2]2, which is also displayed at the bottom left of Fig. 3 in red. Figure6 originally
appeared as [2, Figure3].

We can now use Propositions 5.2 to describe the convexity of intersection body of a
cuboid in any dimension.

Proposition 5.4 Let P = [a1, b1] × [a2, b2] × · · · × [ad , bd ] be a d-dimensional
cuboid. Then, I P is convex if and only if P = −P.

Proof If P = −P then I P is convex by Busemann’s Theorem [7]. Conversely, let
P �= −P . We prove that I P is not convex by induction on d. The base case of d = 2
follows from Theorem 4.4. Let now P = [a1, b1] × [a2, b2] × · · · × [ad , bd ]. By
Remark 5.1, we assume that the origin lies in the interior of P , and thus ai < 0 < bi
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Fig. 6 The intersection body of the 3-dimensional cube P = [0, 2]3 (blue) and the intersection body of the
square Q = [0, 2]2 (red)

Fig. 7 The intersection body of
the icosahedron from Example
5.6

for all i ∈ 1, . . . , d. Without loss of generality, P �= −P implies that a1 �= −b1. Let
Q = P ∩ H , where H = {x ∈ R

d | xd = 0}. Notice that P = Q × [ad , bd ]. Thus,
Q is a cuboid of dimension (d − 1) such that Q �= −Q. By induction, this implies
that I Q is not convex. Propositions 5.2 implies that I P ∩ H = (bd − ad)I Q. As a
consequence, I P ∩ H is not convex, and therefore I P is not convex. ��
Remark 5.5 We note that whenever the intersection body is strictly convex, then there
is an open ball around the origin of translation vectors such that the intersection body
is still convex. Indeed, this holds in more generality for the intersection body I K of
any star body K ⊆ R

d , with 0 in its interior, and follows directly from the continuity
of the volume function, and therefore of the radial function, with respect to t . Let
x, y ∈ R

d and p� = ρI (K+t)(�) · � for � ∈ {x, y, x + y}, so that p� ∈ ∂ I (K + t).
Denote by qx+y the point of the segment conv

(
px , py

)
which is a multiple of x + y,

namely qx+y = ρI (P+t)(x) ρI (K+t)(y)

ρI (K+t)(x)+ρI (K+t)(y)
(x + y). Then, I (K + t) is strictly convex if and

only if

ρI (P+t)(x) ρI (K+t)(y)

ρI (K+t)(x) + ρI (K+t)(y)
= ‖qx+y‖

‖x + y‖ <
‖px+y‖
‖x + y‖ = ρI (K+t)(x + y). (3)

This gives a quadratic condition in ρI (K+t), which is continuous in t . Therefore, if (3)
holds for I K , it holds also for I (K + t) with t ∈ Bε(0), for some ε > 0.
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The next example shows that strictly convex intersection bodies of polytopes as in
Propositions 5.5 do indeed exist.

Example 5.6 The intersection body of the 3-dimensional centrally symmetric icosa-
hedron P is strictly convex. Indeed, using HomotopyContinuation.jl [6] one
obtains numerical evidence that the algebraic varieties that define the boundary of I P
do not contain lines (this is reasonable, since the generic quintic and sextic surfaces in
3-dimensional space do not contain lines).Moreover, because of the central symmetry,
the intersection body is convex. Hence, it is strictly convex. This intersection body is
displayed Fig. 7 (which originally appeared in [2, Figure 1], and our computations can
be verified using the code on MathRepo [1].

To summarize, we have studied the admissible positions of the origin with respect to
a full-dimensional polytope P , such that I P is convex. For d = 2, we have shown
that the set of admissible positions is precisely the center of symmetry (if it exists).
In higher dimensions, it is sometimes infinite, as for the icosahedron, but other times
only a single point, as for a cube. We note that proving non-convexity is a much
easier task then proving convexity, as the first can be achieved by showing the non-
convexity of a small curve on the boundary, while convexity is a global condition. A
possible approach to tackle this problem in the case of polytopes might be studying
the curvature of the algebraic hypersurfaces defining the boundary of the intersection
body, as in [5].
Another interesting direction of research concerns the topology of the set of admissible
positions. We collect here some open questions.

1. If the set of admissible positions of P is finite, what is its cardinality?
2. If the set of admissible positions of P is infinite, howmany connected components

does it have? What is the dimension of these connected components?
3. If I P is convex but not strictly convex, does this imply P = −P?
4. What are the conditions on P that make I P strictly convex?
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