Vertex stabilizers of locally s-arc transitive graphs of pushing up type

John van Bon ${ }^{1}$ (10. Chris Parker ${ }^{2}$

Received: 9 May 2023 / Accepted: 3 April 2024
© The Author(s) 2024

Abstract

Suppose that Δ is a thick, locally finite and locally s-arc transitive G-graph with $s \geq 4$. For a vertex z in Δ, let G_{z} be the stabilizer of z and $G_{z}^{[1]}$ the kernel of the action of G_{z} on the neighbours of z. We say Δ is of pushing up type provided there exist a prime p and a 1-arc (x, y) such that $C_{G_{z}}\left(O_{p}\left(G_{z}^{[1]}\right)\right) \leq O_{p}\left(G_{z}^{[1]}\right)$ for $z \in\{x, y\}$ and $O_{p}\left(G_{x}^{[1]}\right) \leq O_{p}\left(G_{y}^{[1]}\right)$. We show that if Δ is of pushing up type, then $O_{p}\left(G_{x}^{[1]}\right)$ is elementary abelian and $G_{x} / G_{x}^{[1]} \cong X$ with $\operatorname{PSL}_{2}\left(p^{a}\right) \leq X \leq \mathrm{P}^{a} \mathrm{~L}_{2}\left(p^{a}\right)$.

Keywords Locally s-arc transitive graphs • Group amalgams
Mathematics Subject Classification 20B25 • 05C25 • 05E18

1 Introduction

In this article, we consider graphs Δ that are connected, undirected and without loops or multiple edges. The vertex set of Δ is denoted by $V \Delta$, and the edge set is $E \Delta$. A G-graph is a graph Δ together with a subgroup $G \leq \operatorname{Aut}(\Delta)$. An s-arc emanating from $x_{0} \in V \Delta$ is a path $\left(x_{0}, x_{1}, \ldots, x_{s}\right)$ with $x_{i-1} \neq x_{i+1}$ for $1 \leq i \leq s-1$. Denote by G_{z} the stabilizer of a vertex $z \in V \Delta$.

A G-graph Δ is

- Thick if the valency at each vertex is at least 3;
- Locally finite if for each $z \in V \Delta, G_{z}$ is a finite group;
- Locally s-arc transitive if for every vertex $z \in V \Delta, G_{z}$ is transitive on the set of s-arcs emanating from z.
\boxtimes John van Bon
jozef.vanbon@unical.it
Chris Parker
c.w.parker@bham.ac.uk

1 Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Arcavacata di Rende, Italy
2 School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

This paper is part of ongoing research aimed at determining all vertex stabilizer amalgams for thick, locally finite and locally s-arc transitive G-graphs for $s \geq 4$. Throughout this introduction, Δ represents a thick, locally finite G-graph.

It is easy to see that if Δ is a locally s-arc transitive G-graph with $s \geq 1$, then G is transitive on $E \Delta$ and thus G has at most two orbits on $V \Delta$. If $s \geq 2$, then, for $x \in V \Delta$, we also know that G_{x} acts 2-transitively on $\Delta(x)=\{v \mid\{x, v\} \in E \Delta\}$. For $\left(x_{1}, x_{2}\right)$ a 1-arc in Δ, the triple ($G_{x_{1}}, G_{x_{2}} ; G_{x_{1}} \cap G_{x_{2}}$) is called the vertex stabilizer amalgam of Δ with respect to the $1-\operatorname{arc}\left(x_{1}, x_{2}\right)$. When we study s-arc transitive G-graphs with $s \geq 1$, it is impossible to determine Δ. The best we can hope for is a description of the vertex stabilizer amalgam, and the best of all this will be described up to isomorphism of the amalgam.

For a vertex $z \in V \Delta, G_{z}$ acts on $\Delta(z)$. The kernel of this action is denoted by $G_{z}^{[1]}$, and $G_{z}^{\Delta(z)}$ is the permutation group $G_{z} / G_{z}^{[1]}$. A locally finite and locally G-graph Δ is of

- Local characteristic p, if there exists a prime p such that

$$
C_{G_{z}}\left(O_{p}\left(G_{z}^{[1]}\right)\right) \leq O_{p}\left(G_{z}^{[1]}\right), \text { for all } z \in V \Delta
$$

- Pushing up type with respect to the $1-\operatorname{arc}(x, y)$ and the prime p, if Δ is of local characteristic p and

$$
O_{p}\left(G_{x}^{[1]}\right) \leq O_{p}\left(G_{y}^{[1]}\right)
$$

Assume that (x, y) is a $1-\operatorname{arc}$ and set $G_{x, y}=G_{x} \cap G_{y}$. One consequence of the local characteristic p property is that $O_{p}\left(G_{x}^{[1]}\right)$ and $O_{p}\left(G_{y}^{[1]}\right)$ are non-trivial. In particular, this means that G_{x} and G_{y} are rather large and have potentially complicated structure. Notice that if K is a subgroup of $G_{x, y}$, and K is normalized by both G_{x} and G_{y}, then K fixes every vertex of Δ and is consequently trivial. Hence, if Δ is of pushing up type with respect to (x, y), then, as $O_{p}\left(G_{x}^{[1]}\right)$ is non-trivial, we learn that Δ is not of pushing up type with respect to (y, x). Hence, in these circumstances, G has two orbits on $V \Delta$.

The generic examples of thick, locally finite and locally s-arc transitive G-graphs Δ with $s \geq 4$ have vertex stabilizer amalgams which are weak $B N$-pairs [6]. One of the achievements in [1, Theorem 1] is the proof that, for $s \geq 6$, the generic examples are the only examples. In particular, [1, Corollary 1] remarks that $s \leq 9$ for any such G-graph Δ. In [5], examples of G-graphs which are of pushing up type with $s=5$ have been constructed via amalgams in $\operatorname{Sym}\left(p^{2 a}\right)$. Thus, the vertex stabilizer amalgam of Δ may not to be a weak $B N$-pair when $s \leq 5$. To determine the G-graphs Δ which are thick, locally finite and locally s-arc transitive with $4 \leq s \leq 5$, as in [1], we consider three distinct cases:

- Δ is not of local characteristic p.
$-\Delta$ is of local characteristic p but not of pushing up type.
$-\Delta$ is of pushing up type.
In the first case, [2, Theorem 1] shows that $s=5$ and the vertex stabilizer amalgams are either isomorphic to certain subamalgams of the vertex stabilizer amalgam of the
G-graph for $p=2$ constructed in [7], or isomorphic to the amalgam of two maximal p-local subgroups of $\operatorname{Aut}\left({ }^{3} \mathrm{D}_{4}(2)\right)$ (for $p=7$) or of $\operatorname{Aut}\left(\mathrm{J}_{2}\right)($ for $p=5)$.

We expect that the second possibility yields weak $B N$-pairs. The configurations appearing in option three are the subject of this article together with its companions $[3,4]$ which are in preparation.

Assume from now on that Δ is of pushing up type with respect to (x, y) and the prime p. For $z \in V \Delta$, set $Q_{z}=O_{p}\left(G_{z}^{[1]}\right)$ and

$$
L_{z}=\left\langle Q_{u} \mid u \in \Delta(z)\right\rangle Q_{z}
$$

The main result of this paper is as follows.
Theorem 1.1 Suppose that $s \geq 4$ and Δ is a thick, locally finite, locally s-arc transitive G-graph of pushing up type with respect to the 1-arc (x, y) and the prime p. Then p is odd and the following hold
(a) $G_{x}^{\Delta(x)} \cong X$ where $\operatorname{PSL}_{2}\left(p^{a}\right) \leq X \leq \operatorname{P\Gamma L}_{2}\left(p^{a}\right)$ and $\Delta(x)$ has size $p^{a}+1$ and can be identified with the projective line for X;
(b) $L_{x} / Q_{x} \cong \operatorname{SL}_{2}\left(p^{a}\right), O^{p}\left(L_{x}\right) \cong \operatorname{ASL}_{2}\left(p^{a}\right)^{\prime}$ and Q_{x} is an elementary abelian p-group.

In [3, 4], van Bon establishes the isomorphism types of the vertex stabilizer amalgams appearing in the conclusion of Theorem 1.1 and so it completes the determination of G-graphs of pushing up type with $s \geq 4$. This then extends [1, Lemma 7.7] which can be interpreted to say that if Δ is of pushing up type, then $s \leq 5$.

The organization of this paper is as follows. In Sect. 2, we derive general properties of vertex stabilizer amalgams for Δ of pushing up type. In Sect.3, we consider the possibility that $G_{x}^{\Delta(x)}$ is a projective linear group of degree at least 3; the main result of the section is Proposition 3.1 which asserts that $F^{*}\left(G_{x} / G_{x}^{[1]}\right) \nsubseteq \operatorname{PSL}_{n}\left(p^{a}\right)$ with $n \geq 3$. The strategy followed to obtain the conclusion of Proposition 3.1 uses the results of Sect. 2 and is similar in flavour to [2] which exploits Zsigmondy primes. This fails to eliminate the possibility that $F^{*}\left(G_{x} / G_{x}^{[1]}\right) \cong \mathrm{PSL}_{3}(2)$, however, and so here we call upon a pushing up result [10] which allows us to compare non-central chief factors of the vertex stabilizers. This eventually leads to the elimination of this last case as well. Finally, in Sect. 4, we recall that the action of $G_{x}^{\Delta(x)}$ on $\Delta(x)$ is 2-transitive, and so with the help of the classification of finite 2-transitive groups and Proposition 3.1, we see that L_{x} is a rank 1 Lie type group or is of regular type. This is precisely the situation handled in Sect. 3 of [1]. After application of these results to our case, we are left in a situation where we can follow steps 1-9 of the proof of [1, Lemma 7.7] word for word to obtain the theorem.

Throughout this paper, we assume the following hypothesis:
Main Hypothesis The G-graph Δ is thick, locally finite, locally s-arc transitive with $s \geq 4$ and, in addition, is of pushing up type with respect to the 1-arc (x, y) and prime p.

The notation used in the paper is standard in the theory of (locally) s-arc transitive G-graphs and given in Sect. 2. Our group theoretic notation follows [9].

2 Preliminaries

In this section, we prove some properties of thick, locally finite and locally s-arc transitive G-graphs. We assume the Main Hypothesis, though some results also hold under weaker assumptions. First we fix the notation used throughout the article.

Notation 2.1 Let $d(\cdot, \cdot)$ represent the standard distance function on Δ. For $u \in V \Delta$, (u, v) a 1 -arc in $\Delta, \Theta \subseteq V \Delta$ and $i \geq 1$,

$$
\begin{aligned}
\Delta^{i}(u) & =\{v \in V \Delta \mid d(u, v) \leq i\} ; \\
\Delta(u) & =\Delta^{1}(u) \backslash\{u\} ; \\
q_{u} & =|\Delta(u)|-1 ; \\
G_{u} & =\left\{g \in G \mid u^{g}=u\right\} ; \\
G_{\Theta} & =\bigcap_{\theta \in \Theta} G_{\theta} ; \\
G_{u}^{[i]} & =G_{\Delta^{i}(u)} ; \\
G_{\Theta}^{[1]} & =\bigcap_{\theta \in \Theta} G_{\theta}^{[1]} ; \\
Q_{u} & =O_{p}\left(G_{u}^{[1]}\right) ; \\
Z_{u} & =\Omega_{1}\left(Z\left(Q_{u}\right)\right) ; \\
C_{u} & =\left\langle G_{v}^{[2]} \mid v \in \Delta(u)\right\rangle Q_{u} ; \\
L_{u} & =\left\langle Q_{v} \mid v \in \Delta(u)\right\rangle Q_{u} ; \\
L_{u, v} & =G_{u, v} \cap L_{u} ;
\end{aligned}
$$

and (w, x, y, z) is a fixed 3-arc where (x, y) is an arc for which Δ is of pushing up type.

Notice that we do not know that $L_{u, v}=L_{v, u}$, and so the order of the vertices on the arc is important for the definition of $L_{u, v}$. We recall the fundamental properties of the G-graph Δ :

$$
\begin{aligned}
C_{G_{u}}\left(Q_{u}\right) & \leq Q_{u} \text { for } u \in\{x, y\} ; \text { and } \\
Q_{x} & \leq Q_{y} .
\end{aligned}
$$

An essential tool when studying such G-graphs is given by the following lemma:
Lemma 2.2 Assume that $R \leq G_{x, y}, N_{G_{x}}(R)$ is transitive on $\Delta(x)$ and $N_{G_{y}}(R)$ is transitive on $\Delta(y)$. Then $R=1$.

Proof See [9, 10.3.3].
Because Δ has pushing up type, $Q_{x} \leq Q_{y}$. In fact, $Q_{x}<Q_{y}$ as otherwise $Q_{x}=Q_{y}=1$ by Lemma 2.2, and then, Δ is not of local characteristic p. One
consequence of this observation, as mentioned in introduction, is that G has two orbits on Δ.

We present some elementary properties of the subgroups defined in Notation 2.1.
Lemma 2.3 Let $N_{x}=O^{p}\left(L_{x}\right)$, and $\widetilde{G}_{x}=G_{x} / Q_{x}$. Then
(i) $\left[G_{x}^{[1]}, L_{x}\right] \leq Q_{x}$;
(ii) $N_{x} \not \leq G_{x}^{[1]}$;
(iii) $L_{x}=N_{x} Q_{y}$ and $G_{x}=N_{x} G_{x, y}$;
(iv) either \widetilde{N}_{x} is quasisimple or an r-group, r a prime with $r \neq p$;
(v) $G_{x}^{[1]} \cap L_{x}=\Phi\left(\widetilde{L}_{x}\right)=Z\left(\widetilde{L}_{x}\right)$;
(vi) if \widetilde{N}_{x} is an r-group, then $G_{x}^{[1]} \cap L_{x}=\widetilde{N}_{x}^{\prime}=\Phi\left(\widetilde{N_{x}}\right)$, and G_{x} acts transitively on the non-trivial elements of $N_{x}^{\Delta(x)}$.

Proof The first statement follows from [1, Lemma 5.1 (a)] while the remainder of the statements can be found in [1, Lemma 5.2].

One important and frequently used consequence of Lemma 2.3 (iii) is that L_{x} operates transitively on $\Delta(x)$.

Lemma 2.4 The following hold:

(i) $G_{x, y}^{[1]}=G_{x}^{[2]}, G_{y}^{[2]}=G_{y}^{[3]}$ and $Q_{x}=O_{p}\left(G_{x}^{[2]}\right)$;
(ii) $G_{x}^{[1]} \cap G_{z}=G_{x}^{[2]}$.

In particular, $G_{x}^{[1]}$ induces a semi-regular group on $\Delta(y) \backslash\{x\},\left|G_{x}^{[1]} G_{y}^{[1]} / G_{y}^{[1]}\right|$ divides q_{y} and $\left|G_{x, y, z}\right|=\left|G_{x, y, z}^{\Delta(x)}\right|\left|G_{x}^{[2]}\right|$.

Proof (i). By Lemma 2.3 (i) and (iii), $\left[L_{x}, G_{x}^{[1]}\right] \leq Q_{x}$ and L_{x} acts transitively on $\Delta(x)$. Hence,

$$
\left[L_{x}, G_{x, y}^{[1]}\right] \leq\left[L_{x}, G_{x}^{[1]}\right] \leq Q_{x} \leq G_{x, y}^{[1]}
$$

Thus, L_{x} normalizes $G_{x, y}^{[1]}$. The transitivity of L_{x} on $\Delta(x)$ now yields $G_{x, y}^{[1]}=G_{x}^{[2]}$. In particular, $G_{y}^{[2]} \leq G_{u, y}^{[1]}=G_{u}^{[2]}$ for any $u \in \Delta(y)$. It follows that $G_{y}^{[2]}=G_{y}^{[3]}$. Since $Q_{x} \leq Q_{v} \leq G_{v}^{[1]}$ for all $v \in \Delta(x)$, we also have $Q_{x} \unlhd G_{x}^{[2]}$. Hence, $Q_{x}=O_{p}\left(G_{x}^{[2]}\right)$. (ii). By Lemma 2.3 (i) and, as the G-graph is pushing up type,

$$
\left[L_{x}, G_{x}^{[1]} \cap G_{z}\right] \leq\left[L_{x}, G_{x}^{[1]}\right] \leq Q_{x} \leq G_{x}^{[1]} \cap Q_{y} \leq G_{x}^{[1]} \cap G_{z} .
$$

Thus, L_{x} normalizes $G_{x}^{[1]} \cap G_{z}$. Pick $g \in L_{x}$ with $y^{g} \neq y$, and put $y^{\prime}=y^{g}$ and $z^{\prime}=z^{g}$. Then $G_{x}^{[1]} \cap G_{z}=G_{x}^{[1]} \cap G_{z^{\prime}}$. Since $s \geq 4, G_{z^{\prime}, y^{\prime}, x, y}$ acts transitively on $\Delta(y) \backslash\{x\}$ and it also normalizes $G_{x}^{[1]} \cap G_{z^{\prime}}=G_{x}^{[1]} \cap G_{z}$. Therefore, $G_{x}^{[1]} \cap G_{z} \leq G_{y}^{[1]}$. Hence, from (i),

$$
G_{x}^{[2]} \leq G_{x}^{[1]} \cap G_{z} \leq G_{x, y}^{[1]}=G_{x}^{[2]} .
$$

Now (ii) follows.
Finally, as $\left(G_{x}^{[1]} \cap G_{z}\right)^{\Delta(y)}=1$ by (ii), $G_{x}^{[1]}$ induces a group which acts semiregularly on $\Delta(y) \backslash\{x\}$. Therefore, we also have $\left|G_{x}^{[1]} G_{y}^{[1]} / G_{y}^{[1]}\right|$ divides $\Delta(y)-1=$ q_{y}. To see that $\left|G_{x, y, z}\right|=\left|G_{x, y, z}^{\Delta(x)}\right|\left|G_{x}^{[2]}\right|$, just observe that (ii) gives

$$
G_{x}^{[2]} \leq G_{x}^{[1]} \cap G_{x, y, z} \leq G_{x}^{[1]} \cap G_{z}=G_{x}^{[2]}
$$

Lemma 2.5 The following hold:

(i) $G_{y}^{[2]}$ and $G_{x}^{[1]} \cap G_{z}^{[1]}$ are p-groups;
(ii) $G_{x}^{[1]} \cap G_{z}^{[1]}=G_{x}^{[2]} \cap G_{z}^{[2]}=G_{x, y, z}^{[1]}=Q_{x} \cap Q_{z}$;
(iii) $Q_{y} G_{x}^{[1]} \cap G_{z}^{[2]}=Q_{z}$;
(iv) $Q_{y} G_{x}^{[2]} \cap Q_{y} G_{z}^{[2]}=Q_{y}$;
(v) either $G_{x}^{[2]} / Q_{x}$ is abelian or $G_{x}^{[1]}=G_{x}^{[2]}$;
(vi) $\operatorname{lcm}\left(q_{x}, q_{y}\right)$ divides $\left|G_{w, x, y, z}\right|$ and $\pi\left(G_{x, y}\right)=\pi\left(G_{w, x, y, z}\right)$.

Proof (i). Let $R \in \operatorname{Syl}_{r}\left(G_{x}^{[1]}\right)$, with $r \neq p$. Then, Lemma 2.3 (i) yields $\left[R, L_{x}\right] \leq$ [$\left.G_{x}^{[1]}, L_{x}\right] \leq Q_{x}$. Hence, L_{x} normalizes $Q_{x} R$ and acts on $Q_{x} R$ by conjugation. Therefore, the Frattini argument gives $L_{x}=Q_{x} N_{L_{x}}(R)$. In particular, $N_{L_{x}}(R)$ is transitive on $\Delta(x)$. Now using Lemma 2.3 (i) we get $\left[R, N_{L_{x}}(R)\right] \leq\left[G_{x}^{[1]}, L_{x}\right] \cap R \leq$ $Q_{x} \cap R=1$. So for all $R_{0} \leq R, C_{L_{x}}\left(R_{0}\right) \geq C_{L_{x}}(R)=N_{L_{x}}(R)$ is transitive on $\Delta(x)$.

Let $T \in \operatorname{Syl}_{t}\left(G_{y}^{[2]}\right)$, with $t \neq p$. By the Frattini argument $G_{y}=N_{G_{y}}(T) G_{y}^{[2]}$. Hence, $N_{G_{y}}(T)$ is transitive on $\Delta(y)$. Since $T \leq G_{x}^{[1]}$, we have $C_{L_{x}}(T)$ is transitive on $\Delta(x)$. Thus, T is normalized by both $N_{G_{y}}(T)$ and $C_{L_{x}}(T)$ and so $T=1$ by Lemma 2.2. We conclude that $G_{y}^{[2]}$ is a p-group as claimed.

Suppose that $T \in \operatorname{Syl}_{t}\left(G_{x}^{[1]} \cap G_{z}^{[1]}\right)$, with $t \neq p$. Since $s \geq 4$, there exists a $c \in C_{L_{x}}(T)$ with $y^{c} \neq y$ and $z^{c} \neq z$. Indeed, that we can choose c with $y^{c} \neq y$ follows from the transitivity of G_{x} on $\Delta(x)$. We claim for such a $c \in C_{L_{x}}(T), z^{c} \neq z$. In the counter case, $\left(x, y, z, y^{c}, x\right)$ is a circuit of length 4 and $G_{x, y, z, y^{c}}$ is transitive on $\Delta\left(y^{c}\right) \backslash\{z\}$ as $s \geq 4$. As $x \in \Delta\left(y^{c}\right)$, we infer that $\left|\Delta\left(y^{c}\right)\right|=2$, contrary to Δ being thick.

Let $\gamma=\left(z^{c}, y^{c}, x, y\right)$ and $N=G_{x}^{[1]} \cap G_{z^{c}}^{[1]} . \operatorname{Now} T=T^{c} \in \operatorname{Syl}_{t}(N)$ and $N \unlhd G_{\gamma}$. Then, by Lemma 2.4 (ii), $N \leq G_{x}^{[2]} \leq G_{y}^{[1]}$. Since $s \geq 4, G_{\gamma}$ is transitive on $\Delta(y) \backslash\{x\}$. By the Frattini argument $G_{\gamma}=N_{G_{\gamma}}(T) N$. Thus, $N_{G_{\gamma}}(T)$ is transitive on $\Delta(y) \backslash\{x\}$ since $N \leq G_{y}^{[1]}$. As $T \leq G_{z}^{[1]}$, $T \leq G_{u}^{[1]}$, for all $u \in \Delta(y)$. But then, $T \leq G_{y}^{[2]}$ which is a p-group and thus $T=1$. This completes the proof of (i).
(ii). From Lemma 2.4 (ii), we have $G_{x}^{[1]} \cap G_{z}=G_{x}^{[2]}$ and $G_{x} \cap G_{z}^{[1]}=G_{z}^{[2]}$, and thus,

$$
G_{x}^{[2]} \cap G_{z}^{[2]} \leq G_{x, y, z}^{[1]} \leq G_{x}^{[1]} \cap G_{z}^{[1]} \leq G_{x}^{[2]} \cap G_{z}^{[2]}
$$

which gives $G_{x}^{[1]} \cap G_{z}^{[1]}=G_{x, y, z}^{[1]}=G_{x}^{[2]} \cap G_{z}^{[2]}$.

Since, by (i), $G_{x}^{[1]} \cap G_{z}^{[1]}=G_{x}^{[2]} \cap G_{z}^{[2]}$ is a p-group which is normalized by $G_{x}^{[2]}$ and $G_{z}^{[2]}$, Lemma 2.4 (i) implies $G_{x}^{[1]} \cap G_{z}^{[1]} \leq O_{p}\left(G_{x}^{[2]}\right)=Q_{x}$ and $G_{x}^{[1]} \cap G_{z}^{[1]} \leq$ $O_{p}\left(G_{z}^{[2]}\right)=Q_{z}$. Hence

$$
Q_{x} \cap Q_{z} \leq G_{x}^{[2]} \cap G_{z}^{[2]} \leq Q_{x} \cap Q_{z}
$$

and this completes the proof of (ii).
(iii). Suppose that $R \leq Q_{y} G_{x}^{[1]} \cap G_{z}^{[2]}$ has p^{\prime}-order. Since $G_{x}^{[1]}$ is normalized by Q_{y}, we have $R \leq G_{x}^{[1]}$. Hence, $R \leq G_{x}^{[1]} \cap G_{z}^{[2]}$ which by (i) is a p-group. Thus, $R=1$ and $Q_{y} G_{x}^{[1]} \cap G_{z}^{[2]}$ is a p-group. Since $Q_{z} \leq Q_{y} G_{x}^{[1]} \cap G_{z}^{[2]} \unlhd G_{z}^{[2]}$ and $O_{p}\left(G_{z}^{[2]}\right)=Q_{z}$, we have $Q_{y} G_{x}^{[1]} \cap G_{z}^{[2]}=Q_{z}$.
(iv). Using (iii) and the modular law, we have

$$
Q_{y} G_{x}^{[2]} \cap Q_{y} G_{z}^{[2]}=Q_{y}\left(Q_{y} G_{x}^{[2]} \cap G_{z}^{[2]}\right) \leq Q_{y}\left(Q_{y} G_{x}^{[1]} \cap G_{z}^{[2]}\right)=Q_{y} Q_{z}=Q_{y}
$$

(v). Suppose $G_{x}^{[1]} \neq G_{x}^{[2]}$. Let $g \in G_{x}^{[1]} \backslash G_{x}^{[2]}$. Then, by Lemma 2.4 (ii), $z^{g} \neq z$. Then, $G_{x}^{[1]} G_{z}^{[2]}=\left(G_{x}^{[1]} G_{z}^{[2]}\right)^{g}=G_{x}^{[1]} G_{z^{g}}^{[2]}$. Hence, using (ii) and the modular law, we have

$$
\begin{aligned}
{\left[G_{z}^{[2]}, G_{z}^{[2]}\right] } & \leq\left[G_{x}^{[1]} G_{z}^{[2]}, G_{x}^{[1]} G_{z}^{[2]}\right] \cap G_{z}^{[2]} \leq\left[G_{x}^{[1]} G_{z}^{[2]}, G_{x}^{[1]} G_{z^{g}}^{[2]}\right] \cap G_{z}^{[2]} \\
& \leq G_{x}^{[1]}\left[G_{z}^{[2]}, G_{z^{g}}^{[2]}\right] G_{z}^{[2]} \leq G_{x}^{[1]}\left(G_{z}^{[2]} \cap G_{z^{g}}^{[2]}\right) \cap G_{z}^{[2]} \\
& \leq G_{x}^{[1]} Q_{z} \cap G_{z}^{[]}=Q_{z} .
\end{aligned}
$$

It follows that $G_{z}^{[2]} / Q_{z}$ is abelian.
(vi). Since $s \geq 4,\left|G_{w, x, y, z}\right|$ is divisible by $\operatorname{lcm}\left(q_{x}, q_{y}\right)$. Let $t \in \pi\left(G_{x, y}\right)$ and $h \in G_{x, y}$ have order t. If t divides $q_{x} q_{y}$, then t divides $\left|G_{w, x, y, z}\right|$. Suppose t does not divide $q_{x} q_{y}$. Then, $\langle h\rangle$ fixes a vertex in both $u^{\prime} \in \Delta(x) \backslash\{y\}$ and $z^{\prime} \in \Delta(y) \backslash\{x\}$. Thus, t divides $\left|G_{u^{\prime}, x, y, z^{\prime}}\right|=\left|G_{w, x, y, z}\right|$ since $s \geq 4$. It follows that $\pi\left(G_{x, y}\right) \subseteq \pi\left(G_{w, x, y, z}\right)$. The reverse inclusion is immediate since $G_{w, x, y, z}$ is a subgroup of $G_{x, y}$.

Lemma 2.6 If $G_{x}^{[2]} / Q_{x}$ is abelian of exponent t, then C_{y} / Q_{y} is abelian of exponent t and has order at least t^{2}.

Proof For $u, v \in \Delta(y),\left[G_{u}^{[2]}, G_{v}^{[2]}\right] \leq Q_{u} \cap Q_{v} \leq Q_{y}$ by Lemma 2.5 (ii) and the fact that $G_{x}^{[2]} / Q_{x}$ is abelian. Hence, C_{y} / Q_{y} is abelian and, as $G_{x}^{[2]} Q_{y} \cap G_{u}^{[2]} Q_{y}=Q_{y}$ by Lemma 2.5 (iv), the claim follows.

The proof of the following lemma is based on an argument that can be found in [1, Lemma 4.8].

Lemma 2.7 Let t be a prime dividing q_{x}. Then $G_{x}^{[2]}$ is a t^{\prime}-group if and only if $G_{x}^{[1]}$ is a t^{\prime}-group.

Proof It suffices to prove that $G_{x}^{[1]}$ is a t^{\prime}-group whenever $G_{x}^{[2]}$ is a t^{\prime}-group. Assume that $G_{x}^{[2]}$ is a t^{\prime}-group. Let (x, y, z, a) be a 3 -arc and let $T \in \operatorname{Syl}_{t}\left(G_{x, y, z, a}\right)$. Then, as
$s \geq 4$ and t divides q_{x}, T acts non-trivially on $\Delta(x)$. Hence, again as $s \geq 4, T$ fixes no 4 -arcs starting with a vertex in a^{G}. If $N_{G_{y}}(T) \notin G_{z}$, then there exists $g \in N_{G_{y}}(T) \backslash G_{z}$ such that $T=T^{g} \leq G_{x, y, z, a}^{g}=G_{x^{g}, y, z^{g}, a^{g}}$. Hence, T fixes the $4-\operatorname{arc}\left(a, z, y, z^{g}, a^{g}\right)$, which is a contradiction. Therefore, $N_{G_{y}}(T) \leq G_{z}$. Let $X \in \operatorname{Syl}_{t}\left(G_{x}^{[1]}\right)$ be normalized by T. Then, $N_{X}(T) \leq G_{z}$. Hence,

$$
N_{X}(T) \leq X \cap G_{z} \leq G_{x}^{[1]} \cap G_{z}=G_{x}^{[2]}
$$

by Lemma 2.4 (ii) and so $N_{X}(T)=1$ as $G_{x}^{[2]}$ is a t^{\prime}-group. It follows that $C_{X}(T) \leq$ $N_{X}(T)=1$, and so we conclude that $X=1$. Hence, $G_{x}^{[1]}$ is a t^{\prime}-group and this establishes the claim.

The next lemma, which is fundamental for the approach to our proof of Theorem 1.1 , is the origin of the name pushing up type amalgam.

Lemma 2.8 Suppose that K is a non-trivial characteristic subgroup of Q_{y}. Then, $N_{G_{x}}(K)=G_{x, y}$. In particular, no non-trivial characteristic subgroup of Q_{y} is normalized by L_{x}.

Proof Suppose K is a non-trivial characteristic subgroup of Q_{y}. Then, K is normalized by G_{y} and so also by $G_{x, y}$. Since G_{x} acts 2-transitively on $\Delta(x), G_{x, y}$ is a maximal subgroup of G_{x}. Hence, if $N_{G_{x}}(K)>G_{x, y}$, then K is normalized by G_{x}. But then K is normalized by G_{x} and G_{y} and so $K=1$ by Lemma 2.2.

$3 L_{x}^{\Delta(x)}$ is not a projective linear group of degree at least 3

In this section, we intend to demonstrate
Proposition 3.1 Suppose that $s \geq 4$ and Δ is a thick, locally finite, locally s-arc transitive G-graph of pushing up type with respect to (x, y) and the prime p. Then, for $n \geq 3$ and a a natural number, $F^{*}\left(G_{x}^{\Delta(x)}\right) \nexists \operatorname{PSL}_{n}\left(p^{a}\right)$ acting on projective points.

Throughout this section, we assume that the Main Hypothesis holds and

$$
L_{x}^{\Delta(x)} \cong \operatorname{PSL}_{n}(q)
$$

with $n \geq 3, q=p^{a}$ and $\Delta(x)$ corresponding to the points in projective $(n-1)$-space. We continue with the notation established in Notation 2.1.

Before we start on the proof, we record the following facts about projective linear groups.

Lemma 3.2 Assume that $n \geq 3$, p is a prime, $q=p^{k}$ and $\operatorname{PSL}_{n}(q) \unlhd H \leq \operatorname{PLL}_{n}(q)$ acting on the projective space $P V$. Let $u, v \in P V$ be distinct points. The following statements hold:
(i) $\left|H / H_{v}\right|-1=q\left(\frac{q^{n-1}-1}{q-1}\right)$.
(ii) There exists a unique $E \unlhd H_{v}$ such that $O_{p}(E)=O_{p}\left(H_{v}\right), E / O_{p}(E) \cong$ $\mathrm{SL}_{n-1}(q)$ and $\left|H_{v} / E\right|$ divides $(q-1) k$. Moreover, $O_{p}(E)$ is a natural module for $E / O_{p}(E)$.
(iii) Eithern $=3$ and $\left|H_{u, v} / O_{p}\left(H_{u, v}\right)\right|$ divides $(q-1)^{2} k$, or there exists $O_{p}\left(H_{u, v}\right) \unlhd$ $F \unlhd H_{u, v}$ such that $F / O_{p}(F) \cong \mathrm{SL}_{n-2}(q)$ and $\left|H_{u, v} / F\right|$ divides $(q-1)^{2} k$.
(iv) Let N and E be subgroups of H_{v} with $O_{p}\left(H_{v}\right)=O_{p}(N)=O_{p}(E)$ and $E / O_{p}(E) \cong \mathrm{SL}_{n-1}(q)$. Suppose E normalizes N. Then, one of the following holds:
(a) $E \leq N$;
(b) $N / O_{p}\left(H_{v}\right)$ cyclic, $[N, E] \leq O_{p}\left(H_{v}\right)$ and $\left|N / O_{p}\left(H_{v}\right)\right|$ divides $(q-1)$;
(c) $E^{\prime} \leq N<E, n=3$ and either
(ci) $q=p=2$ and $N / O_{2}\left(H_{v}\right) \cong \mathrm{C}_{3}$; or
(cii) $q=p=3$ and $N / O_{3}\left(H_{v}\right) \cong \mathrm{Q}_{8}$.

Proof (i) - (iii). Straight forward.
(iv). For a subgroup $X \leq H_{v}$, we will denote with \bar{X} its image in $H_{v} / O_{p}\left(H_{v}\right)$. Since E normalizes N, we have $[\bar{N}, \bar{E}] \unlhd \bar{E}$. Hence either $\bar{E} \leq[\bar{N}, \bar{E}],[\bar{N}, \bar{E}] \leq Z(\bar{E})$, or $n=3=q$ and $[\bar{N}, \bar{E}]=[\bar{E}, \bar{E}] \cong Q_{8}$ or $n=3, q=2$ and $[\bar{N}, \bar{E}]=[\bar{E}, \bar{E}] \cong C_{3}$. In the second case, the Three Subgroup Lemma gives $[\bar{N},[\bar{E}, \bar{E}]]=1$. It follows that $\bar{N} \leq C_{\bar{H}_{v}}([\bar{E}, \bar{E}])$. Thus $[\bar{N}, \bar{E}]=1$ too and \bar{N} is a cyclic group whose order divides $q-1$. In the third case, $\bar{E} \leq \bar{N}$ or $\bar{N} \cong \mathrm{Q}_{8}$. In the fourth case, $\bar{E} \leq \bar{N}$ or $\bar{N} \cong \mathrm{C}_{3}$.

We begin the proof of Proposition 3.1 with a lemma which restricts the structure of $G_{x}^{[2]} / Q_{x}$.

Lemma 3.3 One of the following holds:
(i) $G_{x}^{[2]} / Q_{x} \cong \mathrm{C}_{t}$ with t dividing $q-1$; or
(ii) $G_{x}^{\Delta(x)} \cong \mathrm{PSL}_{3}(2)$ and $G_{x}^{[2]} / Q_{x} \cong \mathrm{C}_{3}$.

Proof Let $P=G_{x, y}$ and put $\bar{P}=P / G_{x}^{[1]} Q_{y}$. Then, as $\underline{G}_{x}^{[1]} Q_{y}=G_{x}^{[1]} O_{p}(P)$, Lemma 3.2 implies $\mathrm{SL}_{n-1}(q) \unlhd \bar{P} \leq \Gamma \mathrm{L}_{n-1}(q)$. Let $\bar{E} \leq \bar{P}$ with $\bar{E} \cong \mathrm{SL}_{n-1}(q)$. Recall that $C_{y} \leq G_{y}^{[1]}$ and C_{y} is normal in G_{y}. Hence, \bar{C}_{y} is a normal subgroup of \bar{P}.

Let $u \in \Delta(y) \backslash\{x\}$ with $z \neq u$. Then, by Lemma 2.5 (iv), $\left[G_{z}^{[2]}, G_{u}^{[2]}\right] \leq Q_{y}$. It follows that $Q_{y} G_{z}^{[2]}$ is normal in C_{y}. Since $\overline{G_{z}^{[2]}}$ is normal in $\overline{C_{y}}, \overline{G_{z}^{[2]}}$ is subnormal in \bar{P}. If $\overline{G_{z}^{[2]}}$ does not centralize \bar{E}, then $\bar{E}^{\prime} \leq \overline{G_{z}^{[2]}}$ by Lemma 3.2 (iii) and Lemma 2.6. Since this is true for all $z \in \Delta(y) \backslash\{x\}$ and $\overline{\left[G_{z}^{[2]}, G_{u}^{[2]}\right]}=1$, this is impossible unless $(n, q)=(3,2)$ and $\overline{G_{z}^{[2]}}$ is cyclic of order 3. Hence, in the general case, $\overline{G_{z}^{[2]}}$ centralizes \bar{E} and we conclude that $\overline{G_{z}^{[2]}}$ is cyclic of order t dividing $q-1$. We have demonstrated

$$
\overline{G_{z}^{[2]}} \cong \begin{cases}\mathrm{C}_{t} & t \text { divides } q-1 \\ \mathrm{C}_{3} & (n, q)=(3,2)\end{cases}
$$

Finally, Lemma 2.5 (iii) yields

$$
G_{z}^{[2]} / Q_{z}=G_{z}^{[2]} /\left(G_{z}^{[2]} \cap G_{x}^{[1]} Q_{y}\right) \cong G_{z}^{[2]} G_{x}^{[1]} Q_{y} / G_{x}^{[1]} Q_{y}=\overline{G_{z}^{[2]}}
$$

and this completes the proof.
Lemma 3.4 If $F^{*}\left(G_{x}^{\Delta(x)}\right) \cong \operatorname{PSL}_{n}(q)$ with $n \geq 3$, then $F^{*}\left(G_{x}^{\Delta(x)}\right) \cong \operatorname{PSL}_{3}(2)$ and $G_{x}^{[2]} / Q_{x} \cong \mathrm{C}_{3}$.

Proof Suppose that $F^{*}\left(G_{x}^{\Delta(x)}\right) \nsubseteq \mathrm{PSL}_{3}(2)$ with $G_{x}^{[2]} / Q_{x} \cong \mathrm{C}_{3}$. We first prove that $\mathbf{1}^{\circ} . q^{n-1}=2^{6}$ or $q^{n-1}-1=p^{2}-1$ and p is a Mersenne prime.

Suppose that t is a Zsigmondy prime for $((n-1) k, p)$. By [2, 3.8], t does not divide $(n-1) k$, and since $n-1 \geq 2, t$ does not divide $q-1$. Therefore, as t divides $q_{x}=q\left(q^{n-1}-1\right) /(q-1)$, combining Lemmas 2.7 and 3.3 yields t does not divide $\left|G_{x}^{[1]}\right|$. Since t divides $\left|G_{x, y}\right|, t$ divides $\left|G_{w, x, y}\right|$ by Lemma 2.5 (vi). Therefore, t divides $\left|G_{w, x, y}{ }^{\Delta(x)}\right|$. However, Lemma 3.2 (iii) then implies t divides $\left|\mathrm{PSL}_{n-2}(q)\right|$, contrary to t being a Zsigmondy prime. Therefore, Zsigmondy's Theorem (see [2, 3.8]) implies that $q^{n-1}=2^{6}$ or $q^{n-1}-1=p^{2}-1$ and $p=2^{r}-1$ is a Mersenne prime.
$\mathbf{2}^{\circ}$. We have $q^{n-1} \neq 2^{6}$.
Assume that $q^{n-1}=2^{6}$. Then, as $n \geq 3$, we have one of the following cases $F^{*}\left(G_{x}^{\Delta(x)}\right) \cong \operatorname{PSL}_{3}(8)$ with $q_{x}=8(8+1), \mathrm{PSL}_{4}(4)$ with $q_{x}=4\left(4^{2}+4+1\right)$ or $\mathrm{PSL}_{7}(2)$ with $q_{x}=2\left(2^{6}-1\right)$. Since $s \geq 4, G_{x, y}$ has order divisible by q_{x}^{2}. The first case $\left|G_{x}^{[1]}\right|$ is coprime to 3 by Lemmas 2.7 and 3.3. Therefore, $\left|G_{x, y}\right|_{3}=$ $\left|G_{x, y}^{\Delta(x)}\right|_{3}=3^{3}<3^{4}=\left(q_{x}^{2}\right)_{3}$, which is a contradiction. Similarly, the second case is impossible as 7^{2} does not divide $\left|G_{x, y}^{\Delta(x)}\right|$. Therefore, $F^{*}\left(G_{x}^{\Delta(x)}\right) \cong \operatorname{PSL}_{7}(2)$ and $G_{x}^{[2]}=Q_{x}$ is a 2-group by Lemma 3.3. Set $H=G_{w, x, y, z}$. Then, by Lemma 2.5 (v) $\pi(H)=\pi\left(G_{x, y}\right) \supseteq\{2,3,5,7,31\}$ and by Lemma 2.4 (ii) $H \cap G_{x}^{[1]} \leq G_{z} \cap G_{x}^{[1]}$ is a 2-group. Hence, $H^{\Delta(x)} \leq G_{w, x, y}^{\Delta(x)} \cong 2^{10}: \mathrm{SL}_{5}(2)$ and $\pi\left(H^{\Delta(x)}\right) \supseteq\{3,5,7,31\}$. By [8], the maximal over-groups of a Singer cycle in $\mathrm{SL}_{5}(2)$ have order $5 \cdot 31=155$ and so we conclude that $G_{w, x, y}^{\Delta(x)}=H^{\Delta(x)} O_{2}\left(G_{w, x, y}^{\Delta(x)}\right)$. In particular, we see that H has a quotient isomorphic to $\mathrm{SL}_{5}(2)$ and has order $2^{\ell} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$ for some ℓ. Since $s \geq 4$, H operates transitively on $\Delta(z) \backslash\{y\}$. Hence, for $a \in \Delta(z) \backslash\{y\},\left|H: H_{a}\right|=q_{x}=126$ and so $\left|H_{a}\right|=2^{\ell-1} \cdot 5 \cdot 31$. Therefore,

$$
2^{10} .5 .31 \geq\left|H_{a}^{\Delta(x)} O_{2}\left(G_{w, x, y}^{\Delta(x)}\right) / O_{2}\left(G_{w, x, y}^{\Delta(x)}\right)\right| \geq 2^{9} \cdot 5 \cdot 31>5 \cdot 31
$$

and $H_{a}^{\Delta(x)} O_{2}\left(G_{w, x, y}^{\Delta(x)}\right) / O_{2}\left(G_{w, x, y}^{\Delta(x)}\right)$ contains a Singer cycle of $\operatorname{SL}_{5}(2)$, which is a contradiction.

Because of $\left(\mathbf{1}^{\circ}\right)$ and $\left(\mathbf{2}^{\circ}\right)$, it remains to exclude the possibility that $q^{n-1}-1=p^{2}-1$ with $p=2^{r}-1$ a Mersenne prime. Thus, $n=3, q_{x}=p(p+1)=2^{r} p$ and $p-1=2\left(2^{r-1}-1\right)$ is not divisible by 4 .

By Lemma 2.4 (ii),

$$
G_{w, x, y, z} \cap G_{x}^{[1]}=G_{x}^{[1]} \cap G_{z}=G_{x}^{[2]}
$$

and by Lemma $3.3\left|G_{x}^{[2]}\right|$ divides $(p-1)\left|Q_{x}\right|$. By Lemma $3.2\left|G_{w, x, y, z}^{\Delta(x)}\right|$ divides $(p-1)^{2} p^{2}$. Hence $\left|G_{w, x, y, z}\right|$ divides $(p-1)^{3} p^{2}\left|Q_{x}\right|$. So, as 4 does not divide $p-1$, and $G_{w, x, y, z}$ acts transitively on $\Delta(z) \backslash\{y\}, q_{z}=q_{x}=2^{r} p$ is not divisible by 16 . Hence, $r \in\{2,3\}$. Furthermore, if $r=3$, then $\left|G_{x}^{[2]}\right|$ is even. We signal $3^{\circ} . q=p=2^{r}-1 \in\{3,7\}$ and $\left|G_{x}^{[2]}\right|$ is even if $q=7$.

Suppose that $G_{x}^{[2]}$ has odd order. Then, $r=2, q=p=3, G_{x}=G_{x}^{[1]} L_{x}$, $L_{x} / Q_{x} \cong \operatorname{PSL}_{3}(3)$ and $q_{x}=12$. By Lemma 2.7, $G_{x}^{[1]}$ also has odd order. Let $S \in \operatorname{Syl}_{2}\left(G_{w, x, y, z}\right)$. Then, $S \cap G_{x}^{[1]}=1$ and so $S \cong S^{\Delta(x)} \leq G_{w, x, y}^{\Delta(x)}$. Hence, S is elementary abelian and $|S| \leq 4$. Since $q_{x}=12$ and q_{x} divides $\left|G_{w, x, y, z}\right|$ by Lemma 2.5 (v), we conclude that $|S|=4$. Since $s \geq 4$, and $q_{z}=q_{x}=12$, we now know that $\left|G_{w, x, y, z, a}\right|$ is odd for all $a \in \Delta(z) \backslash\{y\}$.

Let $T \in \operatorname{Syl}_{2}\left(G_{y, z}\right)$ with $S \leq T$. Then, $T \cap G_{z}^{[1]}=1$ and $T \cong \operatorname{SDih}(16)$ is semidihedral. Since S is elementary abelian of order 4, we have $Z(T) \leq S$. In particular, $Z(T) G_{z}^{[1]} / G_{z}^{[1]}$ acts by conjugation inverting each element of $Q_{y} G_{z}^{[1]} / G_{z}^{[1]}$. Observe that Q_{y} has 4 orbits of length 3 on $\Delta(z) \backslash\{y\}$ each of which is fixed by $Z(T)$. Hence, $Z(T)$ fixes a vertex $a \in \Delta(z) \backslash\{y\}$, contrary to $\left|G_{w, x, y, z, a}\right|$ being odd. This contradiction shows that $\left|G_{x}^{[2]}\right|$ is divisible by 2.

Assume that $\left|G_{x}^{[2]}\right|$ is even. Then, $q \in\{3,7\}$ by $\left(\mathbf{3}^{\circ}\right)$. Lemma 3.3 states that $G_{x}^{[2]} / Q_{x}$ is cyclic, and so the Sylow 2-subgroups of $G_{x}^{[2]} / Q_{x}$ have order 2. By Lemma 2.6, C_{y} / Q_{y} is abelian and the Sylow 2-subgroups of C_{y} are elementary abelian and have order at least 4. As $C_{y}^{\Delta(x)}$ is normal in $G_{x, y}^{\Delta(x)}$ and $G_{x, y}^{\Delta(x)} / Q_{y}^{\Delta(x)}$ is isomorphic to a subgroup of $\mathrm{GL}_{2}(q)$ containing $\mathrm{SL}_{2}(q)$, Lemma 3.2(iv) yields that $C_{y}^{\Delta(x)} / Q_{y}^{\Delta(x)}$ is cyclic. Lemma 2.4 (ii) gives $G_{x}^{[1]} \cap C_{y} \leq G_{x}^{[1]} \cap G_{y}^{[1]}=G_{x}^{[2]}$, and thus, $C_{y}^{\Delta(x)} / Q_{y}^{\Delta(x)} \cong$ $C_{y} / G_{x}^{[2]} Q_{y}$. We deduce that C_{y} / Q_{y} contains exactly three involutions. If $q_{y}>2$, then there exists $u, v \in \Delta(y)$ such that $G_{u}^{[2]} Q_{y} / Q_{y} \cap G_{v}^{[2]} Q_{y} / Q_{y}$ has an involution and this contradicts Lemma 2.5 (iv). Hence, $q_{y}=2$ and G_{y} acts transitively on the three involutions in C_{y} / Q_{y}. Let $S_{y} \in \operatorname{Syl}_{2}\left(C_{y}\right)$. Then, $S_{y} Q_{y}$ is normalized by G_{y}, and thus, $S_{y} Q_{y}$ has a unique G_{y}-conjugacy class of involutions.

Since $q_{y}=2$, we have $O^{p^{\prime}}\left(G_{x, y}\right) \leq G_{y}^{[1]}$ and so $O^{p^{\prime}}\left(G_{x, y}\right)=O^{p^{\prime}}\left(G_{y}^{[1]}\right)$ is normal in G_{y}. Because $q=p \in\{3,7\}, O^{p^{\prime}}\left(G_{x}\right) / Q_{x} \cong \operatorname{PSL}_{3}(p)$ or $\operatorname{SL}_{3}(p)$ and, as the Schur multiplier of $\operatorname{PSL}_{2}(p)$ has order 2, we get $O^{p^{\prime}}\left(G_{y}^{[1]}\right) / Q_{x} \cong \operatorname{ASL}_{2}(p)$. In particular, $G_{x}^{[2]} \cap O^{p^{\prime}}\left(G_{y}^{[1]}\right)=Q_{x}$.

Let $a \in O^{p^{\prime}}\left(G_{y}^{[1]}\right)$ be an involution and set $T=C_{y}\langle a\rangle$. Then, Lemma 3.2 (iv) implies

$$
\left[T^{\Delta(x)}, O^{p^{\prime}}\left(G_{y}^{[1]}\right)^{\Delta(x)}\right]=\left[a^{\Delta(x)}, O^{p^{\prime}}\left(G_{y}^{[1]}\right)^{\Delta(x)}\right]\left[C_{y}^{\Delta(x)}, O^{p^{\prime}}\left(G_{y}^{[1]}\right)^{\Delta(x)}\right] \leq Q_{y}^{\Delta(x)}
$$

and so $T \leq C_{y} G_{x}^{[1]}$, as $\left|C_{y}^{\Delta(x)}\right|$ is even. Hence, using Lemma 2.4 (i)

$$
T=C_{y} G_{x}^{[1]} \cap T=C_{y}\left(G_{x}^{[1]} \cap T\right) \leq C_{y}\left(G_{x}^{[1]} \cap G_{y}^{[1]}\right)=C_{y} G_{x}^{[2]}=C_{y} .
$$

Thus, $a \in C_{y} \cap O^{p^{\prime}}\left(G_{y}^{[1]}\right)$. Since $O^{p^{\prime}}\left(G_{y}^{[1]}\right)$ is normal in G_{y}, we deduce that $S_{y} \leq$ $O^{p^{\prime}}\left(G_{y}^{[1]}\right)$ which is impossible as $O^{p^{\prime}}\left(G_{y}^{[1]}\right) \cap G_{x}^{[2]}=Q_{x}$. This completes the proof.

Lemma 3.5 Suppose that $G_{x}^{\Delta(x)} \cong \operatorname{PSL}_{3}(2)$. Pick $U \in \operatorname{Syl}_{3}\left(G_{y}\right)$ and set $D=U \cap C_{y}$ and $F=D \cap L_{x, y}$. Then
(i) $q_{x}=6$ and $q_{y}=2$;
(ii) $\left|G_{x}^{[2]} / Q_{x}\right|=3$;
(iii) D is elementary abelian of order $9, C_{y}=D Q_{y}$ and $D \in \operatorname{Syl}_{3}\left(G_{y}^{[1]}\right)$;
(iv) F has order 3, $Q_{y} F \unlhd G_{y}, F=Z(U)$ and U is extraspecial of order 27 .

Proof As $G_{x}^{\Delta(x)} \cong \operatorname{PSL}_{3}(2)$, we have $p=2, q_{x}=6$ and Lemma 3.4 implies $\left|G_{x}^{[2]} / Q_{x}\right|=3$.

By Lemma 2.6, C_{y} / Q_{y} is an elementary abelian 3-group of rank at least 2. Since $G_{x}^{[1]} \cap G_{y}^{[1]} \leq G_{x}^{[2]}$ and $G_{x, y}^{\Delta(x)} \cong \operatorname{Sym}(4)$, we deduce C_{y} / Q_{y} has order 9. Hence, D is elementary abelian of order $9, C_{y}=D Q_{y}$ and $D \in \operatorname{Syl}_{3}\left(G_{y}^{[1]}\right)$. This proves (iii).

We know $F Q_{y}$ has index 3 in C_{y} and $F Q_{y}$ is normalized by $G_{x, y}$. If $F Q_{y}=$ $G_{u}^{[2]} Q_{y}$ for some $u \in \Delta(y) \backslash\{x\}$, then as $G_{x, y}$ is transitive on $\Delta(y) \backslash\{x\}$, we have $G_{u}^{[2]} Q_{y}=G_{z}^{[2]} Q_{y}$ for all $u \in \Delta(y) \backslash\{x\}$ contrary to Lemma 2.5 (iv). So of the four subgroups of index 3 in C_{y}, there are only three candidates for $G_{u}^{[2]} Q_{y}$ and so we conclude that $q_{y}=2$ and this proves (i).

Because U acts transitively on $\Delta(y), U$ permutes the three subgroups of $\left\{G_{u}^{[2]} Q_{y} \mid\right.$ $u \in \Delta(y)\}$. In particular, as $D \in \operatorname{Syl}_{3}\left(G_{y}^{[1]}\right)$ and $G_{y} / G_{y}^{[1]} \cong \operatorname{Sym}(3)$, we have U is non-abelian of order 27. As $F Q_{y}$ is normalized by $U, F=Z(U)$. This concludes the proof.

Lemma 3.6 Assume that $G_{x}^{\Delta(x)} \cong \operatorname{PSL}_{3}(2)$. Then, L_{x} has either $1,2,3$ or 6 non-central L_{x} chief factors, each of which is 3-dimensional.

Proof We establish [10, Hypothesis] with $p=2$ using boldface letters for the groups used in [10, Hypothesis]. So set $\mathbf{M}=L_{x}, \mathbf{E}=Q_{x}, \mathbf{B} \in \operatorname{Syl}_{2}(\mathbf{M})$ and $\mathbf{P}_{1}, \mathbf{P}_{2} \leq \mathbf{M}$ such that $\mathbf{P}_{1} \cap \mathbf{P}_{2}=\mathbf{B}$. To reassure ourselves, this means that $\mathbf{M} / \mathbf{E}=L_{x} / Q_{x} \cong \operatorname{PSL}_{3}(2)$, $\mathbf{B} / \mathbf{E} \cong \operatorname{Dih}(8)$ and $\mathbf{P}_{1} / \mathbf{E} \cong \mathbf{P}_{2} / \mathbf{E} \cong \operatorname{Sym}(4)$. We choose notation so that $\mathbf{P}_{1}=L_{x, y}$. We have $\mathbf{P}_{1}=\mathbf{P}_{1}^{*}$ and $\mathbf{P}_{2}=\mathbf{P}_{2}^{*}$. This means that $[10$, Hypothesis (WBN)] is satisfied. So we take $\mathbf{S}=\mathbf{B}$ and $\mathbf{T}=Q_{y}$. By Lemma 2.8, [10, Hypothesis (P)] holds. Since $\mathbf{P}_{1}=\mathbf{P}_{1}^{*}$ and $\mathbf{P}_{2}=\mathbf{P}_{2}^{*}, O^{2^{\prime}}\left(\mathbf{P}_{1}\right)=\mathbf{P}_{1}$ and $O^{2^{\prime}}\left(\mathbf{P}_{2}\right)=\mathbf{P}_{2}$. Thus, setting

$$
\mathbf{L}=\left\langle O^{2}\left(O^{2^{\prime}}\left(\mathbf{P}_{1}^{*}\right)\right), O^{2}\left(O^{2^{\prime}}\left(\mathbf{P}_{2}^{*}\right)\right)\right\rangle=\left\langle O^{2}\left(\mathbf{P}_{1}^{*}\right), O^{2}\left(\mathbf{P}_{2}^{*}\right)\right\rangle
$$

and remembering $\mathbf{E} \leq \mathbf{T}$, we have

$$
\mathbf{L E}=\mathbf{L T}
$$

So, as \mathbf{E} is a 2-group, $\mathbf{E} / O_{2}(\mathbf{E})$ is a 2^{\prime}-group, and $\mathbf{E} \leq \mathbf{F} O_{2}(\mathbf{E})$ for every subgroup $\mathbf{F} \leq \mathbf{M}$ with

$$
\mathbf{L} \leq \mathbf{E F}
$$

Hence, [10, Hypothesis (A)] and [10, Hypothesis (B)] both hold.
Since [10, Hypothesis] holds, and since $\mathbf{M}=L_{x}$, we can conclude from [10, Theorem] that one of the cases (4), (5), (8), (11) or (13) of that theorem holds. In particular, we see that $\mathbf{E}=Q_{x}$ has either 1,2,3 or 6 non-central L_{x} chief factors, each of which is 3 -dimensional. This proves the claim.

Lemma 3.7 (i) L_{x} has two non-central chief factors in Q_{x}, each of which is 3dimensional.
(ii) F has three non-central chief factors in Q_{y} (where F is as in Lemma 3.5).

Proof Consider the non-central chief factors of G_{y} in Q_{y}. If the chief factor is not centralized by $F=Z(U)$, then, as U is extraspecial of order 27, the chief factor has order a multiple of 2^{6} and F acts fixed point freely. Thus, the number of F-chief factors is a multiple of 3 which we denote by $3 f$. As G_{y} has characteristic $p, f \geq 1$.

From the perspective of L_{x}, we have Q_{y} / Q_{x} is a non-central F-chief factor, and, as each L_{x} non-central chief factor in Q_{x} is 3-dimensional by Lemma 3.6, $F Q_{x}$ has one non-central chief factor for each L_{x} non-central chief factor. Thus, L_{x} has $3 f-1$ noncentral chief factors in Q_{x}. Using Lemma 3.6, we deduce that L_{x} has 2 non-central chief factors in Q_{x}. Thus, (i) holds and (ii) follows from this.

Recall the definition of Z_{x} and Z_{y} from Notation 2.1 and observe $Z_{y} \leq Z_{x}$, since Δ is of local characteristic 2 and $Q_{x} \leq Q_{y}$.
Lemma 3.8 Suppose $G_{x}^{\Delta(x)} \cong \operatorname{PSL}_{3}$ (2). Then
(i) $Q_{y}=Q_{x} Q_{z}$ and $Z_{x} \cap Z_{z}=Z_{y}$;
(ii) $\left[Z_{x}, F\right] \neq 1$.

Proof We continue the notation from Lemma 3.5.
(i). We know $F Q_{y} \leq G_{y}^{[1]}$. Since F normalizes Q_{z} and $Q_{z} \neq Q_{x}$, we have $Q_{x} Q_{z}=Q_{y}$. Since Δ is of local characteristic p and $Q_{y}=Q_{x} Q_{z}$, we glean $Z\left(Q_{y}\right) \leq$ $Z\left(Q_{x}\right) \cap Z\left(Q_{z}\right) \leq Z\left(Q_{y}\right)$.
(ii). Suppose $\left[Z_{x}, F\right]=1$. Then $\left[Z_{x}, O^{2}\left(L_{x}\right)\right]=1$ and $L_{x}=Q_{x} O^{2}\left(L_{x}\right)$. Since $O^{2}\left(L_{x}\right)$ acts transitively on $\Delta(x)$ and $Z_{y} \leq Z_{x}$, we obtain $Z_{y}=1$ from Lemma 2.2 and this is a contradiction.

Lemma 3.9 Suppose $G_{x}^{\Delta(x)} \cong \operatorname{PSL}_{3}(2)$. Then, $Z_{z} \not \leq G_{x}^{[1]}$.
Proof Again we use the notation started in Lemma 3.5. By Lemma 3.4, we know $G_{x}^{\Delta(x)} \cong \mathrm{PSL}_{3}(2)$. Set $V_{y}=\left\langle Z_{u} \mid u \in \Delta(y)\right\rangle$. Then, $V_{y} \leq Q_{y}$ is normalized by G_{y} and F does not centralize $Z_{x} \leq V_{y}$ by Lemma 3.8 (ii). Hence, U acts faithfully on V_{y} and so we conclude that F has at least three non-central chief factors in V_{y}. Since F has exactly three non-central chief factors in Q_{y} and Q_{y} / Q_{x} is such a factor, we conclude that $V_{y} \nsubseteq G_{x}^{[1]}$ and this delivers the claim.

Proof of Proposition 3.1 Lemma 3.4 gives $G_{x}^{\Delta(x)} \cong \operatorname{PSL}_{3}(2)$ and, by Lemma 3.9, $Z_{z} \not \leq Q_{x}$. As $F \leq G_{y}^{[1]}$ normalizes $Z_{z}, Q_{y}=Q_{x} Z_{z}=Z_{x} Q_{z}$. Since $Q_{x} \cap Z_{z}$ is centralized by $Z_{x} Q_{z}$, we deduce $Q_{x} \cap Z_{z}=Z_{y}$.

Let $u \in \Delta(y) \backslash\{x, z\}$. Since $s \geq 4$, we have $Z_{z} \not \leq Q_{u}$. We calculate using the fact that Q_{x} is the unique Sylow 2-subgroup of $G_{x}^{[2]}$ by Lemma 3.5 (ii)

$$
\left[G_{x}^{[2]}, Z_{z}\right] \leq G_{x}^{[2]} \cap Z_{z} \leq Q_{x} \cap Z_{z}=Z_{y}
$$

and

$$
\left[G_{u}^{[2]}, Z_{z}\right] \leq Q_{u} \cap Z_{z}=Z_{y}
$$

It follows that

$$
\left[F, Z_{z}\right] \leq\left[G_{u}^{[2]} G_{x}^{[2]}, Z_{z}\right] \leq Z_{y} \leq Q_{x}
$$

However, $Z_{z} Q_{x} / Q_{x}$ is not centralized by F, and so this is impossible. This contradiction completes the proof.

4 The main theorem

Suppose that X is a 2 -transitive group in its action on Ω. Then, [1, Lemma 2.2] (for example) yields that either there is a prime r such that $F^{*}(X)$ is a regular elementary abelian r-group, or $F^{*}(X)$ is a non-abelian simple group. In the first case, we say that X is of regular type, and in the second that X is of simple type. When X is of simple type, the description of $F^{*}(X)$ and Ω is conveniently presented in [1, Lemma 2.5] (this result requires the classification of the finite simple groups). Since $G_{x}^{\Delta(x)}$ acts 2-transitively on $\Delta(x)$ and as we also know that $1 \neq Q_{y}^{\Delta}(x) \unlhd G_{x, y}^{[1]}$, Proposition 3.1 combined with [1, Lemma 2.5] yields

Lemma 4.1 The group $F^{*}\left(G_{x}^{\Delta(x)}\right)$ is either of regular type or is of simple type and is isomorphic to a rank 1 group of Lie type in characteristic p in its natural permutation representation (including Ree(3)').

We can now move directly to the proof Theorem 1.1.
Proof of Theorem 1.1 Set $N=O^{p}\left(L_{x}\right) Q_{x}$. Then $O_{p}(N)=Q_{x}$ and $N=O^{p}(N) Q_{x}$. Define $S=Q_{y}$ and $\widetilde{G}=G_{x} / Q_{x}$. Then, with $L=L_{x}$, we have $L=N S$, $O_{p}(N)=O_{p}(L)=Q_{x}<Q_{y}=S$ and $C_{S}\left(Q_{x}\right) \leq C_{G}\left(Q_{x}\right) \leq Q_{x}$. Furthermore, [1, Hypothesis 3.3(b) and (c)] follows from Lemma 2.3(v) and Lemma 4.1, respectively. Because of Lemma 2.8 and [1, Lemma 3.8], we are in the same conclusions as [1, 7.7 steps $\mathbf{1}^{\circ}$ and $\mathbf{2}^{\circ}$]. Following [1, 7.7 steps $\mathbf{3}^{\circ}$ through $\mathbf{9}^{\circ}$] verbatim (being careful to note the role of x and y are reversed) yields $O^{p}\left(L_{x}\right) \cong \operatorname{AGL}_{2}(q)^{\prime}, q=p^{r}$ with p odd, and Q_{x} elementary abelian. This completes the proof.

Funding Open access funding provided by Università della Calabria within the CRUI-CARE Agreement.
Data availability Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no conflict of interest to declare.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. van Bon, J., Stellmacher, B.: Locally s-transitive graphs. J. Algebra 441, 243-293 (2015)
2. van Bon, J., Stellmacher, B.: On locally s-arc transitive graphs that are not of local characteristic p. J. Algebra 528, 1-37 (2019)
3. van Bon, J.: Four vertex stabilizer amalgams for locally s-arc transitive graphs of pushing up type. J. Algebra 633, 56-68 (2023)
4. van Bon, J.: On locally s-arc transitive graphs of pushing up type, in preparation
5. van Bon, J.: A family of locally 5 -arc transitive graphs of pushing up type, submitted
6. Delgado, A., Goldschmidt, D., Stellmacher, B.: Groups and graphs: new results and methods. Birkhäuser Verlag, Basel, DMV Seminar, vol. 6 (1985)
7. Giudici, M., Li, C.-H., Praeger, C.E.: A new family of locally 5-arc transitive graphs. European J. Combin. 28, 533-548 (2007)
8. Kantor, W.M.: Linear groups containing a Singer cycle. J. Algebra 62(1), 232-234 (1980)
9. Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. An Introduction, Springer Verlag, New York (2004)
10. Meierfrankenfeld, U., Stellmacher, B.: Pushing up weak BN-pairs of rank two. Comm. Algebra 21, 825-934 (1993)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

