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Abstract
The k-token graph Fk(G) of a graph G is the graph whose vertices are the k-subsets
of vertices from G, two of which are adjacent whenever their symmetric difference
is a pair of adjacent vertices in G. It was proved that the algebraic connectivity of
Fk(G) equals the algebraic connectivity of G with a proof using random walks and
interchange of processes on a weighted graph. However, no algebraic or combinatorial
proof is known, and it would be a hit in the area. In this paper, we algebraically prove
that the algebraic connectivity of Fk(G) equals the one of G for new infinite families
of graphs, such as trees, some graphs with hanging trees, and graphs with minimum
degree large enough. Some examples of these families are the following: the cocktail
party graph, the complement graph of a cycle, and the complete multipartite graph.

Keywords Token graph · Laplacian spectrum · Algebraic connectivity · Binomial
matrix

Mathematics Subject Classification 05C15 · 05C10 · 05C50

1 Introduction

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} and edge set E(G). Let
δ(G) denote the minimum degree of G. For a given integer k such that 1 ≤ k ≤ n, the
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Fig. 1 The 2-token graph
F2(C9) of the cycle graph, with
vertex set
V (C9) = {0, 1, . . . , 8}. The
vertices on the circumference of
radius r�, with � = 1, 2, 3, 4 and
r1 > r2 > r3 > r4 are {i, j}
with dist(i, j) = � in C9

k-token graph Fk(G) ofG is the graphwhose vertex set V (Fk(G)) consists of the
(n

k

)
k-

subsets of vertices ofG, and two vertices A and B of Fk(G) are adjacentwhenever their
symmetric difference A�B is a pair {a, b} such that a ∈ A, b ∈ B, and (a, b) ∈ E(G).
The naming ‘token graph’ comes from an observation in Fabila-Monroy et al. [7],
that vertices of Fk(G) correspond to configurations of k indistinguishable tokens
placed at distinct vertices of G, where two configurations are adjacent whenever one
configuration can be reached from the other by moving one token along an edge from
its current position to an unoccupied vertex. Thus, the maximum degree of Fk(G)

satisfies

�(Fk(G)) ≤ k�(G). (1)

In Fig. 1, we show the 2-token graph of cycle C9 on nine vertices.
Note that, for convenience, if k = 0, then F0(G) is an only vertex; if k = 1, then

F1(G) ∼= G; and if G is the complete graph Kn , then Fk(Kn) ∼= J (n, k), where
J (n, k) denotes the Johnson graph (see again [7]).

Token graphs have some applications in physics. For instance, a relationship
between token graphs and the exchange of Hamiltonian operators in quantummechan-
ics is given in Audenaert et al. [1].

Recently, it was conjectured by Dalfó et al. [5] that the algebraic connectivity of
Fk(G) equals the algebraic connectivity of G. After submitting the first version of this
paper, the authors learned (from Fabila-Monroy [6]) that this conjecture was already
known as the Aldous’ spectral gap conjecture, and it was proved in 2010 by Caputo et
al. [3]. Moreover, Ouyang [12] and Lew [11] also mentioned that this conjecture was
actually solved. Besides, Cesi [4] provided a simpler proof of the so-called ‘octopus
inequality,’ which is one of the main ingredients to prove Aldous’ conjecture. These
results were obtained in completely different contexts and using distinct techniques.
More precisely, they used the theory of continuous Markov chains of random walks
and the so-called interchange of processes on a weighted graph. In this paper, we
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present an algebraic approach to this problem for trees and other graphs, and we give
a new method that can be of interest, giving an alternative algebraic proof.

This paper is structured as follows. In Sect. 2, we present some of the known results
on the algebraic connectivity. In Sect. 3, we prove that the algebraic connectivity of a
graph and its k-token graph coincide

for new infinite families of graphs, such as trees, some graphs with hanging trees,
and graphs with minimum degree large enough. Some examples of these families are
the following: the cocktail party graph, the complement graph of a cycle, and the
complete multipartite graph.

2 Known results

First, let us introduce some notation and known results used throughout the paper.
The transpose of a matrix M is represented by M�, the identity matrix by I , the all-1
vector (1, ..., 1)� by 1, the all-1 (universal) matrix by J , and the all-0 vector and all-0
matrix by 0 and O, respectively. Let [n] := {1, . . . , n}, and ([n]

k

)
denote the set of

k-subsets of [n], which is the set of vertices of the k-token graph.
For our purpose, it is convenient to indicate by Wn the set of all column vectors v

such that v�1 = 0. Recall that any square matrix M with all zero row sums has an
eigenvalue 0 with corresponding eigenvector 1.

WhenM = L(G), theLaplacianmatrix of a graphG, thematrix is positive semidef-
inite, with eigenvalues (0 =)λ1 ≤ λ2 ≤ · · · ≤ λn . Its second smallest eigenvalue λ2 is
known as the algebraic connectivity of G (see Fiedler [8]), and we denote it by α(G).
The spectral radius λmax(G) = λn satisfies several lower and upper bounds (see Patra
and Sahoo [14] for a survey). Here, we will use the following ones in terms of the
maximum degree of G:

1 + �(G) ≤ λmax(G) ≤ 2�(G). (2)

The upper bound is due to Fiedler [8], whereas Grone and Merris proved the lower
bound in [10], assuming that G has at least one edge.

In this paper, we want to study the algebraic connectivity of token graphs of trees
and graphs with hanging trees, among others. As far as we know, this study was
initiated by Dalfó et al. [5], where they proved the following results.

For some integers n, h, and k, with 1 ≤ h < k < n, we consider the (n; k, h)-
binomial matrix B, with rows indexed by the k-subsets A ⊂ [n], columns indexed by
the h-subsets X ⊂ [n], and entries (B)AX = 1 if X ⊂ A, and (B)AX = 0 otherwise.
Note that the transpose of B is the so-called set-inclusion matrix, denoted by Wh,k(n)

(see, for instance, Godsil [9].)

Lemma 2.1 ([5]) Let G be a graph on n vertices. For some integers h, k such that
1 ≤ h < k ≤ � n

2 	, let Fh = Fh(G) and Fk = Fk(G) be their h- and k-token graphs
with respective Laplacian matrices Lh and Lk . Then, the following holds:
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(i) If v is a λ-eigenvector of Lh, then Bv is a λ-eigenvector of Lk . Thus, the Laplacian
spectrum (eigenvalues and their multiplicities) of Lh is contained in the Laplacian
spectrum of Lk .

(ii) If u is a λ-eigenvector of Lk such that B�u 
= 0, then B�u is a λ-eigenvector of
Lh.

Given two integers n and k such that k ∈ [n], the Johnson graph J (n, k) can be
defined as the k-token graph of the complete graph Kn , that is, Fk(Kn) ∼= J (n, k). It
is known that these graphs are antipodal (but not bipartite) distance-regular graphs,
with degree d = k(n − k), diameter D = min{k, n − k}, and with Laplacian spectrum
(eigenvalues and multiplicities)

λ j = j(n + 1 − j) and m j =
(

n

j

)
−

(
n

j − 1

)
, j = 0, 1, . . . , D. (3)

(See again [5]).
For example, F2(K4) ∼= J (4, 2) is a 2-regular graph with n = 6 vertices, diameter

D = 2, and with Laplacian spectrum S(F2(K4)) = {0[1], 4[3], 6[2]}.
Let us consider a graphG and its complementG, with respective Laplacianmatrices

LG and LG . Since LG +LG = n I− J , the Laplacian spectrum ofG is the complement
of the Laplacian spectrum of G with respect to the Laplacian spectrum of the complete
graph Kn . We represent this as

spG ⊕ spG = sp Kn,

where each eigenvalue of G and each eigenvalue of G are used once. In [5], it was
shown that a similar relationship holds between the Laplacian spectra of the k-token
of G and the k-token of G, but now with respect to the Laplacian spectrum of the
Johnson graph.

Theorem 2.2 ([5]) Let G = (V , E) be a graph on n = |V | vertices, and let G be
its complement. For a given k, with 1 ≤ k ≤ n − 1, let us consider the token graphs
Fk(G) and Fk(G). Then, the Laplacian spectrum of Fk(G) is the complement of the
Laplacian spectrum of Fk(G) with respect to the Laplacian spectrum of the Johnson
graph J (n, k) = Fk(Kn). That is, every eigenvalue λJ of J (n, k) is the sum of one
eigenvalue λFk (G) of Fk(G) and one eigenvalue λFk (G) of Fk(G), where each λFk(G)

and each λFk(G) is used once:

λFk (G) + λFk(G) = λJ . (4)

Note that, in this result, it is not stated what the pairing of the eigenvalues of Fk(G) and
Fk(G) is, giving the corresponding eigenvalue of J (n, k). In the following section,
we improve this result by showing such a pairing, which is necessary for the proof of
Theorem 3.7.

As a consequence of Lemma 2.1(i) and Fk(G) = Fn−k(G), the fact that the alge-
braic connectivities of G and Fk(G) coincide
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only needs to be proved for the case k = �n/2	. Moreover, it was noted that this
result

also holds when the graph G is disconnected and for those graphs whose token
graphs are regular, which are Kn and Sn (with even n and k = n/2), and their com-
plements.

Besides, it is shown in [5] that this result
holds for the following infinite families of graphs.

Theorem 2.3 ([5]) For each of the following classes of graphs, the algebraic connec-
tivity of a token graph Fk(G) equals the algebraic connectivity of G.

(i) Let G = Kn be the complete graph on n vertices. Then, α(Fk(G)) = α(G) = n
for every n and k = 1, . . . , n − 1.

(ii) Let G = Sn be the star graph on n vertices. Then, α(Fk(G)) = α(G) = 1 for
every n and k = 1, . . . , n − 1.

(iii) Let G = Pn be the path graph on n vertices. Then, α(Fk(G)) = α(G)

= 2(1 − cos(π/n)) for every n and k = 1, . . . , n − 1.
(iv) Let G = Kn1,n2 be the complete bipartite graph on n = n1 + n2 vertices, with

n1 ≤ n2. Then, α(Fk(G)) = α(G) = n1 for every n1, n2, and k = 1, . . . , n − 1.

3 New algebraic results

In this section, we provide an algebraic method to prove that the algebraic connectiv-
ities of G and Fk(G) coincide for some infinite families of graphs.

In our proofs, we use the following concepts and results. As a consequence of
Lemma2.1, the spectrumof J (n, k) in (3), andTheorem2.2,we can state the following
lemma.

Lemma 3.1 Let G a graph on n vertices and k ≤ n/2. Let � be the set of pairs (λ, λ)

of eigenvalues of Fk(G) and Fk(G), with k ≤ n/2, sharing both the same eigenvector
v with J (n, k). Then, consider the partition of � into the sets �0,�1, . . . , �k such
that �0 = {(0, 0)}, and

� j = {(sp Fj (G)\sp Fj−1(G), sp Fj (G)\sp Fj−1(G))} for j = 1, . . . , k.

Let m j = (n
j

) − ( n
j−1

)
. Let λ1 ≤ λ2 ≤ · · · ≤ λm j be the eigenvalues of

sp Fj (G)\sp Fj−1(G) in non-decreasing order, and λ1 ≥ λ2 ≥ · · · ≥ λm j the eigen-

values of sp Fj (G)\sp Fj−1(G) in non-increasing order. Then,

λ j + λm j −i+1 = j(n − j + 1) for i = 1, . . . , m j . (5)

Proof Recall that every right value in (5) is an eigenvalue of J (n, j) with multiplicity
m j for j = 1, . . . , k. From Lemma 2.1, when we go from the spectra of {Fj−1(G),
Fj−1(G)} to the spectra of {Fj (G), Fj (G)}, all the eigenvalues of �0, . . . , � j−1
reappear (with eigenvectors v such that B�v 
= 0), together with ‘new’ eigenvalues
belonging to � j (with eigenvectors v such that B�v = 0). Similarly, when we go
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Fig. 2 Graph G and its complement graph G of Example 3.2

from J (n, j − 1) to J (n, j), the new eigenvalue is j(n − j + 1) with multiplicity m j

for j = 1, . . . , k. Then, from Theorem 2.2, m j coincides with the number of pairs in
� j and, moreover, each pair sums up to give the constant j(n − j + 1), that is,

� j = {(λ, λ) : λ + λ = j(n + 1 − j)} for j = 1, . . . , k,

which proves (5).
�

Let us show an example of Lemma 3.1.

Example 3.2 Consider graph G and its complement graph G of Fig. 2. The spectra of
G, G, and their k-tokens for k = 2, 3 are the following:

spG = {0, 2, 4[3], 6} ⊂ sp F2(G) = {0, 2, 4[5], 6[4], 8[3], 10}
⊂ sp F3(G) = {0, 2, 4[6], 6[4], 8[5], 10[3]}.

spG = {0[2], 2[3], 4} ⊂ sp F2(G)={0[3], 2[6], 4[4], 6[2]} ⊂ sp F3(G)={0[3], 2[8], 4[6], 6[2]}.

Then, as shown in Table 1, there is a pairing between the eigenvalues of F3(G) and
the eigenvalues of F3(G), satisfying Theorem 2.2. Namely,

sp F3(G) ⊕ sp F3(G) = sp J (6, 3) = {0, 6[5], 10[9], 12[5]}.

Thus, the pairs of �0, �1, �2, and �3 add up to 0, 6, 10, and 12, respectively.

Given a graph G = (V , E) of order n, we say that a vector v ∈ R
n is an embedding

of G if v ∈ Wn (that is, v�1 = 0). Note that if v is a λ-eigenvector of G, with λ > 0,
then it is an embedding of G.

For a graph G with Laplacian matrix L(G), and an embedding v of G, let

λG(v) := v�L(G)v

v�v
=

∑

(i, j)∈E
[v(i) − v( j)]2
∑

i∈V
v2(i)

, (6)
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Table 1 For Example 3.2, the spectra of F1(G) and F1(G), F2(G) and F2(G), and F3(G) and F3(G)

giving, respectively, the spectrum of J (6, 1), J (6, 2), and J (6, 3) by addition, according to Lemma 3.1

Spectrum ev G ev G ev Johnson

sp F0 = sp K1 0 0 0

sp F1 \ sp F0 2 4 6

4 2 6

4 2 6

4 2 6

6 0 6

sp F2 \ sp F1 4 6 10

4 6 10

6 4 10

6 4 10

6 4 10

8 2 10

8 2 10

8 2 10

10 0 10

sp F3 \ sp F2 4 8 12

8 4 12

8 4 12

10 2 12

10 2 12

where v(i) denotes the entry of v corresponding to the vertex i ∈ V (G). The value
of λG(v) is known as the Rayleigh quotient. If v is an eigenvector of G, then its
corresponding eigenvalue is λ(v). Moreover, for an embedding v of G, we have

α(G) ≤ λG(v), (7)

and we have equality when v is an α(G)-eigenvector of G.
The following result, Lemma 3.4, describes a particular ‘rank-one perturbation’

of a symmetric matrix. Hence, the given inequality is a consequence of eigenvalue
interlacing, as Bunch, Nielsen, and Sorensen described in [2]. In the case of trees, this
result is also a consequence of the following theorem by Patra and Lal [13, Th. 3.1].

Theorem 3.3 ([13]) Let e = (u, v) be an edge of a tree T . Let T̃ be the tree obtained
from T by ‘collapsing’ the edge e (that is, deleting e and identifying u and v). Then,
α(T̃ ) ≥ α(T ).

However, for completeness, we here provide a direct proof by using Fiedler eigen-
vectors (that is, those corresponding to the algebraic connectivity).

Lemma 3.4 Let G+ = (V +, E+) be a graph on the vertex set V = {1, 2, . . . , n + 1},
having a vertex of degree 1, say the vertex n + 1 that is adjacent to n. Let G = (V , E)
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be the graph obtained from G+ by deleting the vertex n + 1. Then,

α(G) ≥ α(G+),

with equality if and only if the α(G)-eigenvector v of G has entry v(n) = 0.

Proof Let v ∈ Wn be an eigenvector of G with eigenvalue α(G) and norm ‖v‖ = 1,
so that

λ(v) =
∑

(i, j)∈E

[v(i) − v( j)]2 = α(G). (8)

Let w ∈ R
n+1 be the vector with components w(i) = v(i) − v(n)

n+1 for i = 1, . . . , n

and w(n + 1) = w(n) = nv(n)
n+1 . Note that w is an embedding of G+ since

n+1∑

i=1

w(i) =
n∑

i=1

(
v(i) − v(n)

n + 1

)
+ w(n + 1) = 0 − nv(n)

n + 1
+ w(n) = 0.

Then, from (7),

α(G+) ≤ λ(w) =

∑

(i, j)∈E+
[w(i) − w( j)]2

∑

i∈V +
w2(i)

=

∑

(i, j)∈E
[v(i) − v( j)]2

∑

i∈V
[v(i) − v(n)

n+1 ]2 + w(n + 1)2
≤ α(G),

where the last inequality comes from (8) since, as v is an embedding of G,

∑

i∈V

[
v(i) − v(n)

n + 1

]2
=

∑

i∈V

[

v(i)2 − 2v(i)
v(n)

n + 1
+ v(n)2

(n + 1)2

]

= 1 + n
v(n)2

(n + 1)2
≥ 1.

Finally, the equality α(G+) = α(G) holds if and only if v(n) = 0. �
Let G be a graph with k-token graph Fk(G). For a vertex a ∈ V (G), let Sa :=

{A ∈ V (Fk(G)) : a ∈ A} and S′
a := {B ∈ V (Fk(G)) : a /∈ B}. Let Ha and H ′

a be the
subgraphs of Fk(G) induced by Sa and S′

a , respectively. Note that Ha ∼= Fk−1(G\{a})
and H ′

a
∼= Fk(G\{a}).

Lemma 3.5 Given a vertex a ∈ G and an eigenvector v of Fk(G) such that B�v = 0,
let

wa := v|Sa
and w′

a := v|S′
a
.

Then, wa and w′
a are embeddings of Ha and H ′

a, respectively.
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Proof Assume that the matrix B� has the first row indexed by a ∈ V (G). Then, we
have

0 = B�v =
(
1� 0�
B1 B2

) (
wa

w′
a

)
=

(
1�wa

B1wa + B2w
′
a

)
,

where 1� is a row
(n−1

k−1

)
-vector, 0 is a row

(n−1
k

)
-vector, B1 = B(n − 1, k − 1)�,

and B2 = B(n − 1, k)�. Then, 1�wa = 0, so that wa is an embedding of Ha .
Furthermore, since v is an embedding of G, we have 1�v = 1�wa +1�w′

a = 0 (with
the appropriate dimensions of the all-1 vectors). Hence, it must be 1�w′

a = 0, andw′
a

is an embedding of H ′
a . �

Theorem 3.6 For each of the following classes of graphs, the algebraic connectivity
of a token graph Fk(G) satisfies the following.

(i) Let Tn be a tree on n vertices. Then, α(Fk(Tn)) = α(Tn) for every n and k =
1, . . . , n − 1.

(ii) Let G be a graph such that α(Fk(G)) = α(G). Let TG be a graph where each vertex
of G is the root vertex of some (possibly empty) tree. Then, α(Fk(TG)) = α(TG).

Proof To prove (i), let V (Tn) = [n]. From previous comments, we can assume that
Tn is connected. Then, the result is readily checked for n ≤ 4 and k = 1, 2 and 3.
Now, we proceed by induction. Suppose n > 4 and k > 1. To our aim, by Lemma
2.1(i i), it suffices to show that if v with a given norm, say v�v = 1, is an eigenvector
of Fk := Fk(Tn), with B�v = 0, then λ(v) ≥ α(Tn). Let i ∈ [n]. As defined before,
let Si := {A ∈ V (Fk) : i ∈ A} and S′

i := {B ∈ V (Fk) : i /∈ B}. Let Hi and H ′
i be

the subgraphs of Fk induced by Si and S′
i , respectively. We have Hi ∼= Fk−1(Tn−1)

and H ′
i

∼= Fk(Tn−1), where Tn−1 = T \ i . Moreover, note that if vertex i is of degree
1 in Tn , then Tn−1 is also connected. Let wi := v|Si

and w′
i := v|S′

i
, by Lemma 3.5,

we know that wi and w′
i are embeddings of Hi and H ′

i , respectively. By the induction
hypothesis, we have

λ(wi ) =

∑

(A,B)∈E(Hi )

[wi (A) − wi (B)]2
∑

A∈V (Hi )

wi (A)2
≥ α(Tn−1),

and

λ(w′
i ) =

∑

(A,B)∈E(H ′
i )

[w′
i (A) − w′

i (B)]2
∑

A∈V (H ′
i )

w′
i (A)2

≥ α(Tn−1).

Since V (Hi ) ∪ V (H ′
i ) = V (Fk) and v�v = 1, we get

λ(v) =
∑

(A,B)∈E(Fk)

[v(A) − v(B)]2
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≥
∑

(A,B)∈E(Hi )

[wi (A) − wi (B)]2 +
∑

(A,B)∈E(H ′
i )

[w′
i (A) − w′

i (B)]2

≥ α(Tn−1)
[ ∑

A∈V (Hi )

wi (A)2 +
∑

B∈V (H ′
i )

w′
i (B)2

]

= α(Tn−1)
[ ∑

A∈V (Hi )

v(A)2 +
∑

B∈V (H ′
i )

v(B)2
]

= α(Tn−1) > α(Tn), (9)

where (9) follows from Lemma 3.4. (Notice that, since i has degree 1, collapsing the
edge of which i is an end-vertex is equivalent to removing i , so obtaining Tn−1.)

Furthermore, since λ(v) > α(Tn), we get that α(Tn) is an eigenvalue of both Tn

and Fk(Tn) with the same multiplicity.
Regarding (i i), it could be seen as a generalization of (i). Thus, it is proved in

the same way by induction on the number of vertices not in G (that is, the non-root
vertices of the trees), and starting from G. (The other way around, proved (i i), the
result in (i) is a corollary when we start with G = K1 or G = K2.) �

Note that the result of Theorem 3.6(i) implies the ones of Theorem 2.3(i i) and
(i i i).

Theorem 3.7 Let G be a graph on n vertices satisfying α(Fk−1(G)) = α(G) and
minimum degree

δ(G) ≥ φ(k) = k(n + k − 3)

2k − 1
(10)

for some integer k = 1, . . . , �n/2	. Then, the algebraic connectivity of its k-token
graph equals the algebraic connectivity of G, that is,

α(Fk(G)) = α(G).

Proof The hypothesis α(Fk−1(G)) = α(G) implies that, in sp Fk(G), all the eigen-
values of Fk(G) that are in �1, . . . , �k−1 must be greater than or equal to α(G).
Reasoning by contradiction, if α(Fk(G)) < α(G), then the eigenvalue α(Fk(G))

must belong to �k . Then, by Lemma 3.1, the eigenvalue λFk(G) = α(Fk(G)) must be
paired with the eigenvalue λmaxFk(G) belonging also to�k (both eigenvalues sharing
the same eigenvector v with J (n, k)). Thus,

α(G) + λmaxFk(G) > α(Fk(G)) + λmaxFk(G) = k(n − k + 1).

Thus, using that α(G) = n − λmax(G),

λmax(Fk(G)) > k(n − k + 1) − α(G) = k(n − k + 1) − n + λmax(G).

However, from the upper and lower bounds in (2) for the (Laplacian) spectral radius
of a graph, together with (1), we get
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2k�(G) ≥ λmax(Fk(G)) > k(n − k + 1) − n + λmax(G) ≥ (k − 1)(n − k) + �(G) + 1,

or, in terms of δ(G),

n − 1 − δ(G) = �(G) >
(k − 1)(n − k) + 1

2k − 1
.

Hence, δ(G) < n − 1 − (k−1)(n−k)+1
2k−1 = k(n+k−3)

2k−1 , contradicting the hypothesis. �
For the two extreme cases, k = 2 and k = n/2, we get the following consequences.

Corollary 3.8 Let G be a graph on n vertices and minimum degree δ(G).

(i) If δ(G) ≥ 2
3 (n − 1), then α(F2(G)) = α(G).

(ii) If δ(G) ≥ 3
4n, then G satisfies α(Fk(G)) = α(G) for every k = 1, . . . , n − 1.

Proof (i) With k = 2, the condition (10) becomes δ(G) ≥ 3
2 (n − 1). Then, since

α(F1(G)) = α(G), Theorem 3.7 gives the result.
(i i)Assuming that n is even (the odd case is similar), it is enough to prove the result

for k = n/2. In this case, the condition (10) becomes δ(G) ≥ φ(n/2) = n(3n−6)
4(n−1) . It

is readily checked that 3
4n > φ(n/2) > φ(k) for every k = 2, . . . , n

2 − 1. So, we can
use induction from case (i) to prove the hypotheses in Theorem 3.7 hold for every k.

�
Some examples of known graphs satisfying Corollary 3.8 are:

• With (minimum=maximum) degree n − 1, the complete graphs (already men-
tioned).

• With degree n − 2, the cocktail party (regular) graph (obtained from the complete
graph with an even number of vertices minus a matching).

• With degree n − 3, the complement (regular) graph Cn of the cycle with n ≥ 12
vertices.

• The complete r -partite graph G = Kn1,n2,...,nr 
= Kr for r ≥ 2, with number of
vertices n = n1 + n2 + · · · + nr , for n1 ≤ n2 ≤ · · · ≤ nr , with minimum degree
δ(G) = n1 + · · · + nr−1 and n ≥ 3nr − 2.

4 Conclusions

As explained in the Introduction, Caputo, Liggett, and Richthammer [3] proved the
Aldous’ spectral gap conjecture, which includes the until then conjecture that states
that the algebraic connectivity of a graph and its k-token graph coincide for any k. They
used randomwalks and interchanges of processes on aweighted graph.However, some
algebraic graph theory community researchers are looking for an algebraic proof. In
this paper, we provide an algebraic proof for some families of graphs. We think that
our techniques could be applied to other families and, perhaps, graphs in general.
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