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Abstract
Given an integer n, we introduce the integral Lie ring of partitions with bounded
maximal part, whose elements are in one-to-one correspondence to integer partitions
with parts in {1, 2, . . . , n−1}. Starting from an abelian subring, we recursively define
a chain of idealizers and we prove that the sequence of ranks of consecutive terms in
the chain is ultimately periodic. Moreover, we show that its growth depends of the
partial sum of the partial sum of the sequence counting the number of partitions. This
work generalizes our previous recent work on the same topic, devoted to the modular
case where partitions were allowed to have a bounded number of repetitions of parts
in a ring of coefficients of positive characteristic.
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1 Introduction and preliminaries

Given an integer n ≥ 3, we defined in a recent work a Lie ring structure on the set of
partitions with parts in {1, 2, . . . , n−1} and where each part is allowed to have at most
m − 1 repetitions, for some given m > 2. Within the acquired structure, here denoted
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as Lm(n), we recursively defined a chain of idealizers (Ni )i≥−1 originating from an
abelian subring T . We proved that the rank of Ni/Ni−1 as free Zm-module is qi+1,
where qi is the partial sum of sequence counting the number of partitions of i into at
least two parts, each allowed to be repeated at most m − 1 times [1]. The objective
was to tackle the unresolved problem posed by Aragona et al. [3] of computing the
growth of a chain of normalizers in a Sylow m-subgroup starting from an elementary
abelian regular subgroup T < Sym(mn), when m is an odd prime. Indeed, Lm(n)

was constructed as the iterated wreath product of Lie rings of rank one [1] and, when
m is prime, this corresponds exactly to the construction of the graded Lie algebra
associated with the lower central series of a Sylow m-subgroup of Sym(mn) [7]. In
this construction, the abelian subring N−1 = T at the base of the idealizer chain
corresponds to the elementary abelian regular subgroup T at the base of normalizer
chain. It is important to stress that the combinatorial equality mentioned above is valid
only for the first n−2 terms of the chain, and the problem of understanding the general
behavior of the chain is out of reach at the time of writing.

In this work, we address a similar problem in the case of characteristic zero, i.e., in
a Lie ring L(n) with integer coefficients of partitions with parts in {1, 2, . . . , n − 1}.
The main combinatorial difference between the two settings is that now each part is
allowed to have an unbounded number of repetitions. We show that this significantly
affects how the idealizer chain grows. In particular, we prove here that the sequence
of consecutive quotient ranks in the idealizer chain depends on the second partial sum
of the sequence of the integer partitions and is (ultimately) periodic.

We conclude this section by introducing the construction of the partition Lie ring
with integer coefficients as a Lie subring of the Witt algebra and by showing some
preliminary properties.

1.1 Preliminaries on theWitt algebra

Let L and H be finite dimensional Lie algebras over a field K , and let U(L) be the
universal enveloping algebra of L. It is well known that U(L) is a Hopf algebra
(see Kassel [4, Proposition V.2.4]) and that its dual space U(L)∗ = HomK (L, K ) is
an associative algebra on which L acts by way of the coadjoint action as a derivation
Lie algebra. In particular, the tensor product U(L)∗ ⊗K H inherits from H a Lie
algebra structure on which L acts as a Lie algebra of derivations via its action on
U(L)∗. The standard wreath product H �L is then defined to be the semidirect product
(U(L)∗ ⊗K H) � L [6]. In the special case, when L = Ku is a one-dimensional Lie
algebra and K is a field of characteristic 0, the algebra U(L) = K [u(n)]n≥0 is the
associative K -algebra of the divided powers u(n) = un

n! , where u
(i)u( j) = (i+ j

i

)
u(i+ j).

Its dual U(L)∗ can be then identified with the formal power series ring K [[x]] on
which L acts as an algebra of standard derivations, i.e., u · f (x) = ∂

∂x f (x).
We recall (see Strade [8, Chapter 2]) that the n-th Witt Lie algebra is defined as

W(n) :=
{

n∑

k=1

fk∂k | fk ∈ K [[x1, . . . , xn]]
}
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with bracket operation defined on its basis via

[ f ∂k, g∂h] :=
(
f

∂

∂k
g

)
∂h −

(
g

∂

∂h
f

)
∂k .

The iterated (restricted) wreath product

(Ku)�n := Ku � · · · � Ku︸ ︷︷ ︸
n times

can be identified with the subalgebra of W(n) having the monomial elements

x
λi1
i1

· · · xλih
ik

∂k , where 1 ≤ i1 < i2 < · · · < ih < k ≤ n, as a basis. A similar
construction, with K = Fp and divided powers of exponent at most p − 1, has been
used to describe the graded Lie algebra associated with the lower central series to
the iterated wreath product of n copies of the cyclic group of order p, i.e., the Sylow
p-subgroup of the symmetric group Sym(pn) [7].

1.2 The integral ring of partitions

In the present paper, we consider the integral ring of partitions, i.e., the Lie subring
of the iterated wreath product (Q u)�n , generated over Z by the monomial elements
described above. We now give a description of this ring starting from the construction
of the Lie ring over Zm of partitions with bounded maximal part [1], customizing it for
m = 0.We advise the reader to also refer to the cited paper for further details and to the
original problem of characterizing the chain of normalizers originating from a regular
elementary abelian group of order 2n in the Sylow 2-subgroup of the symmetric group
[2, 3].

Let � = {λi }∞i=1 be a sequence of non-negative integers with finite support, i.e.,

wt(�) =
∞∑

i=1

iλi < ∞.

The sequence � defines a partition of N = wt(�). Each nonzero i is a part of the
partition, and the integer λi is the multiplicity of the part i in �. The maximal part of
� is the number max

({i | λi 	= 0}). The set of the partitions whose maximal part less
than or equal to j is denoted by P( j).

The power monomial x�, where � is a partition, is defined as x� = ∏
i x

λi
i . Given

a positive integer n and denoting by ∂k the derivation given by the standard partial
derivative with respect to xk , where 1 ≤ k ≤ n, we define by L(n) the free Z-module
spanned by the basis

B := {
x�∂k | 1 ≤ k ≤ n and � ∈ P(k − 1)

}
,
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and we set Bu := {
x�∂k ∈ B | k = u

}
. The module L(n) is endowed with a structure

of Lie ring, where the Lie bracket is defined on the basis B by

[
x�∂k, x

�∂ j
] := ∂ j (x�)x�∂k − x�∂k(x�)∂ j

=

⎧
⎪⎨

⎪⎩

∂ j (x�)x�∂k if j < k,

−x�∂k(x�)∂ j if j > k,

0 otherwise.

This operation is then extended to aLie product onL(n) by bilinearity, and the resulting
structureL(n) is called the integral Lie ring of partitions with parts in {1, 2, . . . , n−1}.

In the remainder of the paper, we deal with homogeneous subrings of L(n), which
are defined as follows.

Definition 1.1 A Lie subring H of L(n) is said to be homogeneous if it is the free
Z-module spanned by some subset H of B.

The following result on homogeneous subrings can be proved as in the case of the
modular ring Lm(n) [1, Theorem 2.5]. Here and the remainder of the paper, if H is a
subset of B, then its idealizer is defined as

NB(H) := {b ∈ B | [b, h] ∈ ZH for all h ∈ H} .

Theorem 1.2 LetH be a homogeneous subring ofL having basisH ⊆ B. The idealizer
of H in L(n) is the homogeneous subring of L(n) spanned by NB(H) as a free Z-
module.

The chain of idealizers in Lm(n) originated from the abelian homogeneous Lie
subring T = 〈∂1, . . . , ∂n〉 [1]. Analogously, here we deal with the idealizer chain
defined in L(n) starting from T and defined as follows:

Ni =

⎧
⎪⎨

⎪⎩

T i = −1,

NL(n)(T) i = 0,

NL(n)(Ni−1) i ≥ 1.

(1)

1.3 Organization of the paper

The remainder of the paper is organized as follows: Sect. 2 is devoted to combinatoric
aspects of L(n): we introduce a chain of subsets (Ni )i≥−1, and we show that the
cardinalities of Ni \ Ni−1 depend, up to periodicity, on the second partial sum of
the sequence of integer partitions (see Corollary 2.12 and 2.13). In Sect. 3, we show
(see Theorem 3.4) that the free Z-modules spanned by the sets Ni s coincide with the
idealizers of Eq. (1), yielding our main contribution of Corollary 3.6, which connects,
up to periodicity, the rank of the freeZ-modulesNi/Ni−1 with the second partial sum
of the sequence of integer partitions.
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2 Combinatorics of the integral Lie ring of partitions

The methods crafted for positive characteristic scenarios are not well-suited for
the integral Lie ring of partitions. This situation calls for the introduction of novel
combinatorial tools that we are in the process of defining.

2.1 Levels of the basis elements

As we will show in the remainder of this paper, the combinatorial properties of L(n)

depend on the behavior of the functions defined below.

Definition 2.1 Let i ≥ −1 be an integer and let 1 ≤ ri ≤ n − 1 be such that i ≡
ri mod (n − 1). Write

i = (hi − 1)(n − 1) + ri ,

where

hi :=
⌊
i − 1

n − 1

⌋
+ 1.

The weight-degree function is defined as wd : ZB → Z by

wd(c · x�∂k) := wt(�) − deg(x�) + n − k,

and the i-th level function levi : ZB → Z by

levi (c · x�∂k) := hi wd(x
�∂k) + deg(x�) − 1.

We now show that the weight-degree function is bounded.

Lemma 2.2 Let x�∂k ∈ B. Then wd(x�∂k) ≥ n − k and wd(x�∂k) = n − k if
and only if x�∂k = xλ1

1 ∂k . Moreover, assume that levi (x�∂k) ≤ i for some i . Then
wd(x�∂k) ≤ n − 1 and wd(x�∂k) = n − 1 if and only if x�∂k = ∂1.

Proof Note that wd(x�∂k) = (
wt(�) − deg(x�)

) + n − k > n − k unless wt(�) =
deg(x�), which is equivalent to x�∂k = xλ1

1 ∂k .
Let now i be such that levi (x�∂k) ≤ i and assume wd(x�∂k) ≥ n − 1. Then

i ≥ levi (x
�∂k)

= hi wd(x
�∂k) + deg(x�) − 1

≥ hi (n − 1) + deg(x�) − 1

= (n − 1) + (hi − 1)(n − 1) + ri + deg(x�) − ri − 1

= i + (n − 1) − ri + deg(x�) − 1.
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This implies that (n−1)− ri +deg(x�)−1 ≤ 0. Since ri ≤ n−1, this is possible
only if either ri = n − 1 and deg(x�) ≤ 1 or ri = n − 2 and deg(x�) = 0.

In the first case, we have either k = 1 and hence x�∂k = ∂1, as required, or

x� = x
λ j
j , where 1 ≤ j < k and λ j ≤ 1. This implies n − 1 ≤ wd(x�∂k) =

( j − 1)λ j + n− k ≤ j + n− k − 1 and consequently k ≤ j , which contradicts j < k.
In the second case, we have x�∂k = ∂k and n−1 ≤ wd(x�∂k) = n− k. This leads

again to k = 1 and x�∂k = ∂1. ��
Proposition 2.3 If x�∂k, x�∂u ∈ B do not commute, then

levi ([x�∂k, x
�∂u]) = levi (x

�∂k) + levi (x
�∂u) − hi (n − 1) (2)

and

wd([x�∂k, x
�∂u]) = wd(x�∂k) + wd(x�∂u) − (n − 1). (3)

Moreover, if levi (x�∂k) ≤ i and lev j (x�∂u) ≤ j for some i, j ≥ −1, then

wd([x�∂k, x
�∂u]) ≤ min(wd(x�∂k),wd(x

�∂u)), (4)

with equality if and only if one of x�∂k or x�∂u is ∂1.

Proof Let x�∂u = [x�∂k, x�∂u]. We have

wd(x�∂u) = wt(�) + wt(�) − k − deg(x�) − deg(x�) + 1 + n − u

= wd(x�∂k) + wd(x�∂u) − (n − 1).

As a consequence,

levi (x
�∂u) =hi wd(x

�∂u) + deg(x�) − 1

=hi
(
wd(x�∂k) + wd(x�∂u) − (n − 1)

) + deg(x�) + deg(x�) − 2

= levi (x
�∂u) + levi (x

�∂k) − (n − 1)hi .

The last part of the claim is a straightforward consequence of Lemma 2.2. ��
Remark 1 A direct check shows that

lev j (x
�∂k) = levi (x

�∂k) + (h j − hi )wd(x
�∂k).

Lemma 2.4 If levi (x�∂k) ≤ i , then there exists j ≤ i such that lev j (x�∂k) = j .

Proof We argue by induction on i . If i = −1, then h−1 = 0 and hence

lev−1(x
�∂k) = deg(x�) − 1 ≤ −1

so deg(x�) = 0 and lev−1(x�∂k) = −1.
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Let now i ≥ 0. We can assume that � := levi (x�∂k) < i . Note that

lev�(x
�∂k) = levi (x

�∂k) + (h� − hi )wd(x
�∂k) ≤ levi (x

�∂k) = �.

If lev�(x�∂k) = �, then we have proved the claim, otherwise lev�(x�∂k) <

levi (x�∂k) = � < i and the induction hypothesis is satisfied. Therefore, lev j (x�∂k) =
j for some j ≤ � < i . ��
Lemma 2.5 If levi (x�∂k) ≤ i , then levi+(n−1)(x�∂k) ≤ i + (n − 1). In particular,
levi (x�∂k) > i for all i ≤ h(n − 1) if and only if levi (x�∂k) > i for all i such that
(h − 1)(n − 1) + 1 ≤ i ≤ h(n − 1).

Proof By Lemma 2.2, we have that wd(x�∂k) ≤ n − 1. Thus, hi+(n−1) = hi + 1 and

levi+(n−1)(x
�∂k) = wd(x�∂k) + levi (x

�∂k) ≤ (n − 1) + i .

��

2.2 Introducing the chain

We are now ready to introduce a chain of subsets of B. We will prove later that they
span, as free modules, the idealizers of Eq. (1).

Definition 2.6 For i ≥ −1 let

Ni := {
x�∂k | lev j (x

�∂k) ≤ j for some j ≤ i
}
.

Moreover, for i ≥ 0 let

Li := Ni \ Ni−1.

Remark 2 Note thatN−1 = {∂1, . . . , ∂n}, thatT is the freeZ-module spanned byN−1,
and that the subsets {Ni }i≥−1 constitute an ascending chain of B. Note also that an
easy application of Lemma 2.4 gives

Ni = {
x�∂k | lev j (x

�∂k) = j for some j ≤ i
}
.

Furthermore, x�∂k ∈ Li if and only if i is minimum such that levi (x�∂k) = i , i.e.,

Li =
{
x�∂k ∈ B

∣∣∣i = min
j

{
j = lev j (x

�∂k)
}}

.

Proposition 2.7 Let i ≥ 0. If x�∂k ∈ Li , then ri > wd(x�∂k). In particular if
k < n − ri + 1, then Li ∩ Bk = ∅.
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Proof Assume by contradiction that x�∂k ∈ Li and ri ≤ wd(x�∂k). We have that i is
minimum such that i = levi (x�∂k). Thus, j := i − wd(x�∂k) > i − (n − 1) is such
that

(hi − 2)(n − 1) < j = (hi − 1)(n − 1) + ri − wd(x�∂k) ≤ (hi − 1)(n − 1).

Hence h j = (hi − 1) and, by Remark 1,

j = i − wd(x�∂k) = levi (x
�∂k) − wd(x�∂k) = lev j (x

�∂k),

where j < i , a contradiction.
If k < n−ri +1, then ri ≤ n−k ≤ wd(x�∂k). From above, we haveLi ∩Bk = ∅.

��
The following corollary is straightforward.

Corollary 2.8 If rt = 1 then Lt =
{
xt+1
1 ∂n

}
.

2.3 Periodicity

We can now define a concept of periodicity for the sequence {Li }i≥0. The following
definition is crucial.

Definition 2.9 The period function ν : B → B is defined by

ν(x�∂k) := xn−1−wd(x�∂k )
1 x�∂k .

Remark 3 Note that if x�∂k ∈ Li , then

levi+n−1(ν(x�∂k)) = levi (ν(x�∂k)) + wd(ν(x�∂k))

= levi (ν(x�∂k)) + wd(x�∂k)

= levi (x
�∂k) + (

n − 1 − wd(x�∂k)
) + wd(x�∂k)

= levi (x
�∂k) + n − 1 = i + n − 1,

so ν(x�∂k) ∈ Li+n−1, as t = i+n−1 is triviallyminimum such that levt (ν(x�∂k)) =
t . Moreover, since the period map is injective, we have that |Li | ≤ |Li+n−1|.
Remark 4 Let i ≥ 1 and k > u ≥ 1. Suppose that x�∂k ∈ Li and x�∂u ∈ Lhi (n−1).
Equation (2) shows that λux�∂k := [x�∂k, x�∂u] ∈ ZLi , as levi (x�∂k) =
levi (x�∂k), whereas Eq. (3) shows that wd(x�∂k) < wd(x�∂k). Note also that the
element bu = xhi1 xu−1∂u ∈ Lhi (n−1). Hence, given x�∂k ∈ Li , there exists a sequence
u1, u2, . . . , us such that

[x�∂k, bu1 , bu2 , . . . , bus ] = λxi−hi (n−k)+1
1 ∂k ∈ ZLi
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for a suitable non-zero λ ∈ Z. Equation (3) shows that wd([x�∂k, bu]) = wd(x�∂k)−
1. Hence, from Lemma 2.2, we have s ≤ k − 2. Moreover, if λu 	= 0, then

[x�∂k, bu, . . . , bu︸ ︷︷ ︸
λu times

, bu−1, . . . , bu−1︸ ︷︷ ︸
λu times

, . . . , b2, . . . , b2︸ ︷︷ ︸
λu times

] = λx−λu
u xλu(u+(hi−1)(u−1))

1 x�∂k

for some nonzero λ ∈ Z, so that
∑

λu(u − 1) = s ≤ k − 2, a condition which is
trivially equivalent to wd(x�∂k) ≤ n − 2, as already seen in Lemma 2.2.

The previous remark together with Eq. (3) and Lemma 2.2 yields the following result.

Proposition 2.10 If Li ∩ Bk 	= ∅, then there exists at most one element in Li ∩ Bk of
the form xt1∂k , in which case it is the unique element having minimum weight degree in
Li ∩Bk . The exponent t = i −hi (n−k)+1 is determined by the condition xt1∂k ∈ Li .

Now we can prove one of the main contributions of this work where we give a
precise characterization of the elements of Li .

Theorem 2.11 Let i ≥ 0. A basis element x�∂k belongs to Li ∩ Bk if and only if the
following conditions are satisfied:

(a) n − k ≤ wd(x�∂k) < ri ,
(b) i = levi (x�∂k).

Proof Suppose first that (a) and (b) are satisfied. We have levi (x�∂k) = i , and so
x�∂k ∈ L j ∩ Bk , for some j ≤ i . By contradiction, assume that j = lev j (x�∂k) and
that i 	= j . We have i > j = (h j − 1)(n − 1) + r j = lev j (x�∂k) = h j wd(x�∂k) +
deg(x�) − 1. Note that at least one of the two conditions hi > h j or ri > r j must be
satisfied, so we have

ri = i − (hi − 1)(n − 1)

= levi (x
�∂k) − (hi − 1)(n − 1)

= hi wd(x
�∂k) + deg(x�) − 1 − (hi − 1)(n − 1)

= (hi − h j )(wd(x
�∂k) − n + 1) + lev j (x

�∂k) − (h j − 1)(n − 1)

= (hi − h j )(wd(x
�∂k) − n + 1) + j − (h j − 1)(n − 1)

= (hi − h j )(wd(x
�∂k) − n + 1) + r j

≤
{
wd(x�∂k) + (r j − n + 1) ≤ wd(x�∂k) < ri if hi > h j

r j < ri if hi = h j ,

which is, in both the cases, a contradiction. Hence j = i .
Conversely, suppose that x�∂k ∈ Li ∩ Bk , so i = levi (x�∂k). By Proposition 2.7

and Lemma 2.2, we obtain that n − k ≤ wd(x�∂k) < ri .
��
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2.4 Connection to the sequence of partitions

Let us give a description of the behavior of the chain {Ni }i in terms of integer partitions.
Let {an}∞n=0 be the sequence whose term an is equal to the number of partitions of n.
Let also bn = ∑n

i=0 ai be the partial sum of {ai } and cn = ∑n
i=0 bn be the partial

sum of {bi }, or the second partial sum of {ai }. The first values of the sequences are
displayed in Table 1, which also contains the corresponding OEIS references [5].

We are now ready to show that, after a threshold value with depends quadratically
on n, the sequence {|Li |} is periodic and how it depends on {ci }. Here the value ri is
as in Definition 2.1.

Corollary 2.12 If i > (n − 4)(n − 1) and 1 ≤ k ≤ n, then

|Li ∩ Bk | = bri+k−n−1

and |Li | = cri−1.

Proof Let x�∂k ∈ Li ∩ Bk . By Theorem 2.11, x�∂k satisfies

(a) n − k ≤ wd(x�∂k) < ri ,
(b) i = levi (x�∂k).

Letting θu = λu+1, the condition (a) can be rewritten as 0 ≤ ∑
u≥1 uθu < ri +

k − n, where θu is a non-negative integer. There are exactly bri+k−n−1 sequences
� = {θu}∞u=1, including the trivial one, satisfying this condition and determining the
values of λu for u ≥ 2. The value of λ1 is uniquely determined by the condition (b).
Indeed, wd(x�∂k) does not depend on λ1 and by (b) we have i = hi wd(x�∂k)+λ1+∑

u≥2 λu − 1. Moreover, by the hypotheses we have hi ≥ n − 3. Thus,

λ1 = i − hi wd(x
�∂k) −

∑

u≥2

λu + 1

= (hi − 1)(n − 1) + ri − hi wd(x
�∂k) −

∑

u≥2

λu + 1

= hi
(
n − 1 − wd(x�∂k)

) − n + 1 + ri −
∑

u≥2

λu + 1

≥ hi (n − 1 − ri + 1) − n + 1 + ri − ri − k + n + 2

= hi (n − ri ) + 3 − k ≥ hi + 3 − k ≥ n − k ≥ 0

is uniquely determined and non-negative.
Finally, the equality |Li | = cri−1 is obtained computing

∑n
k=2 |Li ∩ Bk |. ��

A straightforward consequence is the following result, which proves that the sequence
{|Li |}i≥0 is ultimately periodic, i.e., there exist integers k and j such that |Li | = |Li+k |
for all i ≥ j .

Corollary 2.13 If i > (n − 4)(n − 1), then the period function ν is a bijection from Li

to Li+n−1.
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We conclude this section with an explicit example where we highlight the periodic
structure of the sequence {Li }.
Example 2.14 Let n = 5 and i ≥ 5. We list the non-empty sets Li ∩ Bk .

ri = 1

Li ∩ B5 =
{
xi+1
1 ∂5

}
;

ri = 2

Li ∩ B5 =
{
xi+1
1 ∂5, x

i−hi
1 x2∂5

}

Li ∩ B4 =
{
xi+1−hi
1 ∂4

}
;

ri = 3

Li ∩ B5 =
{
xi+1
1 ∂5, x

i−hi
1 x2∂5, x

i+1−2hi
1 x22∂5, x

i−2hi
1 x3∂5

}

Li ∩ B4 =
{
xi+1−hi
1 ∂4, x

i−2hi
1 x2∂4

}

Li ∩ B3 =
{
xi+1−2hi
1 ∂3

}
;

ri = 4

Li ∩ B5 =
{
xi+1
1 ∂5, x

i−hi
1 x2∂5, x

i+1−2hi
1 x22∂5, x

i−2hi
1 x3∂5,

xi−2−3hi
1 x32∂5, x

i−1−3hi
1 x2x3∂5, x

i−3hi
1 x4∂5

}

Li ∩ B4 =
{
xi+1−h1
1 ∂4, x

i−2hi
1 x2∂4, x

i+1−3hi
1 x22∂4, x

i−3hi
1 x3∂4

}

Li ∩ B3 =
{
xi+1−2hi
1 ∂3, x

i+1−3hi
1 x2∂3

}

Li ∩ B2 =
{
xi+1−3hi
1 ∂2

}
.

3 The idealizer chain over the ring of integers

We conclude the paper by proving that the idealizer chain is generated by the subsets
Ni of Definition 2.6. We start by describing the commutator structure of the chain
{Ni }i≥−1.

Lemma 3.1 If i < j , then [Ni ,N j ] ⊆ ZN j−1.

Proof Let x�∂k ∈ Ni and x�∂u ∈ N j be such that [x�∂k, x�∂u] 	= 0. By definition
of N j there exist � ≤ j and m ≤ i such that lev�(x�∂u) ≤ � and levm(x�∂k) ≤ m.
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Wemay assumem ≤ �, otherwise we interchange the roles of i and j in the statement
and we argue by induction.

If x�∂k = ∂1, then

lev�−1([x�∂k, x
�∂u]) ≤ lev�([x�∂k, x

�∂u]) = lev�(x
�∂u) − 1 ≤ � − 1.

Thus, [x�∂k, x�∂u] ∈ N j−1.
Assume now that x�∂k 	= ∂1.
By Proposition 2.3, wd(x�∂k) < n − 1. If hm = h�, then

lev�([x�∂k, x
�∂u]) = lev�(x

�∂k) + lev�(x
�∂u) − h�(n − 1)

= levm(x�∂k) + lev�(x
�∂u) − h�(n − 1)

≤ levm(x�∂k) + � − h�(n − 1) = levm(x�∂k) + r� − (n − 1) ≤ m.

If m = �, then � ≤ j − 1 and so [x�∂k, x�∂u] ∈ N j−1. Otherwise m < � ≤ j and

levm([x�∂k, x
�∂u]) ≤ lev�([x�∂k, x

�∂u]) ≤ m < j,

which implies [x�∂k, x�∂u] ∈ N j−1.
The remaining possibility is that hm < h�. In this case m < � and wd(x�∂k)(h� −

hm) ≤ (n − 1)(h� − hm) − 1, thus

lev�([x�∂k, x
�∂u]) = lev�(x

�∂k) + lev�(x
�∂u) − h�(n − 1)

= levm(x�∂k) + lev�(x
�∂u) − h�(n − 1) + wd(x�∂k)(h� − hm)

≤ levm(x�∂k) + lev�(x
�∂u) − h�(n − 1) + (n − 1)(h� − hm) − 1

≤ m − hm(n − 1) + � − 1 = rm − (n − 1) + � − 1 ≤ � − 1.

Hence, lev�−1([x�∂k, x�∂u]) ≤ lev�([x�∂k, x�∂u]) ≤ � − 1, therefore
[x�∂k, x�∂u] ∈ N j−1.

��
As straightforward consequence is the following corollary.

Corollary 3.2 N j ⊆ NB(N j−1).

We prove now the opposite inclusion.

Proposition 3.3 N j = NB(N j−1).

Proof By the previous corollary it suffices to show that N j ⊇ NB(N j−1). Looking
for a contradiction, we assume that x�∂k ∈ NB(N j−1) is such that levi (x�∂k) > i
for all i ≤ j . Set

x�∂u =: x (h j−1)(u−�)

1 x�∂u,
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where 1 ≤ � < u, and s := (h j − 1)(n − 1) ≤ j − 1. We have hs = h j − 1 and

levs(x
�∂u) = (h j − 1)(� − 1 + n − u) + (h j − 1)(u − �) = (h j − 1)(n − 1) = s.

Hence, both x�∂u and [x�∂k, x�∂u] belong to N j−1. Assume that either λu 	= 0 for
some 1 < u < n or � = k, so [x�∂k, x�∂u] 	= 0. For some i ≤ j − 1, we have
levi ([x�∂k, x�∂u]) = i . We start with assuming that i > s and that h j = h j−1, which
in turn implies hi = h j−1 = h j . We have

i = levi ([x�∂k, x
�∂u])

= levi (x
�∂k) + levi (x

�∂u) − hi (n − 1)

= lev j (x
�∂k) + hi (� − 1 + n − u) + (h j − 1)(u − �) − hi (n − 1)

= lev j (x
�∂k) + h j (� − 1 + n − u) + (h j − 1)(u − �) − h j (n − 1)

= lev j (x
�∂k) + (� − u) > j + (� − u).

As a consequence, we have j − 1 ≥ i > j + (� − u). Since we may alternatively
choose � or u, with respect to our assumption on x�∂u such that u − � = 1, we have
a contradiction.

Suppose now that i ≤ s and that h j = h j−1, and so hi + 1 ≤ h j−1 = h j . We have

i = levi ([x�∂k, x
�∂u])

= levi (x
�∂k) + levi (x

�∂u) − hi (n − 1)

= levi (x
�∂k) + levs(x

�∂u) + (hi − hs)wd(x
�∂u) − hi (n − 1)

= levi (x
�∂k) + levs(x

�∂u) + (hi − hs)(� − 1 + n − u) − hi (n − 1)

= levi (x
�∂k) + hs(n − 1) + (hi − hs)(� − 1 + n − u) − hi (n − 1)

= levi (x
�∂k) + (hi − hs)(� − u) ≥ levi (x

�∂k),

a contradiction.
Suppose now that j − 1 = s so that h j−1 = hs = h j − 1. By a repeated use of

Lemma 2.5, wemay assume levt ([x�∂k, x�∂u]) ≤ t for some t such that s−(n−1) <

t ≤ s = j − 1. Hence,

t ≥ levt ([x�∂k, x
�∂u])

= levs([x�∂k, x
�∂u])

= levs(x
�∂k) + levs(x

�∂u) − hs(n − 1)

= lev j−1(x
�∂k) + s − s = lev j−1(x

�∂k)

giving the contradiction lev j−1(x�∂k) ≤ t ≤ s = j − 1.
We are now left with the case x�∂k = xλ1

1 ∂n . In order to have [x�∂k, x�∂u] 	= 0,

x�∂u must be set to ∂1. In particular, [x�∂k, x�∂u] = λ1x
λ1−1
1 ∂n ∈ ZN j−1, and also
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levi (x
λ1−1
1 ∂n) = λ1 − 2 is independent of i . Thus, for some i ≤ j − 1 we have

lev j−1(x
λ1−1
1 ∂n) = levi (x

λ1−1
1 ∂n) = λ1 − 2 ≤ i ≤ j − 1.

Hence, j ≥ λ1 − 1 = lev j (x�∂k) > j , a contradiction. ��

We are now able to prove the claimed result on the idealizer chain.

Theorem 3.4 LetMi be the free Z-module spanned by Ni , for i ≥ −1. ThenMi is a
homogeneous subring and

Mi = NL(n)(Mi−1) = Ni .

Proof The statement follows directly from Theorem 1.2 and Proposition 3.3 noting
that T = Z ∂1 + · · · + Z ∂n = N−1 is an abelian homogeneous subring. ��

Remark 5 A straightforward consequence of Lemma 2.2 is that L (n) 	= ⋃
i≥−1Ni

for n ≥ 3. For example, the element x32∂3, which has weight-degree n, cannot belong
to any of the Ni s. We point out that, unlike the case of the Lie ring Lm(n) (m > 0),
this shows that L(n) is not nilpotent, beside not being finitely generated.

We can now conclude the paper with the characterization of the idealizers of Eq. (1).

Theorem 3.5 If i ≥ 0, then x�∂k ∈ Ni\Ni−1 if and only if i is the least non-negative
integer such that i = levi (x�∂k).

Proof The proof follows by noticing that, by Remark 2, we have that x�∂k ∈ Ni\Ni−1
if and only if i is the least non-negative integer such that i = levi (x�∂k). ��

A trivial consequence of Corollary 2.12 is the following conclusive result.

Corollary 3.6 For i > (n − 4)(n − 1), the Z-module Ni/Ni−1 is free of rank cri−1.
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