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Abstract
In this paper, we present results concerning the stabilizer G f in GL(2, qn) of the
subspace U f = {(x, f (x)) : x ∈ Fqn }, f (x) a scattered linearized polynomial in
Fqn [x]. Each G f contains the q − 1 maps (x, y) �→ (ax, ay), a ∈ F

∗
q . By virtue

of the results of Beard (Duke Math J, 39:313–321, 1972) and Willett (Duke Math J
40(3):701–704, 1973), the matrices inG f are simultaneously diagonalizable. This has
several consequences: (i) the polynomials such that |G f | > q − 1 have a standard

form of type
∑n/t−1

j=0 a j xq
s+ j t

for some s and t such that (s, t) = 1, t > 1 a divisor
of n; (i i) this standard form is essentially unique; (i i i) for n > 2 and q > 3, the
translation plane A f associated with f (x) admits nontrivial affine homologies if and
only if |G f | > q − 1, and in that case those with axis through the origin form two
groups of cardinality (qt − 1)/(q − 1) that exchange axes and coaxes; (iv) no plane
of type A f , f (x) a scattered polynomial not of pseudoregulus type, is a generalized
André plane.
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1 Introduction

A scattered polynomial is an Fq -linearized polynomial f (x) = ∑n−1
i=0 ai xq

i ∈ Fqn [x]
such that for any y, z ∈ Fqn the condition z f (y) − y f (z) = 0 implies that y and z
are Fq -linearly dependent. Scattered polynomials have been investigated for about 20
years because of their interest in various combinatorial contexts, such as blocking sets,
planar spreads and the related translation planes [10, 23], and rank distance codes (RD
codes), see [29] for a survey. The RD codes are codes in which words are matrices
and the distance between two matrices A and B is rk(A − B). For an RD code C in
F
m×n
q , an inequality analogous to Singleton’s one holds:

logq | C | ≤ max{m, n}(min{m, n} − d + 1) (1)

where d is the minimum distance of C. As it follows immediately from the defini-
tion of a scattered polynomial f (x), the set C f = 〈x, f (x)〉Fqn (seen as a subset of
EndFq (Fqn )) is a set of Fq -linear endomorphisms of Fqn having rank at least n − 1
and therefore the equality holds in (1). In other words, C f is amaximum rank distance
code, or MRD code (see [32]). One aspect of scattered polynomials that makes them
interesting objects of research is that they are rare. In fact, there are only three fami-
lies of scattered polynomials defined for infinite values of n: those of pseudoregulus
type [9, 22], the Lunardon-Polverino polynomials [23–25, 31], and the polynomials
described in [19, 21, 28]. See [3, 5] for asymptotic results in this direction. In Sect. 3
of this paper we derive some results on the stabilizer in GL(2, qn) of the Fq -subspace
U f = {(x, f (x)) : x ∈ Fqn } associated with a scattered polynomial f (x), which are
essential for themain results contained in the following sections. In Sect. 4,we consider
the classSn,q of the scattered polynomials such that the stabilizer ofU f has size greater

than q − 1. Any polynomial in Sn,q admits a standard form h(x) = ∑n/t−1
j=0 c j xq

s+ j t
,

t > 1, i.e., for any f (x) ∈ Sn,q the subspace U f is in the same orbit of Uh under the
action of GL(2, qn). Furthermore, such standard form is essentially unique. In Sect. 5,
we consider the translation planes associated with scattered polynomials, as defined
in [10]. We find that if f (x) is not in Sn,q , then the plane A f has no affine central
collineations. If on the contrary f (x) ∈ Sn,q , then there are only two centers of affine
homologies of A f . The related two groups of homologies in GL(2, qn) are such that
those in one group have axes and coaxes that are, respectively, coaxes and axes of the
homologies in the other group.

2 Preliminaries and notation

In this section, some fundamental notions about linear sets of the finite projective line
are recalled. The reader may refer to the surveys [29, 30]. Throughout this paper, q
denotes a power of a prime p.Moreover, in the following for a set S of field elements (or
vectors), we denote by S∗ the set of nonzero elements (nonzero vectors) of S. Let r , n ∈
N, r > 0, n > 1. Let U be an r -dimensional Fq -subspace of the (2n)-dimensional
vector space V (F2

qn , Fq). The following subset of PG(F2
qn , Fqn ) = PG(1, qn)
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LU = {〈v〉Fqn : v ∈ U∗}

is calledFq -linear set (or just linear set) of rankr . The linear set LU is scattered if it has
themaximumpossible size related to the givenq and r , that is, |LU | = (qr−1)/(q−1).
Equivalently, LU is scattered if and only if

dimFq

(
U ∩ 〈v〉Fqn

)
≤ 1 for any v ∈ F

2
qn . (2)

Any Fq -subspace U satisfying (2) is a scattered Fq-subspace.
Clearly, any Fq -linear set in PG(1, qn) of rank greater than n coincides with

PG(1, qn). So, the linear sets of rank n are called linear sets of maximum rank.
They are associated with linearized polynomials. An Fq -linearized polynomial, or

q-polynomial, in Fqn [x] is of type f (x) = ∑k
i=0 ai x

qi (k ∈ N). If ak 
= 0, then k is
the q-degree of f (x). It is well known that the Fq -linearized polynomials of q-degree
less than n in Fqn [x] are in one-to-one correspondence with the endomorphisms of
the vector space V (Fqn , Fq) (see [18, Chapter 3] and [29, Subsection 3.1]).
Let f (x) ∈ Fqn [x] be an Fq -linearized polynomial and define

U f = {(x, f (x)) : x ∈ Fqn },

and L f = LU f . Such L f is an Fq -linear set of maximum rank of PG(1, qn), and
is scattered if and only if f (x) is. Two Fq -linearized polynomials f (x) and g(x) in
Fqn [x] are said to be GL-equivalent (or �L-equivalent) when a φ in GL(2, qn) (resp.

in �L(2, qn)) exists such that Uφ
f = Ug .

Since PGL(2, qn) acts 3-transitively on PG(1, qn), any linear set of maximum rank
is projectively equivalent to an LU such that 〈(0, 1)〉Fqn /∈ LU . Therefore, a linearized
polynomial f (x) exists such that U = U f .

By abuse of notation, L f will also denote the set { f (x)/x : x ∈ F
∗
qn } of the non-

homogeneous projective coordinates of the points belonging to the set L f .
We will now introduce some more elements that will be investigated in this paper.

For more details on the relationship between scattered polynomials and translation
planes see [10]. We adopt the notation G{T } for the setwise stabilizer of T ⊆ S under
the action of a group G acting on S. Let G f = GL(2, qn){U f }, and G◦

f = G f ∪ {O},
where O is the zero 2 × 2 matrix.

3 The stabilizer of a scattered subspace of F
2
qn

3.1 Algebraic properties and representation as right idealizer

Regarding main definitions on MRD codes, the reader can refer to [19, 29, 32]. Below
we will recall just a few definitions, useful for understanding the next sections. Let
C ⊆ F

m×n
q be a rank distance code, its left idealizer and right idealizer are defined as

IL(C) = {X ∈ F
m×m
q : XC ∈ C for all C ∈ C},
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and

IR(C) = {Y ∈ F
n×n
q : CY ∈ C for all C ∈ C},

respectively. When C ⊆ F
m×n
q , m ≤ n, is a linear MRD code with minimum distance

d, i.e., an optimal code which is a vector space over Fq , it is well known that IL(C)

is a field with q ≤ |IL(C)| ≤ qm ; moreover, if max{d,m − d + 2} ≥ ⌊ n
2

⌋ + 1, its
right idealizer IR(C) is a field as well, with q ≤ |IR(C)| ≤ qn (see [24, Theorem 5.4]
and [29, Result 3.4]). Actually, if these are fields, they are isomorphic to subfields of
Fqm and Fqn , respectively. As a matter of fact, for any subfieldM of F

r×r
q containing

the identity matrix, F
r
q is a right vector space over M with exterior product xM , for

x ∈ F
r
q and M ∈ M. Then the following holds:

Theorem 3.1 Let C ⊆ F
m×n
q be a linear rank distance code. If IL(C) (resp. IR(C)) is

a field, then it is isomorphic to a subfield of Fqm (resp. Fqn ).

Given a scattered polynomial f (x), the set of q-polynomials

C f = {ax + b f (x) : a, b ∈ Fqn } = 〈x, f (x)〉Fqn
defines a linear MRD code of minimum distance n−1 over Fq . Recall that, given two
scattered polynomials f (x) and g(x) over Fqn , the corresponding MRD codes C f and
Cg are equivalent if there exist invertible L1, L2 ∈ EndFq (Fqn ) and ρ ∈ Aut(Fq) such
that

L1 ◦ ϕρ ◦ L2 ∈ Cg for all ϕ ∈ C f ,

where ◦ stands for the composition of maps and ϕρ(x) = ∑
aρ
i x

qi for ϕ(x) =
∑

ai xq
i
. We denote by (L1, L2, ρ) the equivalence defined above. In [31], the equiv-

alence between two codes C f and Cg is related to the �L-equivalence of the subspaces
U f and Ug , precisely

Theorem 3.2 [31, Theorem 8] Let f (x) and g(x) be scattered linearized polynomials.
Then C f and Cg are equivalent if and only if f (x) and g(x) are �L-equivalent.

If a rank distance code C is given as a subset of EndFq (Fqn ), then the notion of left
and right idealizer can be rephrased in this setting as follow

IL(C) = {ϕ ∈ EndFq (Fqn ) : ϕ ◦ f ∈ C for all f ∈ C}

and

IR(C) = {ϕ ∈ EndFq (Fqn ) : f ◦ ϕ ∈ C for all f ∈ C},

respectively. By [24, Corollary 5.6] and Theorem 3.1, both are isomorphic to subfields
of Fqn . Note that any MRD code C f associated with a scattered polynomial f (x) has
IL(C f ) isomorphic to the field Fqn .
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Proposition 3.3 [19, Lemma 4.1] LetLn,q be theFq-vector space of all q-polynomials
with q-degree less than n. Let f (x) ∈ Ln,q and denote C f the associated MRD code.
Then Aut(C f ) consists of elements of the type

g �→ αxq
m ◦ gσ ◦ L

with invertible L, α ∈ F
∗
qn , m ∈ {0, 1, . . . , n − 1} and σ ∈ Aut(Fq) such that

C f σqm ◦xqm ◦ L = C f .
For any α ∈ F

∗
qn , m ∈ {0, 1, . . . , n−1} and σ ∈ Aut(Fq), there is a bijection between

the set of all L such that (αxq
m
, L, σ ) ∈ Aut(C f ) and all linear isomorphism between

U f to U f σqm . Furthermore, IR(C f )
∗ and G f are isomorphic groups.

Remark 3.4 It is straightforward to verify that the group isomorphism constructed in
[19, Lemma 4.1] can be extended to a field isomorphism between IR(C f ) and G◦

f . In
particular, |G◦

f | = qt , where t divides n.

Theorem 3.5 [12, Theorem 2.2] Let C be an Fq-subspace of Ln,q . Assume that one
of the left and right idealizers of C is isomorphic to Fqn . Then there exists an integer
k such that | C | = qkn and C is equivalent to

⎧
⎨

⎩

k−1∑

i=0

ai x
qti +

∑

j /∈{t0,t1,··· ,tk−1}
g j (a0, · · · , ak−1)x

q j : a0, · · · , ak−1 ∈ Fqn

⎫
⎬

⎭
(3)

where 0 ≤ t0 < t1 < · · · < tk−1 ≤ n − 1 and the g j ’s are Fq-linear functions from
F
k
qn to Fqn . If the other idealizer of C is also isomorphic to Fqn , then C is equivalent

to

{
k−1∑

i=0

ai x
qti : ai ∈ Fqn

}

= 〈xqti : i = 0, 1, . . . , k − 1〉Fqn .

Proposition 3.6 If f (x) ∈ Fqn [x] is a scattered polynomial not �L-equivalent to a
polynomial of pseudoregulus type, then G◦

f is a subring ofF
2×2
qn isomorphic to a proper

subfield Fqt of Fqn .

Proof By Proposition 3.3 the subring G◦
f of F

2×2
qn is a field isomorphic to the right

idealizer of the MRD code C f associated with f . If this is not isomorphic to a proper

subfield of Fqn , then by Theorem 3.5, C f is equivalent to the MRD 〈x, xq�〉Fqn for
some � ∈ {0, 1, . . . , n − 1} with (�, n) = 1. By Theorem 3.2, f is equivalent to a
scattered polynomial of pseudoregulus type, a contradiction. ��

3.2 Stabilizers of all knownmaximum scattered subspaces

In this section we present all known scattered polynomials along with the stabilizers
of their related subspaces, up to one case that we will deal with in Sect. 4. As usual,
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Nqn/qt (x) = x (qn−1)/(qt−1), t a divisor of n, denotes the norm of x ∈ Fqn over Fqt .
We will identify any nonsingular matrix A ∈ F

2×2
qn with the map

(x, y) �→ (x, y)A

in GL(2, qn).
1. f (x) = xq

s
, (s, n) = 1 (pseudoregulus type). In this case

G f = {diag(α, αqs ) : α ∈ F
∗
qn }.

Cf. [11].
2. f (x) = xq

s + δxq
n−s

, (s, n) = 1, n > 3, Nqn/q(δ) 
= 0, 1 (Lunardon-Polverino
type). For even n:

G f = {diag(α, αq) : α ∈ F
∗
q2}.

For odd n:

G f = {diag(α, α) : α ∈ F
∗
q}.

Cf. [11].
3. f (x) = δxq

s + xq
s+n/2

, n ∈ {6, 8}, (s, n/2) = 1, Nqn/qn/2(δ) /∈ {0, 1}, with some
conditions on δ and q. In this case

G f = {diag(α, αqs ) : α ∈ F
∗
qn/2}.

Cf. [11].
4. f (x) = xq + xq

3 + δxq
5 ∈ Fq6 [x], with δ2 + δ = 1 for q odd; some conditions on

δ and q, for q even. In this case

G f = {diag(α, αq) : α ∈ F
∗
q2}.

Cf. [2, 13, 27].

5. ψh,t,s(x) = xq
s + xq

s(t−1) + h1+qs xq
s(t+1) + h1−qs(2t−1)

xq
s(2t−1)

, (4)

n = 2t , t ≥ 3, (s, n) = 1, q odd, Nqn/qt (h) = −1. Cf. [19, 21, 28]. The stabilizer is
described below for t > 4. We add a proof since the description in the quoted works
is not completely explicit.

Proposition 3.7 [19, 28] Let ψh,t,s be the scattered linearized polynomial in (4).
Assume t > 4. Then

Gψh,t,s =
{(

α 0
0 αq

)

: α ∈ F
∗
q2

}
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if t is even, and

Gψh,t,s =
{(

α ξ(hq
s + hq

s(t−1)
)

ξ

hqs +hqs(t−1) α

)

: α ∈ Fq , ξq
s + ξ = 0 and (α, ξ) 
= (0, 0)

}

(5)

if t is odd. In particular for h ∈ Fqt

Gψh,t,s =
{(

α −4η
η α

)

: α ∈ Fq , ηq
s + η = 0 and (α, η) 
= (0, 0)

}

.

Proof Let

(
α β

γ δ

)

be an element in Gψh,t,s . Then

βx + δψh,t,s = ψh,t,s(αx) + ψh,t,s(γψh,t,s(x))

As in the proof of [28, Proposition 4.13] and [19, Theorem 4.2], one obtains that
α ∈ Fq2 and β = γ = 0, if t is even, and α ∈ Fq and

γ = ξ

hqs − h−q(2t−1)s , (6)

where ξq
s + ξ = 0, if t is odd. Matching the coefficient of x in both sides, one gets

β = γ qs hq
s−1 − γ qs(t−1)

hq
s(t−1)−1 − h1−qs(t+1)

γ qs(t+1) + h1−qs(2t−1)
γ qs(2t−1)

.

Then, by (6), one obtains

β = −ξ

(
hq

s

hq2s+1 − 1
+ hq

s(t−1)

−1 − h1−qs(t−2) + hq
s−qst

hqs(t+2) − h−qst
+ hq

s(t−1)−qst

h − h−qs(2t−2)

)

= −ξ

(
hq

s

hq2s+1 − 1
+ hq

s(t−1)

hqs(2t−2)+1 − 1
+ hq

s

hqst+qs(t+2) − 1
+ hq

s(t−1)

hqs(t−2)+qst − 1

)

= ξ(hq
s + hq

s(t−1)
).

��
Remark 3.8 Proposition 3.7 can be extended to t ≥ 3. Indeed, for t = 3, it is enough to
note that any matrix of the set in the right-hand side of Formula (5) stabilizes Uψh,3,s .
Then the stabilizer in GL(2, qn) of Uψh,3,s coincides with this set, since it has to be
a proper subfield of Fq6 (cf. Proposition 3.6) and contains a matrix field of order q2.
For t = 4, see Remark 4.4.

Remark 3.9 Proposition 3.7, Remark 3.8 and 4.4 extend [6, Proposition 7.8, Corollary
7.9 and 7.10] for h ∈ Fqn\Fqt .
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3.3 Simultaneous diagonalization

In [33], Willett specialized the results in [7, 8] and characterized all subrings M of
r×r matrices over a finite field which are fields. We will briefly recall the main results
in [33].
Let F

r×r
q be the ring of all square matrices of order r over the finite field Fq , q = pe

and considerFq,r the collection of all subsets of F
r×r
q which are fields with the matrix

addition and multiplication inherited from F
r×r
q . Clearly, since the scalar matrices of

F
r×r
q form a matrix field, Fq,r is not empty.

Note that a matrix field M does not need to have the identity matrix Ir ∈ F
r×r
q as its

own identity, and hence the invertibility of a matrix in M is not equivalent to non-
singularity. Moreover, each nonzero matrix in M has the same rank of its identity
element.

A monic polynomial

f (x) = xk − a1x
k−1 − . . . − ak ∈ Fq [x]

is called primitive if it has a primitive element of the extension Fqk as root.

Theorem 3.10 [33, Theorem 1] LetM ⊆ F
r×r
q , |M| = pk, for some k ≥ 1. ThenM

is a field if and only if

M = {Ai : 1 ≤ i ≤ pk − 1} ∪ {O} (7)

for some matrix A which is similar over Fq to a matrix of the form diag(0, . . . , 0, D),
with D ∈ F

�×�
q satisfying f (D) = O, where f (x) = xk − a1xk−1 − . . . − ak is a

primitive polynomial over Fp.

Lemma 3.11 [33, Lemma 3] Let f (x) be a monic irreducible polynomial of degree k
over Fp and let d = (k, e). Then f (x) factors into d irreducible polynomials fi (x),
0 ≤ i ≤ d − 1, deg fi (x) = k/d, over Fq = Fpe .

Theorem 3.12 [33, Theorem 2] If D is an � × � matrix over Fq such that f (D) = O
where f (x) is a monic irreducible polynomial of degree k over Fp, then D is similar
over Fq to a matrix of the form

diag(Dn0 , Dn1 , . . . , Dnτ ) 0 ≤ ni ≤ d − 1 (8)

with Di = diag(C( fi ),C( fi ), . . . ,C( fi )), where C( fi ) is the companion matrix of
the irreducibile factor fi (x) of f (x).

Theorem 3.13 Let M be a matrix field in F
2×2
qn isomorphic to Fqt , 1 ≤ t ≤ n, t a

divisor of n. If M contains a nonsingular matrix, then there is P ∈ GL(2, qn) such
that

PMP−1 =
{(

x 0
0 xσ

)

: x ∈ Fqt

}

, (9)
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where σ ∈ Aut(Fqt ). In addition if diag(x, x) ∈ M for any x ∈ Fq , then σ ∈
Gal(Fqt |Fq).

Proof Since M ∈ Fqn ,2 and all its matrices are invertible, the matrix A in (7) is
similar over Fqn to a matrix D ∈ F

2×2
qn satisfying f (D) = O where f (x) is a primitive

polynomial over Fp and its degree is k = et . Now, by Lemma 3.11, f (x) factors in

Fqn into (et, en) = et = k polynomials of degree 1. Then fi (x) = x − ωpi with
0 ≤ i ≤ k − 1 and ω is a primitive element of F

∗
qt .

By Theorem 3.12, the matrix D is similar over Fqn to a matrix of form as in (8). We
have to distinguish two cases:

i) τ = 0, then D is similar over Fqn to a matrix

Dn0 = diag(C( fn0),C( fn0)) = diag(ωpn0 , ωpn0 )

and hence there exists a matrix P ∈ GL(2, qn) such that

PMP−1 = {diag(x, x) : x ∈ Fqt }.

i i) τ = 1, then D is similar over Fqn to a matrix

diag(C( fn0),C( fn1)) = diag(ωpn0 , ωpn1 ).

Denoted by σ the map x ∈ Fqt �−→ x pn1−n0 ∈ Fqt and noted that

diag(ωi pn0 , ωi pn1 ) = diag(x, xσ )

for x = ωi pn0 , one gets that there exists a matrix P ∈ GL(2, qn) such that

PMP−1 = {diag(x, xσ ) : x ∈ Fqt }.

Finally, if diag(x, x) ∈ M for any x ∈ Fq , thenM is an Fq -algebra and the automor-
phism σ belongs to Gal(Fqt |Fq). ��

Moreover, by (9), the matrix P diagonalizes all matrices of the matrix fieldM and
its rows are linearly independent eigenvectors v1, v2 ∈ F

2
qn\{(0, 0)} of all matrices in

M.

Example 3.14 Let t = n/2 be an odd integer, t ≥ 3 and ψ(x) = ψh,t,s(x) as in (4).

Let θ = hq
s + hq

s(t−1)
and

P =
(
1 θ

1 −θ

)

.

By (5)

PGψ P−1 =
{

P

(
α ξθ

ξ/θ α

)

P−1 : α ∈ Fq , ξq
s + ξ = 0 and (α, ξ) 
= (0, 0)

}
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=
{(

α + ξ 0
0 α − ξ

)

: α ∈ Fq , ξq
s + ξ = 0 and (α, ξ) 
= (0, 0)

}

.

Noting

(α + ξ)q = α − ξ

leads to

PGψ P−1 =
{(

a 0
0 aq

)

: a ∈ F
∗
q2

}

.

In conclusion, G◦
ψ is a subring of F

2×2
qn isomorphic to Fq2 .

We prove the following result for future reference.

Proposition 3.15 Let P1 = 〈v1〉Fqn and P2 = 〈v2〉Fqn be points of PG(1, qn), and let
f (x) ∈ Fqn [x] be a scattered polynomial. If v1 and v2 are eigenvectors of all matrices
in G f and G◦

f is not isomorphic to Fq , then Pi /∈ L f for i = 1, 2.

Proof Let t > 1, t | n and |G f | = qt − 1. Since f (x) is scattered,

G f ∩ {diag(x, x) : x ∈ Fqn } = {diag(x, x) : x ∈ Fq},

and so G f induces a group G̃ f in PGL(2, qn) of order (qt − 1)/(q − 1). Let ϕ ∈ G̃ f ,
if ϕ fixes P1, P2 and a point X ∈ L f \ {P1, P2}, then ϕ = id. Hence the orbit of
such a point under the action of G̃ f has order (qt − 1)/(q − 1). Then this number
divides the size of L f \ {P1, P2}. Since (qt − 1)/(q − 1) divides |L f | as well, if
1 ≤ |L f ∩ {P1, P2}| ≤ 2, then (qt − 1)/(q − 1) ∈ {1, 2}, a contradiction. ��

4 Standard form

From now on Sn,q will denote the set of all scattered polynomials f (x) ∈ Fqn [x] such
that G◦

f is not isomorphic to Fq .

Definition 4.1 Let h(x) = ∑n−1
i=0 bi xq

i
be a scattered polynomial,

�h = {(i − j) mod n : bib j 
= 0 and i 
= j} ∪ {n},

and let th be the greatest common divisor of �h . If th > 1 then h(x) is in standard
form.

For instance, if h(x) = xq + δxq
n−1 ∈ Fqn [x], Nqn/q(δ) 
= 0, 1, n even, then �h =

{2, n − 2, n} and th = 2. So, h(x) is in standard form. On the other hand if n is odd,
the same h(x) is not in standard form.
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Remark 4.2 If h(x) is in standard form, then

h(x) =
n/t−1∑

j=0

c j x
qs+ j t

, (10)

where t = th divides n, and 0 ≤ s < t . More precisely, s is coprime with t , otherwise
h(x) would be Fqr -linear for r = (s, t) contradicting the property to be scattered.

Theorem 4.3 Let h(x) be a scattered polynomial over Fqn . The following statements
are equivalent:

(i) |G◦
h | = qT , T > 1, and all elements of Gh are diagonal;

(ii) h(x) is in standard form.

If the conditions (i), (i i) above hold, then T = th and

G◦
h =

{(
α 0
0 αqs

)

: α ∈ FqT

}

(11)

where s is as in (10).

Proof Assume (i). Then, by Remark 3.4, T divides n. By Theorem 3.13, PG◦
h P

−1 is
in the form (9) for some nonsingular matrix P , and this implies that G◦

h is the set of
all diag(α, αqs ) with α ∈ FqT for some integer s, 0 ≤ s < T . Let ω ∈ FqT such that
Fq(ω) = FqT . Since Gh stabilizes the scattered subspace Uh , one gets that

h(ωx) = ωqs h(x) for all x ∈ Fqn .

This implies that if h(x) = ∑n−1
i=0 bi xq

i
, then

biω
qi = biω

qs for all i = 0, 1, . . . , n − 1.

So, if bi 
= 0, we have ωqn+i−s = ω and ω ∈ Fq(T ,i−s) . Then T |(i − s), so h(x) is in
standard form. Note that T divides th .

Next assume (i i), and so (10) holds with t = th > 1 and (s, t) = 1. Then it can be
directly checked that diag(α, αqs ) ∈ Gh for all α ∈ F

∗
qt . If α ∈ Fqt \Fq , then the only

eigenvectors of diag(α, αqs ) are in 〈(1, 0)〉Fqn and 〈(0, 1)〉Fqn . Since the elements of
Gh are simultaneously diagonalizable, such eigenvectors are common to all matrices
of Gh . Also, th ≤ T , that together with T |th gives T = th . ��
Remark 4.4 Since for even t the polynomial ψh,t,s(x) is in standard form, it follows
from Theorem 4.3 that Proposition 3.7 holds also for t = 4.

Theorem 4.5 Any scattered polynomial in standard form is bijective.

Proof A scattered polynomial in standard form is Fqt -semilinear where t > 1, this
implies that its kernel is an Fqt -subspace of Fqn and so it must be bijective. ��
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Remark 4.6 Note that if h(x) is in standard form, then h(x) = g(xq
s
) where g(x)

is an Fqt -linearized polynomial. Such g(x) is an R-qs-partially scattered polynomial
according to the definition given in [20]. Indeed, suppose

g(y)

y
= g(z)

z
,

y

z
∈ Fqs

with y, z ∈ F
∗
qn . Since g(x) is injective, putting y = yq

s

0 and z = zq
s

0 , one gets

g(yq
s

0 )

g(zq
s

0 )
= y

z
= y0

z0

and so

h(y0)

y0
= h(z0)

z0
.

Since h(x) is scattered, we have y0/z0 = y/z ∈ Fq .

Corollary 4.7 Let f (x) be a scattered polynomial in Sn,q . Then f (x) isGL-equivalent
to a polynomial h(x) in standard form.

Proof There is a nonsingular matrix P such that PG◦
f P

−1 is equal to the right-hand

side of (11) for some integer s. The map ϕ : X �→ X P−1 maps U f into an n-
dimensional Fq -subspace U . The stabilizer of U in GL(2, qn) is the multiplicative
group of the field (11). Therefore, if (0, y) ∈ U for some y ∈ F

∗
qn , then (0, αy) ∈ U

for all α ∈ Fqt , contradicting the scatteredness of f (x). As a consequence, U = Uh ,
with h(x) a scattered Fq -linearized polynomial, and Gh = PG f P−1. The assertion
follows from Theorem 4.3. ��

We will refer to the scattered polynomial h(x) above as the standard form of f (x).
Only polynomials with a stabilizer not isomorphic to the multiplicative group of F

∗
q

have a standard form.
The next result follows again from Theorem 3.13, taking into account that in the

case of Gh the automorphism σ is not the identity in Fqt , and means that the standard
form is essentially unique.

Proposition 4.8 If h(x) and h′(x) are two scattered polynomials in standard form and
areGL-equivalent to a scattered polynomial f (x), then there are a, b ∈ F

∗
qn such that

h′(x) = ah(bx), or h′(x) = ah−1(bx).

Proof Since h(x) and h′(x) are GL-equivalent, a relation Uh′ = Uh P with P ∈
GL(2, qn) holds. Since both G◦

h′ and G◦
h = PG◦

h′ P−1 consist solely of diagonal
matrices, having with the exception of the scalar matrices distinct eigenspaces of
dimension one, either P = diag(b−1, a), or

P =
(

0 a
b−1 0

)
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for some a, b ∈ F
∗
qn . In the first case, Uh′ = Uh P implies that for any x ∈ Fqn an

y ∈ Fqn exists such that (x, h′(x)) = (b−1y, ah(y)), implying h′(x) = ah(bx). In the
latter case, for any x ∈ Fqn an y ∈ Fqn exists such that (x, h′(x)) = (b−1h(y), ay),
implying h′(x) = ah−1(bx). ��

Since any polynomial that is �L-equivalent to f (x) is GL-equivalent to f σ (x) for
some automorphism σ of Fqn , we have

Proposition 4.9 If h(x) is a scattered polynomial in standard form GL-equivalent to
a scattered q-polynomial f (x), then hσ (x) is a scattered polynomial in standard form
GL-equivalent to f σ (x).

So, two scattered polynomials in Sn,q having h(x) and h′(x) as standard forms are
�L-equivalent if, and only if, there are a, b ∈ F

∗
qn and an automorphism σ of Fqn ,

such that h′(x) = ahσ (bx), or h′(x) = a(h−1)σ (bx).

Example 4.10 Assume q ≡ 1 (mod 4), t ≥ 3 odd, n = 2t , h ∈ Fq , (s, t) = 1,
ψ(x) = ψh,t,s . It holds

ψ(x) = xu + xu
t−1 − xu

t+1 + xu
2t−1

, u = qs . (12)

The remainder of this section is devoted to find a standard form for ψ(x). It can be
directly checked that

ψ−1(x) = 1

4
(xu − xu

t−1 + xu
t+1 + xu

2t−1
).

Since q ≡ 1 (mod 4), a ρ ∈ Fq exists such that ρ2 = −1. Two eigenvectors of all
nonscalar matrices in Gψ (cf. Proposition 3.7) are (1, 2ρ), (1,−2ρ). Then a standard
form for ψ(x) will be a q-polynomial h(x) such that

Uψ

(
2ρ 2ρ
−1 1

)

= Uh .

Since

(x, ψ(x))

(
2ρ 2ρ
−1 1

)

= (2ρx − ψ(x), 2ρx + ψ(x)),

one has to find the inverse of the map 2ρx − ψ(x).
Let h1(x) = x+2ρψ−1(x). This map satisfies h1(2ρx−ψ(x)) = −2xu

2t−1 −2xu .
Next, define h2(x) = 1

4

∑t
i=1(−1)i xu

2i−1
. Thismap satisfies h2(−2xu

2t−1−2xu) =
x . Therefore, h2 ◦ h1 is the inverse of 2ρx − ψ(x).
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A standard form for ψ(x) is then

h(x) = h2 ◦ h1(2ρx + ψ(x))

= h2
(
4ρx + ψ(x) − 4ψ−1(x)

)
= h2

(
4ρx + 2xu

t−1 − 2xu
t+1

)

= 1

2

t∑

i=1

(−1)i
(
2ρx + xu

t−1 − xu
t+1

)u2i−1

.

Since

t∑

i=1

(−1)i
(
xu

t−1 − xu
t+1

)u2i−1

= 2
t−1∑

i=1

(−1)i+1xu
t+2i

,

one obtains

h(x) = ρ

t∑

i=1

(−1)i xu
2i−1 +

t−1∑

i=1

(−1)i+1xu
t+2i

.

The form of h(x) is in agreement, by virtue of Theorem 4.3, with the fact that G◦
ψ is

isomorphic to Fq2 .

Example 4.11 Using similar arguments as above one obtains the standard form H(x)
for ψ(x) = ψh,3,s(x). Let θ = hq

s + hq
2s
, and define

M =
(

θ θ

1 −1

)

= 2θ P−1,

where P is the matrix in Example 3.14. Let H(x) satisfying UψM = UH , i.e.,

UH = {(θx + ψ(x), θx − ψ(x)) : x ∈ Fqn }.

The map θx + ψ(x) is injective and the inverse is up to a factor

�(x) = (−hq
s + h1+q2s )x − h(hq

s + hq
2s

)xq
s − h1+qs+q2s (1 + h)xq

3s

+h1+q2s (hq
s + hq

2s
)xq

5s
.

The standard form is up to a factor �(θx − ψ(x)), that is

cH(x) = (1 − h1+q2s )xq
s + (h + h2)xq

3s + h1+q2s (h + hq
s
)xq

5s
(c ∈ F

∗
qn ).

(13)

Note that for h ∈ Fq2 , the trinomial above is equal to that obtained in [4, Section 3]
multiplied by (h + h2).
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5 Homologies of related translation planes

In order to make this paragraph self-contained, some concepts related to finite trans-
lation planes are recalled. The reader is referred to [1, 17, 26] for a general treatment
of the topic.

A (planar) spread of a (2n)-dimensional Fq -vector space V is a collection F of
qn + 1 subspaces of V of dimension n over Fq , pairwise meeting trivially. Clearly the
union of all elements of F is F

2
qn . The geometry AF whose points are the elements

of F
2
qn and whose lines are the cosets of the subspaces in the collection F is an affine

translation plane, and every finite translation plane arises in this way. The elements of
F are called components ofAF and can be regarded both as lines through the origin,
and as points at infinity.

From now on, take V = F
2
qn as Fq -vector space for the construction above. The

affine plane AD associated with the Desarguesian spread

D =
{
〈v〉Fqn : v ∈ (F2

qn )
∗}

is isomorphic to the affine plane over Fqn .
If a collineation κ of a projective plane fixes a line � pointwise, then � is an axis of κ;

if every line through a point C is fixed setwise, then C is a center of κ . A collineation
κ has an axis if and only if it has a center; in this case, if κ is not the identity, axis and
center are unique. A nontrivial collineation having an axis is a central collineation. If
the center of a central collineation κ belongs to the axis, then κ is called an elation;
otherwise it is a homology.

A collineation of an affine plane is called an affine central collineation if its exten-
sion to the projective plane is a central collineation, and the axis is a proper line. Since
the lines fixed by a central collineation are precisely the axis and the lines through
the center, the center of an affine central collineation κ is a point at infinity (that is, a
component). Any affine line through the center is called a coaxis of κ .

The kernel of AF is

K (AF ) = {δ ∈ End(F2
qn ) : δ(W ) ⊆ W for any W ∈ F},

where End(F2
qn ) denotes the endomorphism ring of the vector space F

2
qn . As is well

known, K (AF ) is a field, isomorphic to the kernel of any quasifield co-ordinatizing
AF , and trivially contains Fq . Any δ ∈ K (AF ), δ 
= 0, is a homology, called a kernel
homology of AF .

If κ is a collineation of an affine traslation plane AF , then there exists a K (AF )-
semilinear automorphism λ of F

2
qn and an u ∈ F

2
qn , such that κ(v) = λ(v) + u for all

v ∈ F
2
qn .

Let κ be an affine central collineation of AF . Let λ be the K (AF )-semilinear
automorphism related to κ , as above. Then there is a component W ∈ F such that the
restriction of λ to W is the identity map. As a matter of fact, let a ∈ F

2
qn and W ∈ F

123



Journal of Algebraic Combinatorics

such that the restriction of κ to a + W is the identity map. By

λ(a) + λ(x) + u = a + x for any x ∈ W and λ(0, 0) = (0, 0),

one deduces λ(x) = x for any x ∈ W .
Next the procedure described in [10] for obtaining a translation plane from a scat-

tered Fq -linearized polynomial f (x) ∈ Fqn [x] is reported. In [10], most results are
stated for q > 3, which we will assume from now on. The property of scatteredness
implies that if h, h′ ∈ Fqn are Fq -linearly independent, then hU f ∩ h′U f = {(0, 0)}.
Furthermore, the union of all Fq -subspaces hU f , h ∈ F

∗
qn , is equal to the union of all

subspaces in

L f = {〈(x, f (x))〉Fqn : x ∈ F
∗
qn }

which is a subset of the Desarguesian spread D. Therefore,

B f = (D \ L f
) ∪ {hU f : h ∈ F

∗
qn }

is a spread of F
2
qn , defining a translation plane A f = AB f . The kernel of such plane

is isomorphic to Fq [10]. Recall that

Theorem 5.1 [10, Theorem 4.2] If f (x) ∈ Fqn [x] is a scattered polynomial, and
q > 3, then the Fq-semilinear automorphism λ related to any collineation of A f

belongs to �L(2, qn), i.e., it is Fqn -semilinear.

Let H f = {dϕ : d ∈ F
∗
qn , ϕ ∈ G f } = F

∗
qnG f . This H f is the group of all linear

collineations of the translation plane A f by [10, Corollary 4.3].

Proposition 5.2 Let f (x) ∈ Fqn [x] be a scattered polynomial, and q > 3, n > 2.
Let κ be an affine central collineation of A f , and let λ be the semilinear automor-
phism related to κ . Then the automorphism of Fqn associated with λ is trivial. As a
consequence, λ ∈ H f .

Proof Let q = pe, 0 ≤ k < ne, and define x̃ = x pk for any x ∈ Fqn . A component of
A f , say W , exists which is pointwise fixed by

λ : (x, y) �→ (x̃, ỹ)

(
a b
c d

)

, ad − bc 
= 0.

Four cases are possible.

1) W = {(0, y) : y ∈ Fqn }. This implies d ỹ = y for any y ∈ Fqn hence k = 0.
2) W = {(x,mx) : x ∈ Fqn }. Then ax̃ + cm̃x̃ = x for any x ∈ Fqn leading to the

thesis trivially once again.
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3) W = hU f , h ∈ F
∗
qn , and L f is not of pseudoregulus type. Then ah̃x̃ + ch̃ f̃ (x) =

hx for any x ∈ Fqn . Let f (x) = ∑n−1
i=0 ai xq

i
. It holds

ah̃x̃ + ch̃
n−1∑

i=0

ãi x̃
qi − hx = 0 (mod xq − x). (14)

Since L f is not of pseudoregulus type,
∑n−1

i=0 ãi x̃q
i
has at least two monomials of

distinct degrees not of type �x̃ (mod xq
n − x) and at least one of them is not of

type �′x (mod xq
n − x). Hence (14) implies c = 0 and x̃ = x for any x ∈ Fqn .

4) W = hU f , h ∈ F
∗
qn and L f is of pseudoregulus type. Then [14] there exists

ϕ ∈ GL(2, qn) and s ∈ {1, 2, . . . , n − 1}, (s, n) = 1, such that (hU f )
ϕ = R

where R = {(x, xqs ) : x ∈ Fqn }. Therefore λ′ = ϕ ◦ λ ◦ ϕ−1 fixes R pointwise.
The automorphism of Fqn related to λ′ is again x �→ x̃ . So

(x̃, x̃q
s
)

(
A B
C D

)

= (x, xq
s
) for all x ∈ Fqn , AD − BC 
= 0.

Assume k 
= 0. Then Ax̃ + Cx̃q
s = x for any x implies A = 0, C = 1 and

x̃ = xq
n−s

. The equation Bx̃ +Dx̃q
s = xq

s
implies then x̃ = xq

s
; so, xq

n−s = xq
s

for all x ∈ Fqn , contradicting (s, n) = 1.

��
Remark 5.3 Proposition 5.2 cannot be extended to n = 2, because xq

n−s = xq
s
does

not contradict (n, s) = 1. For n = 2, every line of A f that is not also a line of the
Desarguesian planeAD is of type a+hU f , a ∈ F

2
q2
, h ∈ F

∗
q2
. This is a Baer subplane

of AD containing the q + 1 points of L f at infinity. Therefore, A f is a well-known
Hall plane [15, Chapter X], and we will not deal with this case.

Recall that for f (x) ∈ Fqn [x] a scattered polynomial, the kernel homology group
of the associated Desarguesian plane is the set of all maps λa : (x, y) �→ (ax, ay),
a ∈ F

∗
qn . Despite the name, if a /∈ Fq , then λa is a collineation ofA f , and not a central

collineation. The maps of type λa with a ∈ F
∗
q are the kernel homologies of A f .

Given two groups G and H of affine homologies and two lines �, m, if � is axis of
any element in G and coaxis of any element in H , and furthermore m is axis of any
element in H and coaxis of any element in G, then G and H are called symmetric
affine homology groups.

The following theorem describes the structure of the central collineations of A f

and generalizes the result found in [16] that deals with f (x) of Lunardon-Polverino
type. Recall that Sn,q denotes the set of all scattered Fq -linearized polynomials in
f (x) ∈ Fqn [x], such that |G f | > q − 1.

Theorem 5.4 Assume that f (x) ∈ Fqn [x] is a scattered polynomial and q > 3, n > 2.

(i) If f (x) /∈ Sn,q , then the planeA f admits no nontrivial affine central collineation
group; the full collineation group in GL(2, qn) has order (qn − 1) and is the
kernel homology group of the associated Desarguesian plane.
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(ii) If f (x) ∈ Sn,q , and G f is isomorphic toF
∗
qt , the planeA f admits cyclic symmet-

ric affine homology groups of order (qt−1)/(q−1)but admits no nontrivial affine
elation. Two distinct components X and Y exist such that any affine homology
has center either in X or in Y . Such components are elements of the Desar-
guesian spread D of F

2
qn . The full collineation group in GL(2, qn) is the direct

product of the kernel homology group of the associated Desarguesian plane of
order (qn − 1) by a cyclic homology group of order (qt − 1)/(q − 1).

Proof We first determine the full collineation group in GL(2, qn), that is, H f . By
Proposition 5.2, all affine central collinations of A f fixing the origin are in H f . By
Theorem 3.13, H f is conjugate, by a nonsingular matrix P , to a group

PH f P
−1 =

{

d

(
α 0
0 αqs

)

: d ∈ F
∗
qn , α ∈ F

∗
qt

}

,

where t divides n, and (s, t) = 1. If f (x) /∈ Sn,q such group is the set of all scalar
matrices of the kernel homology group of the Desarguesian plane.

Next, assume f (x) ∈ Sn,q . The map ϕ : X �→ X P−1 is an isomorphism between
A f and some translation plane A′ = AB′ . The stabilizer of B′ in GL(2, qn) is then
PH f P−1. The map M �→ PMP−1 maps affine central collineations in A f with
axis through the origin into collineations in A′ of the same type, and conversely. If
W is an eigenspace of a nonscalar matrix in PH f P−1, then W = X ′ = 〈(1, 0)〉Fqn
or W = Y ′ = 〈(0, 1)〉Fqn . Let X = X ′P , Y = Y ′P . If a nonscalar λ ∈ H f fixes
some points of A f , then they are precisely either those in X or those in Y . Assume
X is an eigenspace with eigenvalue one. Since by Proposition 3.15 X ,Y ∈ B f , λ is a
homology of axis X and center Y . The same argument holds exchanging X and Y .

Consider the subgroup of PH f P−1

K = {diag(1, αqs−1) : α ∈ F
∗
qt }.

This is a cyclic homology group of order (qt − 1)/(q − 1) generated by an element
of the type diag(1, ωqs−1) where ω is a primitive element of F

∗
qt . Since any element

in PH f P−1 can be written uniquely in the following way

(
d 0
0 d

) (
1 0
0 αqs−1

)

, (15)

the statements regarding structure and size of the collineation group in GL(2, qn)
follow. ��
Remark 5.5 In the case of a linear set of pseudoregulus type, the points X and Y in
Theorem 5.4 are known as transversal points [22]. It remains an open problemwhether
in general these transversal points depend only on the linear set L f or depend on the
polynomial representing it.

Definition 5.6 LetG be agroup actingon an abeliangroupW . If nonontrivial subgroup
of W is invariant under the action of G, then G acts on W irreducibly.
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Proposition 5.7 [26] Let A be a generalized André translation plane. Then there is a
group G of collineations ofA, such that for any component W ofA, with at most two
exceptions, G{W } acts on W irreducibly. Furthermore, any element of G is the product
of two affine homologies.

Corollary 5.8 Let f (x) ∈ Fqn [x] be a scattered polynomial, and assume that A f

is a generalized André plane. Then for any component W of A f , with at most two
exceptions, (H f ){W } acts on W irreducibly.

As it has been proved in [10, 23], if L f is a linear set of pseudoregulus type, then
A f is an Andrè plane. On the other hand, it holds

Theorem 5.9 Assume that f (x) ∈ Fqn [x], q > 3, is a scattered polynomial, and that
L f is not of pseudoregulus type. Then A f is not a generalized André plane.

Proof Assume that A f is a generalized André plane. Define ϕ : X �→ X P−1 as in
Theorem 5.4. So, by Corollary 5.8, for any W in B′, with at most two exceptions,
(PH f P−1){W } acts irreducibly onW . Since (qn −1)/(q−1) > 2, it may be assumed
that (PH f P−1){W } acts irreducibly on a component of type

W = (hU f )
ϕ, h ∈ F

∗
qn .

Next, note that

PH f P
−1 = {dPMP−1 : M ∈ G f , d ∈ F

∗
qn }.

Assume dPMP−1 ∈ (PH f P−1){W } for M ∈ G f , d ∈ F
∗
qn . For any x ∈ Fqn there

exists y ∈ Fqn such that

dh(x, f (x))MP−1 = h(y, f (y))P−1.

This implies d(x, f (x)) ∈ U f and d ∈ Fq since f (x) is scattered. Since d I2 ∈ G f

for any d ∈ F
∗
q , one deduces that any element of (PH f P−1){W } is of type PMP−1

with M ∈ G f . The component W of B′ is an n-dimensional scattered Fq -subspace of
F
2
qn . By Proposition 3.15,W ∩ ({0}×Fqn ) = {(0, 0)}. Therefore, there is an Fq -linear

map g : Fqn → Fqn such that

W = {(x, g(x)) : x ∈ Fqn }.

By Proposition 3.6, any matrix in PG f P−1 has coefficients in some Fqt with t < n.
Then, since {(x, g(x)) : x ∈ Fqt } is a subgroup of (W ,+) invariant under the action
of (PH f P−1){W }, (PH f P−1){W } does not act irreducibly on W , a contradiction. ��

Theorem 5.9 has been proved in [16] for a polynomial of Lunardon-Polverino type.
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