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Abstract
This work is a continuation of [Y. Fittouhi and A. Joseph, Parabolic adjoint action,
Weierstrass Sections and components of the nilfibre in type A]. Let P be a parabolic
subgroup of an irreducible simple algebraic group G. Let P ′ be the derived group of
P , and letm be the Lie algebra of the nilradical of P . A theorem of Richardson implies
that the subalgebraC[m]P ′

, spanned by the P semi-invariants inC[m], is polynomial.
A linear subvariety e + V of m is called a Weierstrass section for the action of P ′ on
m, if the restriction map induces an isomorphism of C[m]P ′

onto C[e + V ]. Thus,
a Weierstrass section can exist only if the latter is polynomial, but even when this
holds its existence is far from assured. Let N be zero locus of the augmentation
C[m]P ′

+ . It is called the nilfibre relative to this action. Suppose G = SL(n,C), and let
P be a parabolic subgroup. In [Y. Fittouhi and A. Joseph, loc. cit.], the existence of a
Weierstrass section e+V inmwas established by a general combinatorial construction.
Notably, e ∈ N and is a sum of root vectors with linearly independent roots. The
Weierstrass section e + V looks very different for different choices of parabolics
but nevertheless has a uniform construction and exists in all cases. It is called the
“canonical Weierstrass section”. Through [Y. Fittouhi and A. Joseph, loc. cit. Prop.
6.9.2, Cor. 6.9.8], there is always a “canonical” component N e of N containing e.
It was announced in [Y. Fittouhi and A. Joseph, loc. cit., Prop. 6.10.4] that one may
augment e to an element eVS by adjoining root vectors. Then the linear span EVS of
these root vectors lies in N e and its closure is just N e. Yet, this same result shows
that N e need not admit a dense P orbit [Y. Fittouhi and A. Joseph, loc. cit., Lemma
6.10.7]. For the above [Y. Fittouhi and A. Joseph, loc. cit., Theorem 6.10.3] was
needed. However, this theorem was only verified in the special case needed to obtain
the example showing thatN e may fail to admit a dense P orbit. Here a general proof
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is given (Theorem 4.4.5). Finally, a map from compositions to the set of distinct non-
negative integers is defined. Its image is shown to determine the canonical Weierstrass
section. One may anticipate that the remaining components of N can be similarly
described. However, this is a long story and will be postponed for a subsequent paper.
These results should form a template for general type.

Keywords Invariants · Parabolic adjoint action · The nilfibre

Mathematics subject classification 17B35

1 Introduction

The base field is the field of complex numbers C. For every positive integer n, we set
[1, n] = {1, 2, , . . . n}.

1.1
Let G be a simple, connected algebraic group overC and g its Lie algebra. Let h be

a Cartan subalgebra of g. Let H be the unique connected closed subgroup of G with
Lie algebra h.

Let � ⊂ h∗ be the set of roots for the pair (g, h). Let �+ be a choice of positive
roots and π the resulting set of simple roots. Let n (resp. n−) be the subalgebra of
g spanned by the positive (resp. negative) root vectors. Then b := h + n is a Borel
subalgebra of g. It will remain fixed throughout.

The Weyl group of G is the subgroup W of Aut h generated by the reflections
sα : α ∈ �, where sαh = h − α(h)α∨, for all h ∈ h, with α∨ the coroot to α.

1.2
A (standard) parabolic subalgebra of g is one containing b.
For any subset π ′ ⊂ π , let rπ ′ be the reductive Lie subalgebra of g generated over h

by the root vectors xα, x−α;α ∈ π ′. It is the Levi factor of a unique standard parabolic
subalgebra pπ ′ . It is complemented by the nilradical mπ ′ of pπ ′ and indeed mπ ′ is the
span of the root subspaces xβ : β ∈ �+ \Nπ ′ ∩�+. All standard parabolics so obtain.

In what follows, the π ′ subscript will often be omitted.
Let p′ denote the derived algebra of p. Let P (resp. P ′) denote the unique closed

subgroup of G with Lie algebra p (resp. p′).
1.3
As a consequence of a theorem of Richardson,C[m]P ′

is a polynomial algebra—[4,
2.2.3].

The nilfibre N for the action of P on m is defined to be the zero locus of the
augmentation C[m]P ′

+ .
Given e ∈ m and V a linear subspace of m, one calls e + V a linear subvariety of

m.
A Weierstrass section for the action of P on m is a linear subvariety e + V ⊂ m

such that restriction ϕ of functions induces an isomorphism ofC[m]P ′
ontoC[e + V ].

A Weierstrass section realizes rather explicitly the polynomiality of C[m]P ′
. It

also has the significant geometric interpretation that every P ′ orbit meeting e + V ,
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meets the latter at just one point, so providing a canonical representative in that orbit.
Polynomiality is not enough to ensure the existence of aWeierstrass section [4, 1.2.7].

The main result in [5, 5.4.12] was the existence of a Weierstrass section e + V for
the action of a parabolic on its nilradical in type A. The proof was rather combinatorial
but nevertheless essentially canonical.We call e+V the canonicalWeierstrass section.

A main point is that e belongs to a canonical component N e of N which can be
determined. We described N e in some detail in [5, Cor. 6.9.8], which we reproduce
here in 2.7. Here we start by extending this description proving in particular [5, Prop.
6.10.4], given here as Prop. 4.5.3, which we previously only verified in some needed
special cases.

1.4
In order to place our results in a form thatmaymore easily generalize to allG simple,

let us describe how the canonical Weierstrass section e + V , noted in 1.3, determines
the canonical component N e. Then one can ask whether from a component of N
one may construct a Weierstrass section.

Call e ∈ N regular if it generates a dense P orbit in a component of N , thereby
determining this component.

Let Nreg denote the subset of all regular elements inN .
Of course, a Weierstrass section is by no means unique. However, when e ∈ Nreg,

then any other Weierstrass section with this property is determined up to a choice of
component and up to conjugation.

Thus, an “abstract” description of allWeierstrass sections should start by describing
the P orbits in Nreg. Then given e ∈ Nreg one should choose V as a vector space
complement to p.e in m. This is how the “Kostant Section” is obtained when p = g.
In that case Nreg is irreducible.

A first difficulty is that in the construction of a Weierstrass section e + V of [5,
5.4.12] the resulting e may be “too small” to be regular.

This is partly overcome by augmenting e to an element eVS by adjoining [5, 6.10.4]
canonically chosen co-ordinate vectors to e, which we call V S elements following the
work of Victoria Sevostyanova [8].

A second (serious) difficulty is that Nreg may be empty. In [5, Lemma 6.10.7] it
was shown that a component ofN may contain no regular orbit.

Yet, in our construction, eVS is a sum of weight vectors. Call eVS quasi-regular if
the corresponding direct sum EVS of weight subspaces has the property that P.EVS
is dense in some necessarily unique component N e of N . Then N e is determined
by eVS and so by e. It is called the canonical component.

In Sect. 3, we give a proof of the quasi-regularity eVS. It is by no means easy.
The main point in the distinction between regular and quasi-regular elements is that

H .eVS need not be dense in EVS—[5, 6.10.7].
Our aim is to show that every component of N admits a quasi-regular element.

However, it is by nomeans obvious that the existence of a quasi-regular element should
lead to a Weierstrass section, nor that such a construction would extend to all types.
For the moment it remains a signpost along the road to the solution of an immensely
difficult problem.

1.5
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An orbital variety closure is the closure of a set of the form B.(n∩w(n)) : w ∈ W .
It is called a hypersurface orbital variety if it is also a hypersurface in some nilradical
of a parabolic subalgebra. As noted in [4, Lemma 2.3.4], the generators of C[m]P ′

are put into bijection with the hypersurface orbital varieties in m, by taking zero
loci. This holds for all g simple, but only in type A can one easily determine the
hypersurface orbital varieties [6, Prop. 2.17]. They have been described in classical
types by Perelman [7], but the details are far from transparent and so difficult to
translate to a general case-free form. Here as briefly discussed in [4, 3.4], the real
difficulty lies in the subtle nature of the Springer construction of simple Weyl group
modules associated to non-trivial representations of the component group of a given
nilpotent orbit and as a consequence we do not know how to determine such modules
arising from hypersurface orbital varieties (in type E)—see [4, Remark 3.4.9].

1.6
More generally let u be a subalgebra of n. The B saturation set defined by u is just

the closure B.u of B.u. Remarkably, the canonical componentN e takes this form [5,
Cor. 6.9.8] and moreover [5, 6.9.7] has dimension d := dimm − g with g = dim V .
The proof is far from easy.

Our eventual aim is to show that every irreducible component of the nilfibre is a B
saturation set defined by a subalgebra of n and to determine this subalgebra (which
need not be unique). In general, this B saturation set is not an orbital variety closure.
As noted in [5, 6.9.9], this holds if and only if dim G.u = 2 dim B.u. Examples 3, 4
of [5, 6.10.9] show that this can hold and this can fail.

2 Type A: the Zero Locus of the Benlolo–Sanderson invariant

2.1
From now on we assume that G is simple of type A, that is isomorphic to SL(n,C)

for some integer n > 1. In this case the Weyl group W is just the symmetric group Sn

on n letters. Again the component group pf any orbit is trivial and so Springer theory
recovers the classical fact that there is a bijection between nilpotent orbits and simple
Weyl group modules (in type A).

LetMn , or simplyM, denote the set of n × n matrices over C and in this we write
we write xi, j : i, j ∈ [1, n], for the standard matrix units. It is sometimes called the
(i, j)th coordinate function, or co-ordinate vector, which assigns to M its value at its
(i, j)th entry.

Then the Lie algebra sl(n,C) of SL(n,C) is just the subspace Mn of traceless
matrices over C given a Lie bracket through the commutator.

Let αi : i ∈ [1, n − 1] be the simple roots in the Bourbaki notation [2] and set
αi, j := αi + · · · + α j−1. If i < j , then xi, j is the root vector xαi, j ∈ n.

2.2
Let π ′ be a subset of π . Let Wπ ′ be the subgroup of W generated by the simple

reflections sα : α ∈ π ′ and wπ ′ be its unique longest element.
Recall that the Levi factor rπ ′ of pπ ′ is given by a set of ci × ci blocks {Bi }k

i=1 on
the diagonal ofMn , where the ci −1 are the cardinalities of the connected components
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of π ′. One has
∑k

i=1 ci = n. It is complemented in pπ ′ by the nilradical mπ ′ of pπ ′ ,
lying inMn above this set of blocks.

Often π ′ will be viewed as being fixed and the π ′ subscript omitted.
Let Ci denote the rectangular block in m lying strictly above Bi . We call it the ith

column block. Its width is ci and its height
∑

j<i c j . In this presentation,m = ⊕k
i=2Ci .

2.3
We regard p as being defined by the composition (c1, c2, . . . , ck), hence by a dia-

gram Dm formed by a set of columns {Ci }k
i=1 labelled from left to right with ht

Ci = ci .
Let {R j }�j=1 be the rows of Dm labelled with increasing positive integers from top

to bottom. For all i ∈ N
+, let Ri denote the union of the rows {R j }i

j=1.
All columns are deemed to start from the top so meeting row R1.
Let Tm, be the tableau obtained from Dm in which the integers 1, 2, . . . , n are

inserted sequentially, first down the columns and then on going from left to right.
In this we often drop the m subscript, since m will usually be fixed and to avoid
cumbersome notation.

This presentation has the following property. Let b, b′ be boxes ofT with b′ strictly
to the right of b. Let i (resp. j) be the entry of b (resp. b′). Then xi, j ∈ m and these
elements form a basis of m. Let �b,b′ be the line joining b, b′. In the above labelling it
is sometimes written as �i, j and said to join i, j . It defines the co-ordinate vector xi, j .

T need not be a standard tableau because column heights need not be increasing; in
other words, there may be gaps in the rows of T . Yet, T becomes a standard tableau
when we shift boxes in a given row from right to left to close up gaps. Indeed the
content of each row does not change and in the new tableau entries still increase down
the columns. Then through the Robinson–Schensted correspondence and a result of
Spaltenstein, T corresponds to an orbital variety for sl(n) and every orbital variety is
so obtained exactly once—see [6, 2.1], for example.

One may recover D from T by forgetting the entries.
2.4
As in [4, 4.1.2] we say that two columns of height s of Tm are neighbouring if

there are no columns of height s strictly between them. To any pair of neighbouring
columns Cv, Cv′ , there is a Benlolo–Sanderson invariant M(v, v′) [4, 4.1.3] which is
a polynomial in the co-ordinate functions xi, j , where {i, j |i < j} are the entries of
the columns between Cv, Cv′ . We will recall the description of this invariant in 2.6.

The zero set of M(v, v′) is a hypersurface orbital variety V (v, v′) in mπ ′ . It is
described in [5, 2.6] as a B saturation set, specifically as B.uv,v′ , with uv,v′ = n ∩
wv,v′(n) for a suitable choice of wv,v′ ∈ W .

2.5
In the abovewv,v′ is obtained bymodifying [5, 2.4] the tableauTm. Here the details

will be briefly recalled below. In this the columns outside Cv, Cv′ play no role.
Being neighbouring columns of height s means that there are no columns of height

s strictly between Cv, Cv′ . Let m be the entry in the box Cv′ ∩ Rs .
Then as in [5, 2.6], ignoring columns of height < s shift m into the rightmost

column of height ≥ s and shift simultaneously the parts of the columns strictly below
Rs , one position to the left.
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This defines the modified tableau Tm(v, v′). For example, if every column strictly
betweenCv, Cv′ has height strictly less than s, thenTm(v, v′) is obtained by removing
m from Cv′ and placing it in the box Rs+1 ∩ Cv .

Now define wv,v′ in word form by reading the entries ofTm(n) from bottom to top
and then from left to right.

One always has uv,v′ ⊂ m via [5, Lemma 2.5].
If there are no columns of height > s between Cv, Cv′ , then in the matrix presen-

tation of m we obtain uv,v′ by removing the last column from m, when Cv′ is the last
column of D and if not in a suitable truncation of m.

The general description of uv,v′ is more complicated. It is determined through the
root vectors of n that do not appear in u—called the excluded root vectors. They are
given in [5, 2.7].

2.6
Let Cv, Cv′ are neighbouring columns of height s. If they are not the first and last

columns of D , then we may truncateM to make this so. (See also the reduction in [4,
3.2].)

Let Ms(v, v′) be the n − s × n − s minor in the bottom left-hand corner of the
truncated M.

Let P− denote the opposed parabolic to P . Then Ms(v, v′) is a P− semi-invariant
for co-adjoint action.

We consider Ms(v, v′) as a polynomial function on m + Id, through the Killing
form. In particular it is not homogeneous and it is not necessarily a P ′ invariant for
adjoint action.Remarkably, its leading termgr Ms(v, v′) is a P ′ invariant [1] for adjoint
action, which we call the Benlolo–Sanderson invariant1. As noted in [1], its degree
d(gr Ms(v, v′)) is given by

d(gr Ms(v, v′)) =
v′−1∑

i=v

min(ci , s).

The following is proved in [5, 2.6] by an argument similar to that of [6, Prop. 3.8].

Proposition 1 The closure of B.(n∩wv,v′(n)) is the zero variety of gr Ms(v, v′) in m.

2.7
Fix a parabolic p and as in 2.3, let D denote the diagram it defines. Let P be the

set of all pairs of neighbouring columns Cv, Cv′ of D . For ease of notation, we write
Cv, Cv′ as v, v′.

By Proposition 2.6 and [4, 4.1.2], the nilfibreN for the action of p on its nilradical
is given by

N = ∩v,v′∈P B.uv,v′ .

Obviously, this contains

C := B. ∩v,v′∈P uv,v′ .

1 A suggestion as to how this should generalize for all types is given in [4, 3.2, 3.5, 3.6].
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Weshowed in [5, 6.9.8] that rather remarkably, the latter is an irreducible component
of N and is just the canonical component N e referred to in 1.4.

3 The description of the canonical Weierstrass section

3.1 Start from the tableau T defined by the nilradical m of a standard parabolic as in
2.3.

We may describe a (rather particular) linear subvariety e + V of m by a family of
lines �i, j joining boxes in T with labels i < j .

By 2.3, the line �i, j defines a co-ordinate vector xi, j ∈ m.
Then e + V is defined by two families of lines. Those of the first family carry the

label 1 and specify the sum of root vectors giving e and those of the second family are
labelled by ∗ and specify the sum of root subspaces giving V .

N.B. We say interchangeably that a line � is labelled by a 1 (or a ∗) or carries a 1
(or a ∗).

In this we call the support of e, denoted supp e, (resp. support of V , denoted supp V )
those co-ordinate vectors (resp. subspaces) defined by the lines carrying a 1 (resp. a
∗).

A line carrying a ∗ may be “gated” (see [5, 4.1].
The actual choice of the labelled lines defining e + V leading to it being a Weier-

strass section is via a complicated combinatorial construction which is nevertheless
essentially canonical. The details are given in [5, Sect. 5]. They will not be repeated
here, but in 3.1 we describe the resulting lines by an algorithm which is surprisingly
simple.

In 3.2 we show that these lines with their labels can be recovered very simply from
the image of a map from compositions to the set of distinct non-negative integers
together with the set of column heights. This “composition” map may well be of
independent interest.

Recall the notation of 2.1. We may view e + V as a linear subvariety of m, by
putting 1 (resp. ∗) at the (i,j)th place of M, whenever in our previous convention the
line �i, j carries a 1 (resp. ∗).

We call e+ V the canonical Weierstrass section, since it has a uniform construction
for all parabolics.

3.2
3.2.1
Following 2.3, let C = (C1, C2, . . . , Ck) be the set of columns in D defining the

Levi factor of a parabolic subalgebra p (in sl(n)), whose block sizes are the {ci }k
i=1.

Let T be the tableau obtained from D by the prescription given in 2.3.
We denote the set of labelled lines in T between columns in C given through [5,

5.4] by �(C ).
3.2.2
By [5, 5.4.9] �(C ) behaves well under removing (or adjoining) columns on the

right.
Indeed, let S denote the set of (ordered) columns obtained from C by deleting the

last column Ck . Then
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Lemma 1 �(S) is obtained from �(C ) by deleting Ck and all the lines from S to Ck.

3.2.3
This fails for removal of columns from the left but we have the next best thing

described below.
To make the comparison with 3.2.2 less confusing, we adjoin a column C0 on the

left of C and denote the resulting set of (ordered) columns by T .

Lemma 2 Suppose C0 has height i . Concerning only the lines lying entirely in Ri−1,
one obtains �(C ) from �(T ) by deleting C0 and all the lines from C to C0.

This is proved in a slightly stronger form in [5, 5.4.10].
3.3
To complete our description of e, we need to describe how our construction adjoins

lines in the last column to the earlier ones. This is achieved in the following subsections.
Let bi, j denote the box in D lying in Ri ∩ C j . We may also denote a box by its

entry l, that is as b(l).
3.3.1
Recall the notion of 3.2. In particular, Ck denotes the last column of D . Recall the

notation of 2.1, 2.2.
Since we are considering the height s of Ck to be a variable (taking non-negative

integer values), it is convenient to write Ck (resp. Ck) more precisely as Ck(s) (resp.
Ck(s)) when this height is s ∈ N. Similarly, we writeM asM(s), when its last column
block is Ck(s).

We may note that n is the largest entry of Ck and occurs in its lowest row.
Recall that S denotes the set of columns (resp. column blocks) excluding the last,

that is S = {C1, C2, . . . , Ck−1}. Let S denote the corresponding set of column blocks,
that is {C1,C2, . . . ,Ck−1}.

Recall 3.1 that M has entries in {1, ∗} which determine the Weierstrass section
e + V . These entries all occur in the sub-matrix defining m.

LetMk be the n − s ×n − s matrix formed by omitting the last s rows and columns
ofM. The blocks {Bi }k−1

i=1 (resp. the column blocks {Ci }k−1
i=2 ) define the Levi factor l

κ

and nilradical mκ of a standard parabolic subalgebra pκ of sl(n − s).
By Lemma 3.2.2, the entries in S are unchanged if we omit the last column Ck(s)

or increase its height s. Thus, if we define eκ (resp. V κ ) by dropping all terms which
obtain from lines joining Ck to S, then eκ + V κ is a Weierstrass section for the action
of the derived algebra of pκ on mκ .

N.B.. The notationCk was alreadyused in [5, 2.1] for the last columnofD .However,
in Sects. 4.4 and 4.5 it also convenient to use k as a dummy index for the co-ordinates.
This could cause some confusion (for example in Lemma 4.4.3). Thus, we have used
κ instead of k as the superscript above.

3.3.2
Let �b,b′ be a line given by the construction of a Weierstrass section, that is by [5,

5.4]. It may carry a 1 or a ∗. Suppose b occurs in Ri and labelled in D by r . Then a 1
or a ∗ appears in the rth row ofM. Yet, i, r are only vaguely related, so it is convenient
to denote the row in which a 1 or a ∗ appears inM using boldface to avoid confusion,
that is by r, which will always refer to a row of M.
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LetC, C ′ be a pair of neighbouring columns. Then∗ always appears in the rightmost
column of the column block C′, [5, 6.6.2]. The row of M in which it appears is also
specified in [5, 6.6.2]; however, this is more complicated. It is through the canonical
row associated to the pair which will now be denoted in boldface, that is by rC,C ′ . It
is the row of M in which ∗ ought to appear and in fact does appear if the pair C, C ′
does not “surround” any other pair of neighbouring columns in the sense of [5, 6.6.2],
as recalled below.

We say that a pair C1, C ′
1 of neighbouring columns surround the pair C, C ′, if

htC ′
1 = htC + 1, and C ′

1 lies strictly to the right of C ′ with no columns of height
≥ s between. We do not require C1 to lie to the left of C—see examples below. In
this case and if there is a pair C1, C ′

1 which do surround the pair C, C ′, then the ∗
corresponding to the latter pair again occurs in rC,C ′ .

This process gives rise to a string of ∗’s in rC,C ′ . This string may or may not end
in a 1—see [5, 6.6.2, Examples].

One may ask how rC,C ′ and rC1,C ′
1
are related. The latter is strictly less than the

former (that is to say the second ∗ is pushed downwards in M) if C1 lies to the left of
C , for example in the composition (2, 1, 1, 2). Yet the latter is strictly greater than the
former (that is to say the second ∗ is pushed upwards in M) if C1 lies to right of C ,
for example, in the composition (1, 2, 1, 2).

3.1 Increasing the height s of Ck

Given a column C of height s and t ≤ s, let Ct denote the tth column of the cor-
responding column block C. Again the labelling of the columns in D and in M is
different but related.

3.1.1 Two preliminaries

Recall the notation of 3.3.1. By 3.3.2, if Ck(s) has a left neighbour in S, then Ck(s)
has just one ∗ entry and this occurs inCk(s)s , which is the rightmost column ofCk(s),
and has no ∗ entries otherwise. Again by [5, Lemma 5.4.8(vi)] every column and every
row of Ck(s) has at most a single 1 entry.

Recall [5, 5.4.1] that a right extremal boxof S is onewith no adjacent right neighbour
in C . Such a box exists exactly when S admits a rightmost column C of height > s.
In (b) below, we let b denote the box Rs+1 ∩ C , which is clearly right extremal and
denote its entry by m.

Suppose Ck has height one. This means that Ck is a single column. Let t be the
height of Ck−1. Then either

(a). If S has no column of height one, then the only entry of Ck is 1 on its (n − t)th
row.

(b). If S has a column of height one, thenCk has an ∗ on its (n− t)th row.Moreover,
with b, m given as above, then Ck has a 1 on row m (in its unique column).
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For (a) and the first part of (b), observe that step two of [5, 5.3] gives a horizontal
line � carrying a 1 (resp ∗) in the first row R1 joining the highest box b′ in Ck−1 to a
unique box in Ck . Moreover by [5, 5.4] in step 3, the horizontal lines in R1 and their
labels are left unchanged.

The last part of (b) follows from [5, 5.4.7(i)], which gives a line �b,bs,k ∈ �(D)

carrying a 1, if there is a right extremal box b in S ∩ Rs+1.
3.4.2
As we increase the height s of Ck , then by Lemma 3.2.2, the only changes which

occur are in the entries of Ck (and not in the entries of S). Moreover, these behave
according to a surprisingly simple set of rules which we now describe.

The proofs will be given in 3.5.

(i). Suppose t ∈ [1, s − 1]. The entries of Ck(s + 1)t are those of Ck(s)t .

We now describe the entries of the last two columns of Ck(s + 1), that is when t
above is in {s, s + 1}.

(ii). Suppose that S has a column of height s. Then there is a ∗ in Ck(s)s . It is
replaced by a 1 in Ck(s + 1)s , in the same row.

In other words, the position of ∗ does not change but it becomes a 1.

(iii). Suppose that 1 appears in Ck(s)s in some row r of M, then either (A) or (B)
below holds.

(A). Suppose there is a ∗ in Ck(s)s and in row r′ (different of course to r).
(This occurs exactly when S has a column of height s and a column of height > s.

In this the line � carrying ∗ is gated and the line �′ carrying 1 is constructed by [5,
5.4.7(i) or(ii)] at stage s + 1 and both lines have bs,k as their right-hand end point.)

Then a ∗ (resp. 1) appears in Ck(s + 1)s+1 and in row r if S has (resp. does not
have) a column of height s + 1.

In other words, 1 is shifted to the right becoming a ∗ or a 1.

(B). Suppose there is no ∗ in Ck(s). This occurs exactly when S has no column of
height s.

Then a 1 appears in Ck(s + 1)s in row r.

In other words, this 1 entry stays fixed as s increases by one.

If S admits a column of height s + 1, a ∗ appears Ck(s + 1)s+1, at the end of the
lowest string (cf 3.3.2) of ∗’s (not ending in a 1). It is replaced by a 1 at that place if
S meets Rs+1, but does not admit a column of height s + 1.

In other words, a string of ∗’s on a given row of M may be augmented in its last
column by a ∗ or a 1, as prescribed.
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Example 1. Consider the composition (3, 2, 1, 1, 2, 2). Then the line � := �9,11 carries
a ∗ and the line �′ := �6,11 (obtained by the joining of loose ends [5, 5.4.7(ii)]) carries
a 1. Thus, A holds.

Increasing the height of the last column by one gives a line (namely �6,12) carrying
a ∗. Had the first column been of height four, this line would have carried a 1.

By contrast for the composition (1, 2, 1), the line � := �2,4 carries a ∗ and the
line �′ := �3,4 (obtained by [5, 5.4.7(i)]) carries a 1. Increasing the height of the last
column by one, gives a line (namely �3,5) carrying a ∗. Had the first column been of
height three, this line would have carried a 1.

Consider the composition (3, 1, 1, 2). There is no ∗ in the last column; but there is
a 1 given by the line �4,7. Thus, B holds.

When the last column is increased in height by one, a ∗ appears in Ck(3)3. It is
replaced by a 1 if the first column is increased in height by one.

Suppose that s has been increased by one and (i)-(iii) have be carried out.
N.B. Recall [5, 5.4.8(viii)] that a 1 in a given row of M cannot be followed by a ∗

in a subsequent column.
Suppose S does have a column of height s + 1. Then (for s ≥ 1) the rules (i)-(iii)

may not give a 1 in the last column ofM(s + 1).
In this case the construction of [5, 5.4] can add a 1 to the last column of Ck(s + 1)

and this follows the rule (iv) given below.
Let R denote the set of rows of M(s + 1) either not having a 1 except perhaps in

the last column or not having a ∗ in its last column.
Now recall that the elements of Weyl group of the Levi factor of P interchanges

the rows of M(s + 1) and so induce equivalence classes in R. If R is not empty, let
r′ be the unique lowest row in R (i.e. that with the largest subscript) and let r be the
unique highest row in the equivalence class of r′.

(iv). SupposeR is not empty. Then 1 is placed inCk(s +1)s+1 in row r, or already
occurs there through (i) − (i i i).

Thus, up to the action of the Levi, 1 in the last column of M(s + 1) occurs in the
row below the empty rows.

Remark 1 The complication of having to consider equivalence classes comes about
because our construction though canonical is by induction on rows inwhich the highest
free box is linked. It is perfectly possible that we would obtain a Weierstrass section
e + V with e regular by putting 1 in the intersection of the last column of Ck(s + 1)
with the lowest row of R, that is with r′.
Remark 2 In the subsequent application of (iv), the aboveN.B. is of prime importance.

Remark 3 Our presentation is perhaps a convoluted way of saying that if 1 already
appears in the last column by (i)-(iii) above, then it must also follow the rule, set out
by (iv).

(v). If the last column of Ck(s) is empty, so are the last two columns of Ck(s + 1).
3.5
In order to prove the assertions in 3.4, we must recall the construction in [5, Sect.

5.4]. Unfortunately, the reader may have to study loc. cit. first but we shall give explicit
references to every required result.
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Recall the notation of 3.3.
Recall that s is the height of Ck(s).
On increasing s by one, a left-going horizontal line from bs+1,k may be introduced

at step 2.
Then we apply the (s + 1)th stage of [5, 5.4]. Briefly this does just three things.
(X). (Some) horizontal lines in Rs+1, required by step 2, are deleted [5, 5.4.6].
(Y). (Some) lines in Rs \ Rs−1 carrying a 1 given by applying [5, 5.4.7(ii)] at stage

s, are deleted. (These are the lines given by “joining loose ends”.) No lines in Rs

carrying a ∗ are deleted, but may be relabelled by a 1.
(Z). New lines in Rs+1 \ Rs are introduced according to the rule in [5, 5.4.7]. They

may carry either a 1 or a ∗.
Recall that since only the last column Ck is being changed, only lines meeting Ck

are changed (Lemma 3.2.2).

Example Let D be given by the composition (2, 1, 1, 1), so then k = 4, s = 1.
The only lines joining C4 to S are �4,5 which carries a ∗ and �3,5 which carries a 1

(the latter joins loose ends).
When s is increased by one, a horizontal line �2,6 is introduced at step 2.

At stage 2, �3,5 is deleted and the ∗ on �4,5 is replaced by a 1, illustrating (Y) and �2,6
is deleted, illustrating (X). The latter is replaced by �3,6, which carries a ∗, illustrating
(Z). (Strictly speaking �2,4 also replaces �2,6 but is already present when s = 2 as
predicted by Lemma 3.2.2.)

It remains to consider the assertions of 3.4.2.
Consider (i).
By [5, 5.4.8 (iii),(ix)] a right-going line can only go down by one row and then it

must carry a 1 and b′ must also be the right end point of a line carrying a ∗. Then by
[5, 6.6.2, second paragraph] b′ must be the box Ck(s) ∩ Rs . Thus

(∗). Every line with right end point in Rs−1 ∩ Ck(s) lies entirely in Rs−1.
On the other hand, when the height of Ck is increased from s to s + 1 and stage

s +1 is implemented, the lines lying entirely in Rs−1 are left unchanged by (X)− (Z).
Then by (∗), the lines joined to a bt,k : t < s are unchanged (and so are their labels).

This gives the assertion of (i).
Consider (ii).
By hypothesis S has a column of height s.
Then the left-going line �b,bs,k from bs,k to that box b ∈ S determined in stage s by

[5, 5.4.7(i)], carries a ∗ by [5, 5.4.8]. Moreover, it lies entirely in Rs , so by (Y), it is
not deleted but now carries a 1 because Ck(s + 1) has height s + 1. This establishes
(ii).

Consider (iii)A.
The hypothesis means that there is a line � from b ∈ S to bs,k ∈ Ck(s) carrying a ∗

and a second line �′ from b′ ∈ S to bs,k ∈ Ck(s) carrying a 1. This means that � must
be gated and the construction in [5, 5.4.7(i)or(ii)] gives a line �′ carrying a 1 whose
left end point lies in S.

As s is increased by one, � remains with the same end points but now carries a 1 (as
noted in (ii)) so can no longer be gated. This forces �′ to be replaced by a right-going
line �′′ to bs+1,k , which of course is in the same column of D as bs,k . Then by the
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minimal distance criterion of [5, 5.4.7], the line �′′ must have the same left-hand point
b′ as had �′. It carries a ∗ (resp. 1) if S has (resp. does not have) a column of height
s + 1. The new entry to which �′′ gives rise, lies in the same row ofM, yet now in the
last column of Ck(s + 1), because its right-hand end point is bs+1,k .

This establishes the last part of (i i i)A.
Examples. In the case of the parabolic defined by the composition (1, 2, 2, 1), there

is a gated line � = �4,6. Then �′ = �5,6 being given by (i) of [5, 5.4.7]. When the
last column is increased by one in height, � carries a 1 and �′ is replaced by a line
�′′ = �5,7 and in this case carries a ∗.

On the other hand, for the composition (2, 3, 1, 3, 2, 1, 2) the gated line � is that
joining (10, 14). There is a further gated line joining (8, 11). Then �′ is given by [5,
5.4.7(ii)] and joins (8, 14). When the last column is increased in height by one, �

carries a 1 and �′ is replaced by a line �′′ with the same beginning point as �′ but
ending in bs+1,k , that is joining (8, 15) and in this case carries a ∗.

Consider (iii)B.
Under the hypothesis, there is no line going from S to bs,k carrying a ∗. Conse-

quently, the line � from b ∈ S to bs,k ∈ Ck(s) carrying a 1 is obtained at stage s and
moreover by using (i) and not by (ii) of [5, 5.4.7]. It lies entirely in Rs , though it need
not be horizontal (viz. �4,7 of the example below). Thus, it remains at stage s + 1 by
(Y).

This proves the first part of (iii)B.

Example Consider the line joining (4, 7) in the composition (3, 1, 1, 2) obtained by
applying [5, 5.4.7(i)] at stage 2. It is carries a 1 since there is no column in S of height
2. When s is increased by 1, it remains.

Consider the second part of (iii)(B).
Under the hypothesis, at step 2 there is a left-going horizontal line � from bs+1,k if

S meets Rs+1 and no such line otherwise. In the former case it carries a ∗ (resp. a 1)
if S admits (resp. does not admit) a column of height s + 1. In step 3, the right end
point of � is unchanged by the way boxes are rejoined [5, 5.4.7(i)] and the labelling is
left unchanged [5, 5.4.8]. Thus, a ∗ (resp. 1) appears in Ck(s + 1)s+1, as asserted.

Example Consider again the composition (3, 1, 1, 2). When s is increased by 1, the
new line �′ joins (3, 8) and carries a ∗. Had the first column had height > 3, then �′
would carry a 1. Either appear in R3 at the end of the lowest string of ∗’s not ending
in 1 (which is actually an empty string in this case).

Consider (iv). (This is the most difficult part.)
There can be at most a single 1 in Ck(s + 1)s+1. It corresponds to a line �b,bk (s+1)

in �(S � Ck(s + 1)), carrying a 1. Let r be the entry of b. Then 1 appears in row r of
M. Set R− = R \ r.

Condition (iv) holds if every element ofR− ∩Ck(s + 1) lies above r, or below but
reached by the action of the Levi factor. This holds for example if R− is empty.
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LetC1, C2, . . . , Cm−1 be the columns of height s +1 in S and setCm := Ck(s +1).
We now establish (iv) under

(∗). Suppose S has no column of height > s + 1.

Claim. Under (∗),R− is empty.

Adjoin a column C0 to the extreme left of D of height s + 1. Then through the
construction of [5, 5.4.7(i)] and the labelling in [5, 5.4.8], there exists for all i ∈ [1, m]
a box b′

i ∈ Ci ∩ Rs+1, a box bi ∈ Rs+1, which by adjacency [5, 5.4.3], must lie to the
right of Ci−1 and a line �bi ,b′

i
carrying a ∗.

On the other hand, by [5, 5.4.8(v)] every box in Rs+1, with the exception (of course)
of those in Cm and the possible exception of the bi : i ∈ [1, m] has a right-going line
carrying a 1.

When C0 is suppressed, then b1 ∈ C0 is also suppressed. If b1 /∈ C0, one has
�b1,b′

1
∈ �(D) carrying a 1, by the joining of loose ends [5, 5.4.7(ii)], and likewise line

�bi ,b′
i+1

∈ �(D) : i ∈ [2, m − 1] carries a 1 with the exception of bm : m ≥ 2, which
carries a ∗ appearing in the last column of M(s + 1). Up to this exception every box
Rs+1 hence inD , not of course in Cm , has a right-going line carrying a 1. This proves
the claim.

Remark R itself is empty if m = 1. For the composition (1, 2, 2) it is empty, for the
composition (1, 1, 2, 2) it is not empty.

We now establish (iv) under

(∗∗). There is a column of height > s + 1 in S.

Choose a column C of height > s + 1 in S nearest to the right. Retain our previous
notation for the columns of height s + 1.

Choose t ∈ [1, m] minimal such that Ct lies to the right of C . Set b′ = C ∩ Rs+2
which is an extremal box. By our chosen labelling b′

t lies strictly to the right of C .
If t ≥ 2, then �bt ,b′

t
is gated and since [5, 5.4.7(i)] is carried out before [5, 5.4.7(ii)],

there is a line �b′,b′
t
carrying a 1 and this precludes the line �bt−1,b′

t
.

(a). Suppose t ≤ m − 2.

Then by the joining of loose ends [5, 5.4.7(ii)] there is a line �bm−1,b′
m
carrying a 1.

Let r be the entry of bm−1. This puts a 1 on the last column ofM(s + 1) in row r.
Yet, any box with entry u > r lies between the columns Cm−2, Cm and so (as in

(∗)) has a right-going line carrying a 1, with the exception of �bm−1,b′
m
which carries

a ∗ appearing in Ck(s + 1)s+1.
This establishes (iv) if (a) holds.

(b). Suppose t = m − 1.
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The gated line �bm−1,b′
m−1

cannot cross C by adjacency [5, 5.4.8(vii)]. Thus, bm−1

lies in a column to the right of C .
Now by the joining of loose ends [5, 5.4.7(ii)], there is a line �bm−1,b′

m
carrying a 1.

If bm−1 lies in a column strictly to the right of C , then (iv) holds exactly as in (a).
Suppose bm−1 ∈ C . Then there may be empty rows meeting the last column of

M(s + 1) below r indexed by the entries r ′ > r of the boxes in C strictly below b′.
However, these rows are equivalent to r via the action of the Levi factor.

This establishes (iv) if (b) holds.

(c). Suppose t = m : m > 1.

In this case since �bm ,b′
m
is gated, there is a line �b′,b′

m
carrying a 1 and we conclude

as in (b).
This establishes (iv) if (c) holds.

(d). Suppose t = m = 1.

Adjoin a column C0 of height s + 1 to the left of D . Then by the joining of loose
ends [5, 5.4.7(ii)], there is a line �b1,b′

1
which carries a ∗ and therefore cannot cross C

by adjacency [5, 5.4.8(vii)]. Then by [5, 5.4.10] it remains with the same end points
when C0 is removed but ∗ is replaced by a 1. Then we may conclude as in (b).

This completes the proof of (iv).

The following exemplifies (∗).

Example 2 Take the column heights in S � Ck(s) to be given by the composition
(1, 2, 2, 2, 1, 2), with s = 1.

In the example, i = 6, j = 5 and [5, 5.4.7(ii)] gives the line �5,10 carrying a 1. This
line would not have been given by (1) − (3) of 3.4.

The following exemplifies (∗∗) in case (a).

Example 3 Consider the composition (2, 3, 2, 2, 2), with s = 1. Then 1 occurs in row
8 and a ∗ in row 9 both in the last column of M(s + 1). Through the joining of loose
ends 1 occurs in row 7. This would not have been given by (1) − (3) of 3.4.

The following exemplifies (∗∗) in case (b), when bm−1 lies in a column strictly to
the right of C .

Example 4 Consider the composition (3, 1, 1, 2), with s = 1. The line with right end
point b2,4 obtained from step 2 is just �2,7. Yet, since �4,5 is gated, this line is modified
in step 3 to �4,7, via [5, 5.4.7(i)]. The resulting 1 in M lies in row 4, so below the
empty row 3.
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The following exemplifies (∗∗) in case (c).
Consider the composition (4, 2, 1, 3). The line with right end point b3,4 obtained

from step 2 is just �3,10. It is not modified in step 3. The resulting 1 in M lies in row
3 so above the empty row 4. Yet, these rows are interchanged by that part of the Levi
factor coming from the first column.

Consider (v). Let |S| denote the greatest height of a column in S.
Observe that (v) implies that bs,k is a left extremal box and so s > |S|.
Again (v) alsomeans that there is no gated line �b,bs−1,k in Rs−1 in stage s. Otherwise

there would be a line �b,bs,k carrying a 1 by the very first part of [5, 5.4.7]. Moreover,
if s > |S| then by [5, 5.4.8] no lines in Rs carrying a ∗ are adjoined in stage s + 1.

By the first paragraph s + 1 > |S| and by the second paragraph, there are no gated
lines in Rs at stage s + 1. Thus, the conclusion of (v) results by a second use of the
very first part of [5, 5.4.7].

3.2 Stabilisation

3.2.1 A column existence Lemma

The following is proved as part of “Claim” in the proof of [5, Cor. 6.5.4]. For the
convenience of the reader, we shall repeat the argument.

Lemma 3 Let C1 < C2 be columns of D and a choice of boxes bi ∈ Ci : i = 1, 2.
Let Rt be the row in which b2 occurs. Assume that �b1,b2 ∈ �(D). Then there exists a
column C ′ : C1 ≤ C ′ < C2 of height at least t -1.

Proof This is immediate unless b1 ∈ Rt−2.
If not, � := �b1,b2 must be left and downward going by at least two rows. This

can only happen if there is a line �′ carrying a ∗, ungated at the (t − 1)th stage [5,
5.4.3.5.4.4], with the same left-hand end point b1 as �, so allowing � to be drawn [5,
5.4.7]. By up-going linkage [5, 5.4.3] the right-hand end point b′ of �′ lies in Rt−1
and since �′ carries a ∗, the box b′ lies at the bottom of the column C ′ in which it is
contained, so C ′ has height t − 1. Yet, C2 has height ≥ t , so by adjacency [5, 5.4.3],
C ′ lies strictly to the left of C2 and of course to the right of C1.

��
3.6.2
Recall that a ∗ can only appear at most once inCk(s) and then necessarily inCk(s)s .

Recall also that, for t ≤ s, at most one 1 can appear in Ck(s)t , by 3.3.2. We shall use
Ck(s)t = φ to mean that neither a ∗ nor a 1 appear in Ck(s)t and we say that this
column is empty.

Lemma 4 For all t ≤ s one has Ck(s)t = φ if and only if Ck(s + 1)t = φ.

Proof For t < s, this is immediate from 3.4.2 (i). For t = s, “only if” follows
from 3.4.2 (v). For “if” suppose Ck(s + 1)s = φ. Then by 3.4.2(ii), there is no ∗ in
Ck(s + 1)s = φ. Then by 3.4.2(iii), there is no 1 in Ck(s + 1)s = φ. ��
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3.6.3

Lemma 5 (i). Take t > |S|. Then Ck(s)t+1 = φ, for all s ∈ N
+.

(ii). Take t ≤ |S|. Then Ck(s)t = φ, for all s ∈ N
+ : s ≥ t .

Proof Consider (i). Take m to be an integer ≥ 0. Recall (3.3) that b(|S|+m+2),k is the
lowest box in the last column Ck(|S| + m + 2) deemed to have height |S| + m + 2.

If the last column of Ck(|S| + m + 2) : m ≥ 0 is not empty, then there is a line
�b,b(|S|+m+2),k for some b ∈ S. Then by Lemma 3.6.1, there is a column of height
|S| + m + 1 in S. This contradiction proves that Ck(|S| + m + 2)|S|+m+2 = φ for all
m ∈ N.

ApplyingLemma3.6.2,we conclude thatCk(s)|S|+m+2 = φ, for all s ≥ |S|+m+2,
whilst for s < |S|+m +2, the assertion is trivial. Finally, the condition t > |S|, means
that we can write t = |S| + m + 1, for some m ∈ N, whilst we have just shown that
Ck(s)|S|+m+2 = φ, for all s ∈ N. Hence (i).

Consider (ii).
By definition S has a column C of height |S|. Choose that nearest to the right. If

s = |S|, set C ′ = Ck(s). Otherwise, adjoin a column C ′ of height |S| to D , on its
right. By Lemma 3.2.2 this does not change the left-going lines from Ck(s), nor their
labels.

Take t ≤ |S|. Since Ck(s) lies between C, C ′ every box in R|S| ∩ Ck(s) has a
left-going line by [5, 5.4.8(v)]. One may remark that they all carry a 1 except if this
line is left-going from Ck(s)t : s = t = |S|.

Consequently, Ck(s)t = φ if s ≥ t and t ≤ |S|, as required.
��

Remark Take s ∈ N
+. Then Ck(s)|S|+1 may or may not be empty.

3.6.4

Lemma 6 For all s > |S|, the column block Ck(s +1) obtains from Ck(s) by adjoining
an empty column on the right.

Proof By 3.4.2(i) one has Ck(s + 1)u = Ck(s)u for u < s. For u = s, this equality
again holds by 3.4.2(v) if the right-hand side is empty. Otherwise, for s > |S| it holds
by 3.4.2(iii)B.

Finally, by Lemma 3.6.3(i), one has Ck(s + 1)s+1 = φ, for all s > |S|.
��

3.6.5

Corollary 1 (i). There exists an “asymptotic” last column block Ck(∞) which obtains
from Ck(|S| + 1) by adjoining an infinite block of empty columns on the right.

(ii) Ck(∞)t = φ, for all t ≤ |S| and has a 1 in some unique row, rt , which are
moreover pairwise distinct.

Proof ��
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(i). For all l ≥ |S|, the last column block Ck(l + 1) obtains from Ck(|S| + 1) by
adjoining l − |S| empty columns on the right. Hence the assertion.

(ii). The first part follows from Lemma 3.6.3(ii). Since S has no column of height
> |S|, this non-trivial entry can only be a 1. Yet, by [5, 5.4.8(vi)] a 1 can occur at most
once on any given column (or row|) of C, for any column C of D . The first part gives
the uniqueness of rt , the second part that they are pairwise distinct.

Remark Following the remark of 3.6.3, we note that Ck(∞)|S|+1 need not be empty
and then has a 1 in some row r|S|+1. Otherwise, we set r|S|+1 = 0.

3.6.6
The above result defines a map S �→ {rt }|S|+1

t=1 from compositions to the set of all
pairwise distinct |S| + 1 non-negative integers. We call it the composition map.

3.6.7
One might hope that the image of composition map determines the last column

block Ck(s) for all s ∈ N. By definition it determines Ck(s) for all s|s > |S|.
To do this, one should show that Ck(s + 1) determines Ck(s). Yet, this fails as the

following example shows.

Example Consider the compositions (2, 1, 1, 3); (1, 1, 1, 1, 3) labelling the last col-
umn by Ck(s + 1) : s = 2.

In both cases the last column block Ck(s + 1) has a 1 at co-ordinates x4,5, x3,6 and
its last column is empty.

Now replace s + 1 by s. In the first case the x3,6 acquires a ∗, whilst in the second
case there is no change.

3.6.8
Yet, we can realize the goal of 3.6.7 by including information on column heights

in S. This is described in the lemma below using the following notation.
Let S denote the set of heights of S counted without multiplicities.
Let rs be defined through the composition map (3.6.6).
Recall 3.6.5. In particular, r|S|+1 may or may not be empty.

Lemma 7 Take s ≤ |S| + 1.

(i). Suppose s ∈ S . Then ∗ occurs in Ck(s)s in row rs . Moreover, 1 occurs in
Ck(s)s in row rs+1, if and only if the latter is non-empty.

(ii). Suppose s /∈ S . Then 1 occurs in Ck(s)s in row rs .

In particular, the image of the composition map and S determine the last column
block Ck(s), for all s ∈ N

+.

Proof By 3.4.2(i), it is enough to show that the conclusions give the correct entries for
Ck(s + 1)t : t = s, s + 1 as described in 3.4.2.

Consider (i).
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By 3.4.2(ii) a ∗ in Ck(s)s gives a 1 in Ck(s + 1)s in the same row. Then by 3.4.2(i),
this entry remains in Ck(∞)s again in the same row but becoming or staying a 1. It
therefore must belong to rs , by definition of the latter. This gives the first part of (i).

If a 1 also occurs in Ck(s)s , then 3.4.2(iii)A gives a ∗ (resp. a 1) in Ck(s + 1)s+1

if s + 1 ∈ S (resp. s + 1 /∈ S ), in the same row. In the first case by 3.4.2(i,ii),
this entry remains in Ck(∞)s+1 again in the same row but becoming a 1. It therefore
must belong to rs+1, by definition of the latter. Notice by 3.6.3(ii), s + 1 ∈ S implies
rs+1 = φ.

In the second case a 1 appears inCk(s +1)s+1. Then by 3.4.2(i) and 3.4.2(iii)B, this
1 remains in Ck(∞)s+1 again in the same row, thus in rs+1 by definition of the latter.
However, in this second case it can happen that rs+1 = φ. This gives a contradiction
which implies that 1 does not occur in Ck(s)s .

Similarly, (ii) follows from 3.4.2(iii)B.
��

Remark Noting that in the example of 3.6.7 that S has no column of height > s = 2,
one may check that the conclusion of the lemma is in accordance with this example.
Again consider the composition (2, 1, 1, s). In this case r1 = 4, r2 = 3, r1 = φ.
Correspondingly 1, ∗ occur in C4(1)1, whilst only ∗ occurs in C4(2)2.

Considering the complexity of the rules in 3.4.2, the assertion of Lemma 3.6.8 is
extraordinarily simple.

Clearly, the composition map is of independent interest.

4 Regularity

We continue to take e + V to be the canonical Weierstrass section constructed in [5,
5.4] and described rather precisely in 3.4 above.

We would have liked a solution which starting from the ordered set of heights of
the columns directly gives the lines determining e, V .

This solution described in 3.5 is perhaps not ideal, but it does behave well under
adjoining of columns on the right Lemma 3.2.2 and increasing the height of the last
column. Then by Lemma 3.6.8, the solution is completely determined by the images
of the composition maps and the set of column heights.

By [5, Lemma 6.1], e belongs to the nilfibre N .
We now would like to show that e ∈ Nreg. Unfortunately, this can fail because e

may give rise in VS pairs. This is explained in 4.3 and 4.4.

4.1 Pseudo-regularity

Recall that e is a sum of coordinate vectors {ei }r
1=1, none of which lie on the same row

or same column of M. In particular the roots of the {ei }r
1=1 are linearly independent.

Let E denote the corresponding sum of root subspaces. As an immediate consequence
of linear independence

h.e = E . (1)
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Recall that e ∈ N . Then via [5, Lemma 3.1(ii)] the property that e is regular, is
equivalent to

p.e ⊕ V = m. (2)

Consider
∑r

i=1 p.ei . Obviously,

p.E :=
r∑

i=1

p.ei ⊃ p.e (3)

As we shall see the inclusion may be strict.

Definition e is said to pseudo-regular if

p.E + V = m. (4)

It should be carefully noted that this is different to e being quasi-regular. Indeed from
the definition of pseudo-regularity it follows that dim p.E ≥ dimm− dim V and this
inequality can be strict. On the other hand, quasi-regularitymeans that P.E = N c and
as we shall see (Lemma 4.5.3(ii)) it implies that dim P.E = dimm − dim V . Quasi-
regularity generally fails and to recover it we must augment E to a larger subspace
EVS to be constructed in 4.4.4 below.

Pseudo-regularity may be visualized as follows.
Consider a chess board with squares being the co-ordinate places of m with those

of V removed. Partition this board by vertical (resp. horizontal) lines extending the
sides of the blocks.

Consider e as a set of rooks or castles2 at each co-ordinate place ei : i = 1, 2, . . . , s.
Allow each rook to move leftwards not crossing a vertical line, arbitrarily rightwards
and similarly downwards not crossing a horizontal line and arbitrarily upwards.

Then pseudo-regularity means that the set of rooks cover every square on this chess
board. In this we may note that, unlike chess, the rooks cover the places at which they
stand through the action of h. This can fail if we adjoin rooks and the corresponding
root vectors are no longer linearly independent. This is the source of the failure of C
to admit a dense orbit [5, Lemma 6.10.7].

Below an example is given when the rooks also cover some elements of V . This
contradicts [5, 3.1] and arises because (4) is in general a strict inclusion. As we shall
see this is caused by VS pairs (4.3 and 4.4).

Example Consider the nilradical m given by the composition (1, 2, 2, 1). Then our
procedure [5, 5.4] gives e = x1,2 + x2,4 + x5,6, whilst V = Cx3,5 +Cx4,6. Thus, the

2 Apparently this strange dual terminology came about from a confusion of Rukh (Chariot in Persian) with
Rocca (Italian for fortress).

123



Journal of Algebraic Combinatorics (2024) 59:523–559 543

rooks cover all the squares inm excepting the co-ordinate (3, 5) which contradicts [5,
3.1(ii)]. Yet, we cannot simultaneously obtain x2,5 and x4,6 through the action of x4,5
since it would have to be used twice. Moreover, we recover pseudo-regularity since
x4,6 ∈ V .

4.2 Pseudo-regularity

4.2.1

Proposition 2 e is pseudo-regular.

Proof The proof is by induction on the number of columns. Define eκ ∈ S as in 3.3.1.
Then we may write e = eκ + ek , with ek ∈ Ck . Recalling Lemma 3.2.2 we may
assume by the induction hypothesis that eκ is pseudo-regular in S.

Thus, we only need to show that the rooks coming from eκ and those coming from
ek , cover every square in Ck .

The proof of the latter is by induction on the height s of Ck(s).
Suppose s = 1 and let Ck−1 have height t . If (a) of 3.4.1 holds, then the last column

is covered by the rook on the (n − t)th row, noting that the downward motion need
not cross a horizontal line (though the upward motion may).

For (b), we apply (iv) of 3.4.2 as in the general case below.
By (i) of 3.4 the first s − 1 columns of Ck(s + 1) are those of Ck(s) and so by the

induction hypothesis the rooks cover all the first s − 1 columns of Ck(s + 1).
Let us show that this also hold for Ck(s + 1)s .
If this column has no ∗ then by (i i i)B of 3.4, this column coincides with Ck(s)s

and so again by the induction hypothesis on last column height, the rooks cover all
the entries of this column in Ck(s + 1).

If this column does have a ∗ then by (ii) of 3.4, it becomes a 1 in the same place
and by (iii) of 3.4 all other changes concern only Ck(s + 1)s+1. Thus, we are again
reduced to the previous case.

It thus remains to show that all the entries ofCk(s +1)s+1 are covered. This follows
easily from (iv) of 3.4.

��

4.2.1 A comment

The following result is not used; but it indicates what holds for entries in the last
column block.

Let s be the height of Ck and set m = min (|S|, s − 1).

Lemma 8 Each of the first m columns of Ck admits a 1 occurring (of course) on the
different rows.

Proof This follows from Lemma 3.6.3(ii) noting that just a ∗ may appear in Ck(s)s .
A more direct proof may also be given using 3.4.2. ��
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Remark These 1’smay be inserted sequentially in the columns going from left to right;
but they still may not appear in the lowest possible column. For example consider the
composition (3, 2, 1, 4). Then the 1 in column 9 occupies row 3 instead of row 4.

4.3 Abstract VS pairs

Here it is convenient to use k as a dummy index for co-ordinates. Yet, k was also used
as the label of the last column of D in 3.2 and already in our previous paper [2.2]
[5]. Although this should not cause any confusion, we introduced in N.B. of 3.3.1 the
device of replacing the k superscript by κ in reference to the last column of D .

Following the work of Victoria Sevostyanova [8] a pair of co-ordinates vectors
xi, j , xk,l in m is called a VS pair if x j,k , lies in n or is a root vector of the Levi factor.
Notice here that we must already have i < j, k < l.

Given a VS pair, commutation of xi, j with x j,k gives xi,k , which lies in the same
row as xi, j whilst commutation of x j,k with xk,l gives x j,l , which lies in the same
column as xk,l .

Consider the action of p. We cannot simultaneously obtain the entire row to the
right of xi, j and the entire column above xk,� because the same element of p, namely
x j,k , is being used twice.

In fact, this is exactly the source of the strict inclusion in (4). Otherwise the desired
regularity of e would result from Proposition 4.2.1.

In the example of 4.1, both the coordinates (2, 5) and (4, 6) (where an element of
V lies) cannot be simultaneously covered. Of course the action of p on e gives a linear
combination of these two vectors. Thus, a cat zapped by rooks at (2, 4) and (5, 6)
would end up like that of Schroedinger’s cat, a linear combination of a live cat and
a dead cat. This can get far more complicated and just imagine trying to play chess
taking account of VS pairs.

A main result of our present paper is Theorem 4.4.5, which severely limits the
number of VS pairs which need to be considered, those which we shall call “bad”.

In this we shall not attempt a complete classification of bad pairs for the reasons
given in Remark 4.4.3.

4.4 VS pairs associated to e+ V

4.4.1 VS pairs relative to the canonical Weierstrass section

Recall 3.1 and the notation used there.
Not all abstract VS pairs are needed.

Definition A pair xi, j , xk,l ∈ supp e, with j = k, is called a VS pair associated to the
Weierstrass section e + V if neither xi,k , nor x j,l belong to supp V and in addition
x j,k is a root vector of p, called the connecting element of the VS pair.
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Notice the definition incorporates the fact that by [5, 3.1(ii)], we cannot expect nor
do we need to recover V .

In particular, in the example of 4.1 that we are not considering x2,4, x5,6 to be a VS
pair, since x4,6 ∈ supp V .

Recall that E = ∑
x(i, j)∈supp e Cxi, j and Equation (1).

4.4.2 VS quadruplets

If C, C ′ are columns of Tm , we write C < C ′ if C lies strictly to the left of C ′.

Definition A VS pair xi, j , xk,l gives a quadruplet (i, j, k, l), which we call a VS
quadruplet if x j,k ∈ supp V .

Given t ∈ {1, 2, . . . , n}, let b(t) be the box containing t and C(t) the column
containing b(t).

Suppose (i, j, k, l) is a quadruplet, then C(i) < C( j) ≤ C(k) < C(l), by definition
of e.

Let c(t) denote the height of C(t) for any t ∈ {i, j, k, l}.
Note that the condition C( j) = C(k) means that j, k are in the same column and so the
connecting element is a root vector lying in the Levi factor l of p.

As noted in 4.3 we cannot obtain both xi,k and x j,l as elements of p.e (only a linear
combination). Then for example, the co-ordinate subspace E j,l need not lie in p.e+V .

4.4.3 Bad VS pairs

We shall define the notion of a bad VS pair relative to e+V inductively on the number
of columns. In this we recall the notation and observation of 3.3.1.

As 3.3.1, let S denote the (ordered) set of columns in D excluding its rightmost
column C . We shall sometimes denote C by C(s) to specify its height s. We shall
sometimes denote D by S � C .

Let xi, j , xk,l be a VS pair defined by e + V .

(∗). It can happen that there is either a co-ordinate vector x j,z ∈ supp e or a co-
ordinate vector xy,k ∈ supp e, so that the action of xz,l ∈ p (resp. xi,y ∈ p) gives x j,l

(resp. xi,k). Consequently either x j,l or xi,k is recovered in a second fashion.

[N.B.. In the above we also must check that the given element of p is not used in a
second commutator [xz,l , xl,u] (resp. [xh,i , xi,y]).

In the first case if l ∈ C , that is labels an element in the last column, then xl,u

cannot lie in m, so this holds trivially. In the second case we show that the labels of
the labels of a quadruplet (h, i, y, k) lie entirely in S and use the induction hypothesis.
Specifically, this check is carried out in the last part of 4.4.6 for the Levi factor case
and following the claim in 4.4.7 for the general case.]
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When (∗) does not happen, we say that xi, j , xk,l is a bad VS pair defined by e + V .

Remark . Checking that a pair is not bad can be relatively easy. Checking it is bad is
more difficult and this is why we do not attempt to classify all bad pairs.

Lemma 9 Let xi, j , xk,l be a bad VS pair defined by e + V . If l does not belong to C,
it is a bad VS pair relative to eκ + V κ .

Proof This is immediate from Lemma 3.2.2.
��

4.4.4 The extended elements

Following the above lemma, we inductively define eVS, (resp. EVS) by adjoining the
co-ordinate vector x j,l (resp. co-ordinate subspace Ce j,l ) to e (resp. E), for each bad
VS pair xi, j , xk,l as l runs through the columns of D going from left to right.

Extending the notation of 3.3.1, we let eκ
VS (resp. Eκ

VS) denote the element (resp.
subspace EVS) obtained as above but in which the contributions coming from the last
column Ck are omitted.

Bydefinition EVS compensates for the possible strict inclusion in (4), so Proposition
4.2.1, we obtain

Lemma 10 p.e + EVS + V = m.

Remark We would really like that p.eVS + V = m. As we shall see this fails. The
basic difficulty is that the roots occurring in eVS, as opposed to those occurring in e
may not be linearly independent as elements of h∗. Thus, as noted in 4.1 the rooks
defined by eVS need not cover themselves.

4.4.5 Towards bad VS pairs

A key result in excluding a VS pair from being bad is the following.

Theorem Let xi, j , xk,l be a bad VS pair. Then the connecting element x j,k comes from
a line in Tm carrying a ∗, equivalently x j,k ∈ supp V . In particular, (i, j, k, l) is a
VS quadruplet.

The proof of the theorem is given below. We retain its hypothesis and notation.

In view of lemma 4.4.3 we can adopt the notation of 4.4.3 that D = S � C with C
the last column of D and l an element of C . This notation will be retained until the
end of Sect. 4.5.
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4.4.6 The Levi factor case

Suppose that in the quadruplet (i, j, k, l), the boxes b( j), b(k) lie in the same column,
that is C( j) = C(k). (This means that x j,k belongs to the Levi factor of p.)

Lemma 11 If C( j) = C(k), then xi, j , xk,l is not a bad VS pair. In other words, the
assertion of the theorem holds in this case.

Proof Let t be the height of C( j) = C(k).
Suppose first that j < k. By hypothesis b(k) has a right-going line � to b(l) labelled

by a 1. Then by [5, 5.4.8(v)], the height of C(l) is at most one less than the height of
C(k). Yet, b( j) lies above b(k) in C( j) = C(k), so b( j) is not right extremal. Thus,
there exists a right-going line �′ from b( j).

Let b(z) be the right end point of �′. Suppose �′ is labelled by a ∗, then by [5, 6.5.4],
one has b(z) = b(�). Thus, the line j, l is labelled by a ∗ and so the pair (i, j), (k, l)
is not a VS pair (Definition 4.4.2).

Thus, we can suppose that �′ is labelled by a 1, in other words ( j, z) ∈ supp e.
Moreover either z ∈ C and xz,l belongs to the Levi factor or z < l. In both cases
xz,l is a root vector of p and we obtain x j,l in a second fashion as [x j,z, xz,l ]. Again
xz,l cannot be used in a commutator [xz,l , xl,u] because l labels a column in the last
column block C and so xl,u cannot lie in m.

Suppose now that j > k. By hypothesis b( j) has a left-going line � to b(i), labelled
by a 1 and b(k) lies above b( j) in C( j) = C(k). Then by [5, 6.5.4], there exists a
left-going line �′ from b(k) labelled by a 1. Let b(y) be the left-hand end point of �′.
Since y occurs in a column strictly to the left of C( j), necessarily y < k.

Let Rt be the row in which b( j) occurs. Take b1 = b(i), b2 = b( j) in Lemma
3.6.1. By its conclusion there is a column C ′ of height ≥ t − 1 to the right of C(i)
and strictly to the left of C( j). Since the only line carrying a ∗ having a box in C( j) as
its right-hand end point must lie strictly below b( j), every left-going line from a box
in C( j) above b( j) must be downward going by [5, 5.4.8(ix)] and hence meet C ′ or
a column between C ′, C( j). In both cases this column lies to the right of C(i), though
not necessarily strictly.

Thus, either i < y or both b(y), b(i) lie in C(i) and in this case xi,y lies in the Levi
factor. In both cases we recover xi,k as the commutator [xi,y, xy,k].

Finally, suppose xi,y is used in a second commutator [xh,i , xi,y] = xh,y , coming
from a second VS pair xh,i , xy,u . Then the line �y,u carries a 1. However, the line
�y,k is also labelled by a 1 and by [5, 5.4.8(vi)] this forces u = k. Then the resulting
quadruplet (h, i, y, k) lies entirely in S.

Thus, if this second VS pair is bad we can assume by the inductive construction
4.4.4 that the subspace Cxi,k has already been adjoined to Eκ

VS and thus we recover
xh,y , as required.

��

4.4.7 The general case

The proof of general case is similar, but one has to be more careful in view of the
possible appearance of ∗ which allows the VS pair to be a VS quadruplet.
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Let (i, j), (k, l) be a VS pair, with l ∈ C , which does not form a VS quadruplet
and that b( j), b(k) are in distinct columns, so then i < j < k < l. By definition of
a VS pair, b( j) (resp. b(k)) admits a left (resp. right)-going line to b(i) (resp. b(l)).
Under these conditions one has the

Claim. Either b( j) admits a right-going line labelled by a 1, to b(u) : j < u < l,
or b(k) admits a left-going line labelled by a 1, to b(v) : i < v < k.

In the above, the inequality j < u (resp v < k) follows because the box joined to
b( j) (resp. b(k)) lies strictly to the right (resp. left) of C( j) (resp. C(k)). The second
pair of inequalities is more delicate.

Assume the claim holds.

In the first case we obtain x j,l as [x j,u, xu,l ] in the second case we obtain xi,k as
[xi,v, xv,k].

As in the case when b( j), b(k) are in the same column, we cannot use xu,l again
with respect to a further VS pair x j,u, xl,t because l ∈ C and so xl,t /∈ m.

As in the case when b( j), b(k) are in the same column, one may use xi,v for a
second VS pair x f ,i , xv,k ; but this will lie entirely in S. As in the proof of Lemma
4.4.6, if this pair is bad, we can assume that the subspace Cxi,k has already been
adjoined to Eκ

VS. .
Thus, the theorem results from the claim, which we now proceed to prove.

4.4.8 Proof of claim

Suppose first that t := c( j) = c(k). Then by [5, 5.4.8(v)] every box in Rt lying in C( j)

(resp. C(k)) has a right (resp. left)-going line to a box between these two columns. In
particular this box may be b( j) (resp. b(k)) and writing the other end point of this
line as b(u) (resp. b(v)) we obtain the remaining inequality u < l (resp. i < v).
One of these two lines carries a 1 with the following possible exception. Namely, the
right-going line from b( j) is the same as the left-going line from b(k) and this line
carries a ∗. However, this means that (i, j, k, l) is a VS quadruplet.

Thus, we can assume c( j) = c(k).
Suppose that c( j) > c(k) and Set t = c( j). Then C( j) admits a nearest column C ′ of

height t strictly to the right of C(k) or we can adjoin one to the extreme right ofD . By
Lemma 3.2.2, this adjunction will not change the left-going lines from boxes in C(k).

Let C ′′ be a left neighbour to C ′. It lies to the right of C( j) and strictly to the left of
C(k).

By [5, 5.4.8(v)] every box in C(k) (so particularly b(k)) has a left-going line � to
a box lying to the right of C ′′ labelled by a 1, unless � goes leftwards from the box
C ′ ∩ Rt . The latter is impossible because C ′ lies strictly to the right of C(k). Finally,
the box b(v) joined to b(k) by � lies to the right of C ′′, so to the right ofC( j), so strictly
to the right of C(i). This gives the required inequality i < v.

It remains to consider the case c( j) < c(k), which is similar but a little more
complicated.
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Set t = c(k). Then C(k) admits a column C ′′ of height t strictly to the left but
nearest to C( j) or we can adjoin it as a left neighbour to C(k) to the extreme left of D .
By Lemma 3.2.3, and recalling that c( j) < c(k), this adjunction will not change the
right-going lines from boxes in C( j), though it may change their labels.

By [5, 5.4.8(v)] the box b( j) in C( j) has a right-going line � to a box at the left of
C(k), hence strictly to the left of C(l). If it is labelled by a 1, the claim holds in this
case as in the previous case.

Otherwise by [5, 5.4.8(v)], there is exactly a right-going line �′ from b( j) labelled
by a ∗ whose right end point is the box b′ in C(k) ∩ Rt . Notice that this also means
that C(k) must already have a left neighbour C ′′ in D , so adjoining a left neighbour
is unnecessary. Moreover, by adjacency [5, 5.4.3,5.4,11], �′ cannot cross a column of
height ≥ t , so there is no column of height t strictly between C( j), C(k). Thus, C ′′ is
a left neighbour to C(k) in D .

If b′ = b(k), then (i, j, k, l) is a VS quadruplet and we are done.
However, by definition b(k) ∈ C(k) and so if b(k) = b′, then b(k) must appear

strictly above b′, that is as C(k) ∩ Rt ′ for some t ′ < t .
Yet, by Lemma 3.6.1 there is a column C ′ of height≥ t −1 with C( j) ≤ C ′ < C(k).

Then exactly as in the proof of the last part of Lemma4.4.7we conclude by [5, 5.4.8(v)]
that b(k) admits a left-going line �′′ labelled with a 1 to some box b(v) to the right of
C ′. Yet C ′ lies to the right of C( j) and thus strictly to the right of C(i). Consequently
i < v, as required.

This completes the proof of the claim and taking account of Lemma 4.4.7 the
theorem.

Remark This result cuts down drastically the number of bad VS pairs. Indeed, by [5,
5.4.8(vi)] there is at most left (resp) right-going line carrying a 1 from a box in Tm.
We conclude that a line, say � j,k , carrying a ∗ uniquely determines a VS quadruplet
(i, j, k, l) (if one exists). Thus, the number of bad VS pairs is at most g.

Examples.

(i). Consider the array (1, 2, 1, 1, 2, 2, 3). Take i = 3, j = 4, k = 9, l = 11. Then
(3, 4), (9, 11) is a VS pair. Now the lines �4,7 and �7,9 are the obvious choices for the
lines of the claim but both carry a ∗, so at first sight one seems to get a contradiction.
However, there is also a line �4,9 carrying a 1 obtained by the joining of loose ends [5,
5.4.7(ii)]. Such joinings are essential to validate [5, 5.4.8(v)] used in the above proof.

(i i). Consider the array (1, 2, 1, 1, 2, 3). Then the VS pair (3, 4), (7, 9) forms a VS
quadruplet. Actually since the line (4, 10) carries a 1 and 10 lies in the same column
as 9, x4,9 can be recovered in a second fashion as [x4,10, x10,9]. Thus, this VS pair is
not bad.

(i i i). Consider the array (3, 2, 1, 1, 2, 3). There are just two VS quadruplets
(4, 6, 7.8) and (4, 6, 9, 11). One may easily check that the first is not bad. Thus,
the second being not bad would imply that e is regular. One can check that the second
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is indeed bad, but a better method is to show that e cannot be regular by computing its
nilpotency class as in [5, 6.10.9, Example 1].

Again as in loc. cit. onemay adjoin the co-ordinate vector (6, 11) to e. The resulting
element eVS is regular because the graph defined by the roots of the root vectors in eVS
has no cycles and so these roots are linearly independent. More details of this example
are in Sect. 6 Fig. 6.

4.5 Weierstrass sections

4.5.1 A preliminary lemma

Recall the subalgebra uπ ′ of m defined in [5, 2.5]. It is spanned by root subspaces
and those which do not appear in m are called the excluded root vectors [5, 2.7]. The
set of all such excluded root vectors in mis denoted by X in [5, 6.9.5]. In the matrix
presentation, that is in M, they are encircled by O [5, 6.9.5]. (Here we shall not use
this diagrammatic presentation but a reader working through examples is urged to do
so.)

We construct EVS by adjoiningCx j,l for each badVSpair xi, j , xk,l . In this Theorem
4.4.5 allows us to assume that (i, j, k, l) is a VS quadruplet.

We show that EVS ⊂ uπ ′ . To do this we shall not need to require that (i, j, k, l) is
bad, as a VS quadruplet.

Further to the definition of X above, we recall [5, 6.9.3] that every ∗ is encircled.
Following [5, 6.9.5] we let that Y be the set of co-ordinate vectors with a O encircling
a ∗ and Z the set of co-ordinate vectors which are just encircled by an O .

Finally, set Z = X \ Y .
The hypothesis of the following lemma holds if for example (i, j, k, l) is a VS

quadruplet.

Lemma 12 Suppose x j,k ∈ Y . If xk,l is a co-ordinate vector of e, for some l > k, then
x j,l /∈ X. In other words x j,k is encircled but its “neighbour” x j,l is not.

Proof The set X is the union (not necessarily disjoint) of the sets XC ′,C of elements
excluded by a pair of neighbouring columns C ′, C of height, say s. The elements of a
given XC ′,C have co-ordinates from the entries of the boxes in the columns between
C ′, C andmoreover are determined by the distribution of these entries through a simple
combinatorial procedure [5, 2.7].

Again byLemma3.2.2, the hypothesis of the lemmadoes not depend on the columns
strictly to the right of the column containing l. Thus, we may assume without loss of
generality that C is the rightmost column of D .

By [5, 2.7], the subset XC ′,C of elements of X obtained from the neighbouring pair
C ′, C is described in the following fashion.

Let C1, C2, . . . , Cu be the columns of height strictly greater than s between C ′, C .
For all i = 1, 2, . . . , u, let ci denote the height of Ci .

Recall the notation of 2.2. After [5, 2.7] we have the following result.
The excluded root vectors in M from set XC ′,C lie in the rectangles R j ′ : j ′ ∈

[1, u +1] formed from the last c j ′ − s : j ′ ≤ u columns (or last column if j ′ = u +1)
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ofC j ′ starting from the highest row of the block B j ′−1 to the row just above the highest
row of B j ′ .

Moreover, each such rectangle R j ′ : j ′ ∈ [1, u +1] has a gap between the (s +1)th
and c j ′−1th row relative to B j ′−1, where exactly no excluded roots lie.

For (3) below, one should keep in mind that the origin of this gap is in the columns
of height < s lying strictly between C j ′−1 and C j ′ .

Furthermore,

Remark 1 Recall that by [5, 6.6.2] an element of Y in a column block always lies in
its last column.

Remark 2 No co-ordinate of e is excluded, equivalently no 1 inM is encircled [5, Cor.
6.9.3].

There are three cases to consider.
In the first and second of these, the gap noted above will cause no problems, in the

last case it might.

Case(1). The element x j,k ∈ Y lies in a column block of a column of height > s,
that is some C j ′ : j ′ ∈ [1, u] in the above notation.

By Remark 1, x j,k lies in the last column of C j ′ . Thus, an entry x j,l : l > k must
lie in one of the column blocks C j ′′ : j ′′ > j ′ and in particular strictly above the rows
of the B j ′ . Thus, it cannot lie in any of the rectangles R j ′′ : j ′′ ∈ [1, u], for j ′′ > j ′
and nor of course for j ′′ ≤ j ′. Thus, x j,l is not an excluded co-ordinate and so not
encircled.

Case(2). The element of x j,k ∈ Y lies in a column block of a column of height s,
that is to say from Ck .

In this case the co-ordinate vector x j,l strictly to right of x j,k does not even exist.

Case(3). The element of x j,k ∈ Y lies in a column block of a column of height
s′ < s.

This means that x j,k belongs to a columnC ′′ of height< s, so lying strictly between
C j ′−1 and C j ′ , for some j ′ ∈ [2, u].

Recall that the element x j,k ∈ Y given by [5, Sect. 5.4.8] obtains by a two-fold
process. First in step 2 of [5, 5.3], one starts from a horizontal line carrying a ∗ going
rightwards to the box in Rs′ ∩ C ′′. Then at Step 3, this line may have its left-hand
end point moved down to the top of a column C ′′′ of even lower height than C ′′ [5,
5.4.7,5.4.8], but without crossing a column of height by ≥ s via adjacency [5, Lemma
5.4.8 (vii)].

123



552 Journal of Algebraic Combinatorics (2024) 59:523–559

We conclude that C ′′′ also lies strictly between C j ′−1 and C j ′ .
As an immediate consequence

(α). The row containing x j,k meets R j ′ strictly below its gap.

Yet, by the hypothesis the line �k,l carries a 1 and so by Remark 2, the root vector
xk,l is not excluded, equivalently xk,l is not in X . Then

either no co-ordinate vector xk′,l : k′ ≤ k is excluded and in particular x j,l /∈ X ,

or x j,l ∈ X , and xk,l lies in a gap of some R j ′′ : j ′′ ∈ [1, u].

(β). In the second case, x j,l lies in that part of R j ′′ strictly above its gap.

Since the rows of distinct rectangles are disjoint, (α), (β) force j ′ = j ′′.
Then (α), (β) become contradictory excluding the second option.
Hence, the conclusion of the lemma. ��

4.5.2 VS quadruplets

Let (i, j, k, l) be a VS quadruplet. Recall the definition of EVS given in 4.4.4.

Corollary 2 There is no element of Z at the co-ordinate j, l. In particular EVS ⊂ uπ ′ .

Proof Since by definition of a VS quadruplet, an element of Y occurs at the co-
ordinate ( j, k), whilst 1 occurs at (k, l). Then the hypothesis of Lemma 4.5.1 and by
its conclusion there is no element of Z at the co-ordinate ( j, l), as required.

The second part is immediate.
��

Remark 4 Return to the parabolic defined by the composition (3, 2, 1, 1, 2, 3), that is
Example (iii) of 4.4.8. In this the VS quadruplet (4, 6, 9, 11) is bad. According to the
corollary, x6,11 /∈ X , as may be checked. Thus, this root subspace may be included in
EVS to retain the property that EVS ⊂ uπ ′ . Yet, x4,9 ∈ X , so this property would be
destroyed had we instead required this second root subspace to lie in EVS.

This is why we chose to adjoin the “right-hand” element x j,l to eVS and not the
“left-hand” element xi,k . It is remarkable that this choice always works.

4.5.3 VS quadruplets

Recall the definition of N given in 1.3. The following key result was announced in
[5, Prop. 6.10.]. Here it is proved:

Proposition 3
(i). P.EVS ⊂ B.uπ ′ := N e.
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(ii). dim P.EVS = dimm − g.

(iii). P.EVS = B.uπ ′ .

Proof By [5, Cor. 6.9.8], C is a component of N , hence P stable. Then (i) follows
from Corollary 4.5.2.

Let F ⊂ EVS be a vector space complement to p.e in p.e + EVS := U . So then

U = p.e ⊕ F . (5)

Now e, F both belong to the vector space EVS, so P.(e + F) ⊂ P.EVS ⊂ C , by
(i).

Following the (standard) argument given on p. 262 of [3, Lemma 8.1.1], let
(y1, . . . , yr ) be a basis for F . Then we have a morphism ψ : P × F �→ C defined by
ψ(p, ξ1, . . . , ξr ) = p.(e + ∑r

i=1 ξi yi ).
Through (6) it follows as in [3, Lemma 8.1.1] that image of the tangent map at

0 ∈ C
r is U . Thus, dim P.EVS ≥ dim P.(e + F) = dimU .

On the other hand, U + V = m, by Lemma 4.4.4, and so dimU ≥ dimm−dim V .
Thus

dim P.EVS ≥ m − dim V . (6)

Yet, dim B.uπ ′ = dimm − dim V , by [5, Thm. 6.9.7].
Combined with (i), this gives the opposite inequality to (7). Hence (ii).
Finally, (iii) follows from (i),(ii) and the irreducibility of the right-hand side.

��
Remark This proves [5, Prop. 6.10.4].

On the other hand, by [5, 6.10.7] it cannot be that P.eVS is always dense in C .
Again as we saw in 4.1, even the dimension of p.E can strictly exceed dimm − g.

4.5.4 Weierstrass sections

Fix a standard parabolic subalgebra p of g, with m its nilradical and Tm the tableau it
defines.

Let C, C ′ be a pair of neighbouring columns of Tm having height s and fC,C ′ the
corresponding Benlolo-Sanderson invariant and let ϕ : (C[m])P ′ → C[e + V ] (resp.
ϕVS : (C[m])P ′ → C[eVS + V ]) be defined by restriction of functions.

Proposition 4 (i). For every pair of neighbouring columns C, C ′ of Tm, one has
ϕ( fC,C ′) = ϕVS( fC,C ′).

(i i). eVS + V is a Weierstrass section for the action of P ′ on m.

Proof Recall [4, 4.2.5] that every monomial in fC,C ′ corresponds to a disjoint union
of composite lines passing though every element in Rs between C, C ′. We shall refer
to this last property by saying the disjoint union is complete.
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Recall that our construction in [5, 5.4.11] gives one particular complete disjoint
union of composite lines, formed from the lines defining e + V .

Moreover in loc. cit. we also showed that there are no other possible complete
disjoint union formed from the lines defining e + V .

Observation. To prove (i), it is obviously enough to show that the additional lines
given by adjoining the lines � j,l for every VS quadruplet (i, j, k, l) does not introduce
a new complete disjoint union of composite lines.

Recall (Remark 4.4.8) that a line, say � j,k , carrying a ∗ uniquely determines a VS
quadruplet (i, j, k, l) (if one exists). Moreover, the line � j,l introduced by this quadru-
plet is uniquely the composition of the lines � j,k, �k,l and so uniquely determined by
� j,k .

(∗). Thus, there can be only new composite lineL ′ which simply bypasses the box
with entry k. Moreover, the value it gives to the monomial changes from x j,k to 1.

Yet, as we shall see below even this extra scalar factor cannot appear!

Recall that in [5, 5.4.11] that we proved that there is only one complete disjoint
union of composite lines joining C, C ′, formed from the lines defining e + V . As
noted in loc cit, this was practically obvious if we forbid passage across gated lines
(carrying a ∗), Now in this the only line, call it � j,k , carrying a ∗ which is not gated,
is exactly the unique line whose right-hand end point is the box C ′ ∩ Rs .

Moreover, going leftwards from this box there is a unique composite lineL reach-
ing a box in C . The boxes through whichL passes cannot, by definition, appear in the
passage of a further composite lineL ′ disjoint toL . As note in [5, 5.4.11] this forbids
passage across all the lines carrying a ∗ gated at the s − 1 stage. Then by downward
induction (cf [5, 5.4.11], one concludes that there is only one complete disjoint union
of composite lines joining C, C ′. Moreover, amongst the set of individual lines in
these composite lines, there is only one carrying a ∗ namely � j,k .

We conclude that the (unique) complete disjoint union of composite lines deter-
mined by e + V is unchanged, when we pass to eVS because no line carrying a ∗ is
used in the first union except � j,k and this cannot be replaced by � j,l because k is an
entry of C ′ and therefore l is in a box strictly to the right of C ′. Thus, the potentially
new composite lineL ′ mentioned in (∗) above does not even exist. Hence (i).

(ii) follows from (i) and [5, 5.4.12]. ��

5 Figures

The following figures illustrate the assertions of 3.4, for different assignments of
column heights of S. In each case three pictures are drawn. On the left (resp. right)
of the top picture, we give the last (resp. last two) columns ofM(s) (resp.M(s + 1)).
In the middle picture, a composition realizing these assignments of height is given. In
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Fig. 1 S has a column of height
> s + 2 but none of height
s, s + 1. This illustrates the last
part of (i i i)B

Fig. 2 S has no column of
height s, a column of height
s + 1 and a column of height
> s + 1. This illustrates the first
part of (i i i)B and (iv)

Fig. 3 S has a column of height
s and two columns of height
s + 1. This illustrates
(i i), (i i i)A and (iv)

this s is its last entry. The bottom picture describes the resulting matrix presentation
of M(s) → M(s + 1) (Figs. 1, 2, 3, 4, and 5).

5.1 Case 1

Example Consider the parabolic defined by the composition (3, 1):
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Fig. 4 The VS pair (3, 4, 9, 11) in red is not bad thanks to the blue line �4,9
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5.2 Case 2

Example Consider the parabolic defines by the composition (2, 3, 1) to (2, 3, 2):

1 3 6
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1 1

1

1 3 6

2 4 7
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1 1
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1 0 1 0 0 0
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0 0 0 0 1 0
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⎛
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⎜
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⎝
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0 0 0 1 0 0 ∗
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⎛
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⎜
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Fig. 5 the VS pair (3, 4, 7, 9) in
red is not bad. the line �4,9
representing x4,9 ∈ supp e lies
in the same column as x4,9

Fig. 6 The VS pair (3, 4, 7, 9) in
red is bad, we augment the e
with the green line �4,10

5.3 Case 3

1 3 6 8 9

2 4 7

5

1 1 1 ∗

1 ∗
1

1

1 3 6 8 9

2 4 7 10

5

1 1 1 1

1 ∗
1

∗
1

Example Consider the parabolic defines by the composition (2, 3, 2, 1, 1) to (2, 3, 2, 1, 2):

The three following figures illustrate the VS quadruplet of the examples of 4.4.8.

Example (i). Consider the parabolic defines by the composition (1, 2, 1, 1, 2, 2, 3):

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 ∗ 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0 1

⎛

⎜
⎜
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⎜
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⎜
⎜
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⎝

⎞
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 ∗ 0 0 1
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 ∗
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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(i i). Let the parabolic defines by the composition (1, 2, 1, 1, 2, 3):
(i i i). Let the parabolic defines by the composition (3, 2, 1, 1, 2, 3):
Recall [5, 4.2] that e is given by the co-ordinate vectors defined by the lines with

label 1. In Fig. 6, these form three disjoint lines (1, 4, 6), (2, 5, 7, 8, 10), (3, 9, 11),
so e has nilpotency class is (5, 3, 3, 1) giving rise to column heights (4, 3, 3, 1, 1).
Thus, 1

2 dim |G · e = dim n − 1
2 (4 × 3 + 3 × 2 + 3 × 2) = dim n − 12, whilst

dimm = dim n−8. Consequently, 12 dim G · e = dim P · e = dimm−4. Yet, e ∈ N
is regular if and only if dim P · e = dimm − dim V = dimm − 3.

The lines in red represent the bad VS pair (3, 4, 7, 9) in Fig. 6. By 4.4.4 we must
adjoin the green line, that is �6,11, giving eVS = e + x6,11, which by Prop. 4.5.3
lies in N e. The nilpotency class of eVS is (5, 4, 2, 1) giving rise to column heights
(4, 3, 2, 2, 1). Thus, 1

2 dim G · eVS = dim n− 11 and 1
2 dim G · eVS = dim P · eVS =

dimm − 3 = dimN e, the last equality by Prop. 4.5.3. Thus, PeVS is dense orbit in
N e and so eVS is a regular element in N .

6 Index of notation

Symbols used frequently are given below in the order in which they appear.

1. C, [1, n].
1.1. G, g, h, H , �, �+, π, n, n−, b, W , sα, α∨.
1.2. rπ ′ , pπ ′ ,mπ ′ , P, P ′, p′.
1.3. N , e + V ,N e .
1.4. Nreg, eVS, EVS.
1.6. B.u, d.
2.1. Mn , xi, j , αi, j .
2.2. Wπ ′ , wπ ′ , ci , Bi ,Ci .
2.3. Dm, Ri , Ri , Ci ,Tm, �b,b′ , �i, j .
2.4 Mv,v′ , uv,v′ , wu,u′ .
2.6. Ms (v, v′),T t , Ms , Ms (m).
2.7. P .
3.2.1. C , �(C ).
3.3. bi, j .
3.3.1. C(s),M(s), s, S,Mk , eκ , V κ .
3.3.2. rC,C ′ .
3.4. Ct .
3.4.2. R, |S|.
3.6.8. S .
4.4.2. C < C ′, b(t), C(t), c(t).
4.4.4. eκ

VS, Eκ
VS.
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