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Abstract
We present a method which in principal allows to characterise all integral circulant
graphs with multiplicative divisor set having a spectrum, i.e. the set of distinct eigen-
values, of any given size. We shall exemplify the method for spectra of up to four
eigenvalues, also reproving some known results for three eigenvalues along the way.
In particular we show that given any integral circulant graph of arbitrary order n
with multiplicative divisor set and precisely four distinct eigenvalues, n necessarily is
either a prime power or the product of two prime powers with explicitly given simply
structured divisor set and set of eigenvalues in both cases.

Keywords Integral graphs · Regular graphs · Strongly regular graphs · Circulant
graphs · Eigenvalues · Spectrum

Mathematics Subject Classification 05C50

1 Introduction

The adjacencymatrix of an undirected graphG onn vertices is a real symmetric (n×n)-
matrix and thus has n real eigenvalues λ1, λ2, . . . , λn , say, which are not necessarily
distinct. In other words, G has real spectrum Spec(G) := {λi : 1 ≤ i ≤ n}. Graphs
with a small number of distinct eigenvalues, i.e. |Spec(G)| is small, have attracted quite
a bit of attention over the past decades. “Graphs with few distinct eigenvalues tend to
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have some kind of regularity”, Brouwer andHaemers formulated in [7, Chapter 15]
(also explaining the following statements). A graph with only one eigenvalue has no
edges, and a graphwith only two distinct eigenvalues is complete or, in general, a union
of complete subgraphs. Generally, graphs with three eigenvalues need not be regular
any more. However, for a connected regular graph we have the following classic result
by Shrikhande and Bhagwandas:

Theorem 1.1 [24] A regular connected graph has precisely three distinct eigenvalues
if and only if it is strongly regular.

To this end, a graph G is called strongly regular with parameters (n, k, a, c) if G
is k-regular with n vertices, neither complete nor empty, and every pair of adjacent
(resp. non-adjacent) vertices has exactly a (resp. c) common neighbours. This notion
was originally introduced byBose [4] in 1963. Note that unconnected strongly regular
graphs are characterised by c = 0 (equivalently a = k − 1) and are isomorphic to
m copies of Kk+1 for some m > 1 (cf. [12, Lemma 10.1.1]), resulting in m times
eigenvalue k and mk times eigenvalue −1. Hence the structure of such graphs is fully
understood.

Strongly regular graphs have been characterised in various ways. For example,
in [18] the authors give a characterisation of strongly regular graphs by virtue of
Euclidean representations of a graph. In contrast, the authors of [10] present an upper
bound for the largest eigenvalue of the so-called signless Laplacian matrix of a given
graph G. That bound is attained if and only if G is strongly regular, hence giving rise
to a characterisation of strongly regular graphs. Graphs with few eigenvalues have
also been considered with respect to eigenvalues associated with still other matrices,
e.g. the normalized Laplacian matrix [5, 14, 28].

Van Dam and Omidi [29] generalize strongly regular graphs by introducing the
notion of stronglywalk-regular graphs. They characterise stronglywalk-regular graphs
by showing that this class consists of the following subclasses: empty graphs, complete
graphs, strongly regular graphs, disjoint unions of complete bipartite graphs of the
same size and isolated vertices, regular graphs with four eigenvalues.

Turning to various classes of connected regular graphs, it is of interest how to
achieve a structural characterisation of the strongly regulars members of such a class
(as opposed to the obvious algebraic characterisation by means of their spectrum).
Considering the class of circulant graphs (i.e. graphs whose adjacency matrix is a
circulant matrix), it has been shown in [6] that Paley graphs are the only non-trivial
circulant strongly regular graphs—the “trivial” case being a complete multipartite
graph or its complement. Let us now further restrict the graph class to those members
whose eigenvalues are integers only. This yields the class of integral circulant graphs,
cf. Sect. 2 for more details. As the authors of [27] point out, the Paley graphs in
question must have p vertices, where p is a prime congruent 1 modulo 4, hence they
are not integral. Thus, a characterisation of strongly regular integral circulant graphs
can be achieved (see also [2, Theorem 15]).

The question whether connected graphs with four distinct eigenvalues exhibit any
noticeable regularity features or how to characterise them is an active field of research.
Some references can be found in [7, Chapter 15]. Most notably, authors restrict them-
selves to particular graphs only. For example, the authors of [30] identify all regular
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connected graphs with four distinct eigenvalues having at most 30 vertices. In [13] it is
proven that connected graphs with four distinct eigenvalues but at least three eigenval-
ues of multiplicity one cannot exist. Moreover, all connected regular graphs with four
distinct eigenvalues and second least eigenvalue greater than or equal to 1 are deter-
mined. The paper [11] contains characterisations of grid graphs as co-edge-regular
graphs with four distinct eigenvalues.

When it comes to integral circulant graphs with four distinct eigenvalues, results
are still scarce. The authors of [26] identify several classes of connected integral
circulant graphs with four distinct eigenvalues. It is our purpose to address the “small”
spectrum problem for integral circulant graphs which have amultiplicative divisor set
(see Sect. 2 and the introduction to Sect. 4 for definitions). We shall establish a method
which in principal allows to identify all such graphs having a spectrum of any given
size. For this purpose, we introduce the combinatorial concept of the gap number in
Sect. 3 and show in Theorem 3.1 that the number of distinct eigenvalues of an integral
circulant graph of prime power order is roughly twice the corresponding gap number.
The multiplicativity property of the divisor sets enables us to decipher the structure
of these sets—i.e. their so-called factorisation pattern (cf. Section 4)—explicitly for
any integral circulant graph of arbitrary order n as long as it has a small spectrum
(Theorems 5.1 and 7.1 for three or four distinct eigenvalues, respectively).

In particular, we shall exemplify our method for spectra of up to four eigenvalues,
also reproving some known results for three eigenvalues along the way (see Sects. 5
and 6). Incidentally this will reveal the combinatorial difficulties one has to face in
case of larger spectra. Nevertheless we completely unravel the mystery for integral
circulant graphs of order n with multiplicative divisor set and precisely four distinct
eigenvalues by showing that for any such graph n necessarily is either a prime power
or the product of two prime powers with explicitly given simply structured divisor set
and set of eigenvalues in both cases (Corollary 7.1).

We hope that the new approach inspires further research in this field and formulate
a couple of open problems in Sect. 8.

2 Basics about integral circulant graphs

Given a finite group �—assuming the operation to be written additively with identity
0—and a generating set S ⊆ �, the corresponding Cayley graph Cay(�, S) is defined
to have vertex set� and edge set {{a, b} ∈ � : a−b ∈ S}. If S = −S := {−s : s ∈ S}
and 0 /∈ S, then Cay(�, S) is undirected and loop-free (cf. [12] for basic definitions
and properties).

Let Zn := Z/nZ be the residue class group mod n, which we regularly identify
with the set {0, 1, 2, . . . , n−1} of non-negative residues.Circulant graphs are Cayley
graphs on finite cyclic groups, i.e. � = Zn for some positive integer n, and we
define Circ(n, S) := Cay(Zn, S). In this situation S is the set of neighbours of 0. For
S = Z

∗
n = {a ∈ Zn : gcd(a, n) = 1} being the set of all units in the residue class ring

mod n, we obtain as a special case the so-called unitary Cayley graph Circ(n, Z
∗
n).

Each circulant graph has a circulant adjacency matrix, whose j-th entry in the first
row is 1 if j ∈ S and equals 0 otherwise (0 ≤ j ≤ n − 1), where the first entry is
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assumed to be zero in order to avoid loops in the graph. Each of the eigenvalues of a
circulant matrix can explicitly be evaluated as a sum of roots of unity (see [9] for the
general theory of circulant matrices).

A graph is called integral if all of its eigenvalues, i.e. the eigenvalues of the graph’s
adjacencymatrix, are rational integers. In this case the sumsof roots of unity computing
the eigenvalues turn out to be sums of Ramanujan sums (cf. (3) or [15]), which explains
the integrality of the eigenvalues. Using this observation, So [25] and Klotz and
Sander [15] showed that a circulant graph Circ(n, S) is integral if and only if we
have for some non-empty set D ⊆ D(n) := {d > 0 : d | n} of positive divisors of n
that

S =
⋃

d∈D
Gn(d), Gn(d) := {1 ≤ a ≤ n − 1 : gcd(a, n) = d}. (1)

In other words, each integral circulant graph Circ(n, S) is characterised by n and a
non-empty set D ⊆ D(n) in such a way that it has vertex set Zn and edge set

{(a, b) : a, b ∈ Zn, gcd(a − b, n) ∈ D}. (2)

The notation ICG(n,D) := Circ(n,
⋃

d∈D Gn(d)) for integral circulant graphs is well
established, where D ⊆ D(n), D �= ∅, is called a divisor set of n.
Two arithmetic properties of D reflected by graph-theoretical features of ICG(n,D)

are:

1. If n ∈ D, then apparently ICG(n,D) has loops, which is the reason why some
authors preclude this possibility. However, we tolerate that n ∈ D, in particular for
prime powers n, unless otherwise stated.

2. ICG(n,D) is connected if and only if the elements ofD are coprime (cf. [3, Propo-
sition 1]).

Let ICG(n,D) be an integral circulant graph with an arbitrary positive integer n
and a divisor set D ⊆ D(n). As shown in [15, Theorem 16], the eigenvalues of (the
adjacency matrix of) ICG(n,D), taking multiplicities into account, are integers given
by

λ j (n,D) =
∑

d∈D
c
(
j,

n

d

)
, c( j, n) :=

∑

� mod n
(�,n)=1

e
( j�

n

)
=

∑

d|gcd( j,n)

d · μ
(n
d

)
(3)

for 1 ≤ j ≤ n. Here c( j, n) denotes a Ramanujan sum (cf. [1, Chapters 8.3–8.4],
[23, Chapter I.3]), μ(n) is Möbius’ function and e(x) := e2π i x for real x . Further-
more �λ(n,D) := (

λ1(n,D), λ2(n,D), . . . , λn(n,D)
)
is called the spectral vector of

ICG(n,D). Disregardingmultiplicities we have Spec(ICG(n,D)) := {λ j (n,D) : 1 ≤
j ≤ n}.
The chararacterisation of the set of edges in (2) reveals that integral circulant graphs

are clearly regular. Actually, circulant adjacency matrices represent regular graphs,
because the number of entries 1 in each row is trivially the same, hence all circulant
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graphs are regular. Therefore |S| (cf. (1)), counting the neighbours of 0, equals the
degree of regularity of ICG(n,D)). It is well known that the degree of regularity of
a regular graph is also its largest eigenvalue, its its multiplicity being the number of
components of the graph (cf. [8]). It can easily be seen by (3) and (1) that λn(n,D)

plays this role in ICG(n,D)):

λn(n,D) =
∑

d∈D
c
(
n,

n

d

)
=

∑

d∈D

∑

� mod n
d

gcd(�, nd )=1

1 =
∑

d∈D
ϕ
(n
d

)
=

∑

d∈D

∣∣Gn(d)
∣∣ = |S|,

since Gn(d) = {1 ≤ � · d < n : gcd(�, n
d ) = 1}, where ϕ(n) denotes Euler’s totient

function.

3 Spec(ICG(D, pk)) and gaps in the exponent set

The knowledge about the spectral vectors �λ(pk,D) of integral circulant graphs
ICG(pk,D) having prime power order pk is very satisfying (cf. [20–22]). A different
task is to figure out the cardinality of the spectrum, i.e. the number of distinct eigenval-
ues. For its own sake aswell as for later useweprove a formula for |Spec(ICG(pk,D))|,
given any prime power order pk and allowing for pk ∈ D. Moreover we explicitly
determine all ICG(pk,D) whose spectrum contains at most four distinct eigenvalues.

Let pk be a prime power. Given a divisor set D ⊆ D(pk), i.e.D = {pk1 , . . . , pkm }
with 0 ≤ k1 < k2 < · · · < km ≤ k, say, we call KD := {k1, . . . , km} its exponent
set. Moreover, let K̃D := KD\{k} and KD := {−1, 0, 1, . . . , k − 1}\KD in order to
define the leaping set

LD := {
k − � : 0 ≤ � ≤ k − 1, (� − 1, �) ∈ (K̃D × KD

) ∪ (KD × K̃D
)}

∪{0} (4)

of D. The results of the following proposition, all of them well known, will be used
to prove Theorem 3.1 below.

Proposition 3.1 Let pk be a prime power andD ⊆ D(pk) a divisor set with exponent
set KD and leaping set LD.

(i) (= [22, Corollary 2.4(i)]) The (dominating) eigenvalue λ1(pk,D) of ICG(pk,D)

satisfies

λ1(p
k,D) =

⎧
⎨

⎩

+1 if k ∈ KD and k − 1 /∈ KD,

−1 if k /∈ KD and k − 1 ∈ KD,

0 otherwise.
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(ii) (= [20, Proposition 3.2]) For 0 < � ≤ k we have

λp� (pk,D) − λp�−1(pk,D) =
⎧
⎨

⎩

p� if k − � ∈ KD and k − � − 1 /∈ KD,

−p� if k − � /∈ KD and k − � − 1 ∈ KD,

0 otherwise.

(iii) (= [21, Lemma 3.2]) Let LD = {�0, �1, �2, . . . , �m}, where 0 = �0 < �1 < · · · <

�m, say. Setting �m+1 := k + 1, we have for 0 ≤ j ≤ m that

λ
p� j (p

k,D) = λ
p� j+1(pk,D) = λ

p� j+2(pk,D) = · · · = λ
p� j+1−1(pk,D).

(iv) (= [21, Theorem 4.1]) The eigenvalues λp� (pk,D) ∈ Spec(ICG(pk,D)) with � ∈
LD are pairwise distinct and satisfy {λp� (pk,D) : � ∈ LD} = Spec(ICG(pk,D)).

We set σ(n,D) := |Spec(ICG(n,D))| for any positive integer n and any divisor set
D ⊆ D(n). To label integer intervals we use the notation [a · · · b] := {a, a + 1, a +
2, . . . , b} for any integers a ≤ b. Given a divisor set D = {pk1 , . . . , pkm } ⊆ D(pk)
with 0 ≤ k1 < k2 < · · · < km ≤ k, we finally introduce the notion of gaps in the
exponent set KD := {k1, . . . , km} of D. A gap in KD is an integer interval [a · · · b]
satisfying the following conditions:

(i) 1 ≤ a ≤ b ≤ k − 1, (i i) [a · · · b] ∩ KD = ∅,

(i i i) a − 1 ∈ KD, (iv) b + 1 ∈ KD or b = k − 1.

The gap number γ (pk,D) is defined as the number of gaps inKD. By looking at expo-
nent sets with gaps [1 · · · 1], [3 · · · 3], [5 · · · 5], . . .we clearly have 0 ≤ γ (pk,D) ≤ k

2 .
The main result of the subsequent theorem is that σ(pk,D) roughly equals 2 ·

γ (pk,D).

Theorem 3.1 Let pk be a prime power, and let D ⊆ D(pk) be a divisor set of pk .

(i) Then σ(pk,D) = 2
(
γ (pk,D) + 1

) − χ(pk,D), where

χ(pk,D) :=
{
0 if k − 1 ∈ KD,

1 if k − 1 /∈ KD.

(ii) Let [ai · · · bi−1], 1 ≤ i ≤ γ (pk,D), be the gaps in KD (including the case
γ (pk,D) = 0 in which no gaps exist). With b0 := minKD we define G0 :=
[0 · · · b0−1] if 0 /∈ KD, G0 := ∅ otherwise, and Gi := [ai · · · bi−1], 1 ≤ i ≤
γ (pk,D). Then we have

KD =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[0 · · · k]\
γ (pk ,D)⋃

i=0
Gi if k ∈ KD,

[0 · · · k−1]\
γ (pk ,D)⋃

i=0
Gi if k /∈ KD.

(5)
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Setting γ ∗(pk,D) := γ (pk,D) − χ(pk,D) and aγ (pk ,D)+1 := k, the leaping set
has the following characterisation in terms of the gaps:

LD = {k − ai : 1 ≤ i ≤ γ (pk,D) + 1} ∪ {k − bi : 0 ≤ i ≤ γ ∗(pk,D)}. (6)

The spectrum of ICG(pk,D) is given by the (γ ∗(pk,D)+ 1)+ (γ (pk,D)+ 1) =
σ(pk,D) pairwise distinct integers

⎛

⎝
γ ∗(pk ,D)∑

i= j

pk−bi −
γ (pk ,D)∑

i= j+1

pk−ai + λ1(p
k,D)

⎞

⎠ (0 ≤ j ≤ γ ∗(pk,D)),

−
⎛

⎝
γ (pk ,D)∑

i= j

pk−ai −
γ ∗(pk ,D)∑

i= j

pk−bi − λ1(p
k,D)

⎞

⎠ (1 ≤ j ≤ γ (pk,D) + 1),

(7)

where λ1(pk,D) was determined in Proposition 3.1(i). Notice that sums with an
empty range of summation are to be understood as 0 and sets with unaccomplish-
able conditions equal ∅.

Proof The characterisation (5) of the exponent set in terms of the gaps is a straightfor-
ward consequence of the definition of the gaps, depending only on whether k ∈ KD
or k /∈ KD. Observe that the definition of G0 takes care of a possible initial “gap” in
KD, i.e. if 0 /∈ KD.

According to Proposition 3.1(iv) the distinct eigenvalues in Spec(ICG(pk,D)) are
characterised by the pairs (� − 1, �) ∈ (K̃D × KD

) ∪ (KD × K̃D
)
in the range

0 ≤ � ≤ k − 1. In our setting, these are

(B0) the pair (b0 − 1, b0) (even for b0 = 0, i.e. 0 ∈ K̃D, since −1 ∈ KD by
definition),

(A) all pairs (ai − 1, ai ) for 1 ≤ i ≤ γ (pk,D),
(B) all pairs (bi − 1, bi ) for 1 ≤ i ≤ γ ∗(pk,D) = γ (pk,D) − χ(pk,D). The

latter reduction of the range of eligible pairs results from the fact that the pair
(bγ (pk ,D) − 1, bγ (pk ,D)) is out of range in LD if bγ (pk ,D) = k (cf. (4)), i.e. if
k − 1 /∈ KD.

Taking account of all suitable pairs and—according to definition (4) of LD—
subjoining 0 = k − aγ (pk ,D)+1, we obtain the leaping set

LD = {k − b0} ∪ {k − ai : 1 ≤ i ≤ γ (pk,D)} ∪ {k − bi : 1 ≤ i ≤ γ ∗(pk,D)}
∪{0},

which confirms (6). Consequently Proposition 3.1(iv) implies

σ(pk,D) = |LD| = 1 + γ (pk,D) + γ ∗(pk,D) + 1

= 2 · γ (pk,D) − χ(pk,D) + 2,
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which verifies (i).
Up to this point (i), (5) and (6) have been confirmed, and it remains to show (7).

Let us start with the special cases σ(pk,D) = |LD| ∈ {1, 2}, i.e. the situation where
KD has no gap according to (i).

For σ(pk,D) = 1 formula (i) yields γ (pk,D) = 0 and χ(pk,D) = 1, i.e. k − 1 /∈
KD, which necessarily implies 0, 1, . . . , k − 2 /∈ KD, because otherwise KD would
contain a gap. Therefore, G0 = [0 · · · b0−1] = [0 · · · k−1], henceD = {pk}. Finally,
Proposition 3.1(iv) implies that Spec(ICG(pk,D)) = {λp0(p

k,D)} = {λ1(pk,D)},
confirming (7) for σ(pk,D) = 1.

In case σ(pk,D) = 2 it similarly follows from (i) that γ (pk,D) = 0 and k − 1 ∈
KD, thus γ ∗(pk,D) = 0 and b0 ≤ k − 1. Hence (6) implies that LD = {k − a1, k −
b0} = {0, k − b0}, thus Spec(ICG(pk,D)) = {λ1, λpk−b0 } by Proposition 3.1(iv).
Since KD has no gaps, we necessarily have KD = [b0 · · · k] or KD = [b0 · · · k−1],
in any case b0, b0 + 1, . . . , k − 1 ∈ KD, but b0 − 1 /∈ KD. Therefore we obtain from
Proposition 3.1(ii) thatλpk−� = λpk−�−1 for b0+1 ≤ � ≤ k−1 andλpk−b0 −λpk−b0−1 =
pk−b0 . This yields

λpk−b0 − λ1 = λpk−b0 − λp0 =
k−1∑

�=b0

(
λpk−� − λpk−�−1

)

= λpk−b0 − λpk−b0−1 = pk−b0 ,

which completes the verification of (7) for σ(pk,D) = 2.
Therefore, we may assume that σ(pk,D) ≥ 3, whence γ (pk,D) ≥ 1 according

to (i), and thus b0 < k. Without loss of generality we may assume that the gaps Gi in
KD are indexed in such a way that a1 < a2 < · · · < aγ (pk ,D), hence

0 ≤ b0 < a1 < b1 < a2 < b2 < · · · < aγ (pk ,D)−1 < bγ (pk ,D)−1

< aγ (pk ,D)

[
< bγ (pk ,D)

]
≤ k,

where bγ (pk ,D) occurs if and only if k − 1 ∈ KD (cf. (B) above). By (6) and Proposi-
tion 3.1(iv), and abbreviating λp j := λp j (pk,D), this implies that

λ
p
k−a

γ (pk ,D)+1
,
[
λ
p
k−b

γ (pk ,D)
,
]
λ
p
k−a

γ (pk ,D)
, λ

p
k−b

γ (pk ,D)−1
, λ

p
k−a

γ (pk ,D)−1
, . . .

. . . , λpk−b2 , λpk−a2 , λpk−b1 , λpk−a1 , λpk−b0

(8)

is a complete collection of the 2γ (pk,D) + 2 − χ(pk,D) distinct eigenvalues of
ICG(pk,D), arranged according to increasing indices, i.e. increasing exponents of p.

Let λpk−�′ , λpk−� with � < �′ be any pair of successive eigenvalues in (8). According
to Proposition 3.1(iii) we have

λpk−�′ = λpk−�′+1 = λpk−�′+2 = · · · = λpk−�−1 .
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Therefore Proposition 3.1(ii) implies

λpk−� − λpk−�′ =
�′−1∑

j=�

(
λpk− j − λpk− j−1

) = λpk−� − λpk−�−1

=
{
pk−� if � ∈ KD and � − 1 /∈ KD,
−pk−� if � /∈ KD and � − 1 ∈ KD.

Since ai /∈ KD and ai − 1 ∈ KD for 1 ≤ i ≤ γ (pk,D), while bi ∈ KD and
bi − 1 /∈ KD for 0 ≤ i ≤ γ (pk,D) − 1, we thus obtain

λpk−� − λpk−�′ =
⎧
⎨

⎩

−pk−ai for � = ai , �′ = bi (1 ≤ i ≤ γ (pk,D))

and for � = aγ (pk ,D), �′ = aγ (pk ,D)+1,

pk−bi for � = bi , �′ = ai+1(0 ≤ i ≤ γ (pk,D) − 1).

By using these identities inductively, collection (8) can be written as

λ1,−pk−a
γ (pk ,D) + λ1, p

k−b
γ (pk ,D)−1 − pk−a

γ (pk ,D) + λ1,

− pk−a
γ (pk ,D)−1 + pk−b

γ (pk ,D)−1 − pk−a
γ (pk ,D) + λ1, . . .

. . . , pk−b0 − pk−a1 ± . . . + pk−b
γ (pk ,D)−1 − pk−a

γ (pk ,D) + λ1

in case k − 1 /∈ KD, and

λ1, p
k−b

γ (pk ,D) + λ1,−pk−a
γ (pk ,D) + pk−b

γ (pk ,D) + λ1,

pk−b
γ (pk ,D)−1 − pk−a

γ (pk ,D) + pk−b
γ (pk ,D) + λ1, . . .

. . . , pk−b0 − pk−a1 ± . . . + pk−b
γ (pk ,D)−1 − pk−a

γ (pk ,D) + pk−b
γ (pk ,D) + λ1

in case k − 1 ∈ KD. This, finally, proves (7) and completes the proof of the theorem.
�

The following result exemplifies the use of Theorem 3.1 in order to determine all
ICG(pk,D) satisfying σ(pk,D) = s for any given s.

Corollary 3.1 The values of γ (pk,D) and the leaping set LD, the exponent set
KD and the spectrum Spec(ICG(pk,D)) corresponding to integral circulant graphs
ICG(pk,D) with 1 ≤ σ(pk,D) ≤ 4 are given in Table 1.

Proof All entries for σ(pk,D) = 1 and σ(pk,D) = 2 in Table 1 have explicitly been
discussed in the proof of (7) of Theorem 3.1, and the required values of λ1(pk,D) can
be found in Proposition 3.1(i). It remains to check the cases σ(pk,D) ≥ 3.

First of all we observe that k ∈ KD versus k /∈ KD has an effect on the value
of λ1(pk,D) (cf. Proposition 3.1(i)) and consequently on all eigenvalues (see (7)),
but does not influence the leaping set LD (cf. its definition in (4)) nor the set of
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gaps. In other words, σ(pk,D) = σ(pk,D ∪ {pk}) and σ(pk,D) = σ(pk,D\{pk}),
respectively.

For σ(pk,D) = 3, we obtain γ (pk,D) = 1 and χ(pk,D) = 1 by Theorem 3.1(i),
hence k − 1 /∈ KD. Since k − 1 /∈ KD and KD has precisely one gap, we necessarily
have KD = [u · · · v−1] or KD = [u · · · v−1] ∪ {k} for some integers 0 ≤ u < v < k
by (5). The corresponding setsLD and Spec(ICG(pk,D)), as given in Table 1, follow
from (6) and (7), respectively.

For σ(pk,D) = 4, Theorem 3.1(i) implies γ (pk,D) = 1 and χ(pk,D) = 0, hence
k − 1 ∈ KD. According to (5) these facts require KD = [u · · · v−1] ∪ [w · · · k−1] or
KD = [u · · · v−1] ∪ [w · · · k] for some integers 0 ≤ u < v < w < k. Then LD and
Spec(ICG(pk,D)) can again be determined by (6) and (7), respectively. �

4 ICG(n,D)withmultiplicativeD and its spectrum

All integral circulant graphs considered in the preceding sectionhadprimepower order.
Contrary to the spectral vectors of such graphs, �λ(n,D) for arbitrary composite n is not
well understood. Therefore the idea to consider integral circulant graphs ICG(n,D)

with arbitrary n, but multiplicative divisor sets D was introduced and applied by Le
and the first author in [16, 17], and again used by the first author in [19]. For a positive
integer d and a number p in the set P of all primes, we denote by ep(d) the order
of p in d. A non-empty finite set D of positive integers—as for instance a divisor
set—is called multiplicative if D = ∏

p∈PDp, where Dp := {pep(d) : d ∈ D} for
each prime p, and the product of sets D1, . . . , Dt of positive integers is defined as∏t

i=1 Di := {d1 · . . . · dt : di ∈ Di }.
The following formula to determine Spec(ICG(n,D)) for multiplicative divisor

sets D is a consequence of Proposition 3.1(iv).

Proposition 4.1 (= [21, Theorem 5.1(i)]) Let n > 1 be an integer with prime factori-
sation n = pk11 · . . . · pkrr . For 1 ≤ i ≤ r letDi ⊆ D(pkii ) be a divisor set with leaping
set LDi , and define the multiplicative divisor set D := D1 · . . . · Dr ⊆ D(n). Then

Spec(ICG(n,D)) =
r∏

i=1

Spec
(
ICG(pkii ,Di )

)
=

r∏

i=1

{
λ
p

�i
i

(
pkii ,Di

)
: �i ∈ LDi

}
.

(9)

We continue with a useful observation, namely a kind of monotonicity property of
the function σ(n,D) with respect to the number ω(n) of distinct prime factors of n.

Lemma 4.1 Let n > 1have prime factorisation n = pk11 ·. . .·pkrr , and letDi ⊆ D(pkii ),
1 ≤ i ≤ r , and D := D1 · . . . · Dr ⊆ D(n) be divisor sets.

(i) If ∅ �= {i1, i2, . . . , im} ⊆ {1, 2, . . . , r}, then σ(n′,D′) ≤ σ(n,D) for n′ :=
p
ki1
i1

· . . . · pkimim
and D′ := Di1 · . . . · Dim ⊆ D(n′).

(ii) If σ(n,D) ≤ s for some positive integer s, then σ(pkii ,Di ) ≤ s for 1 ≤ i ≤ r .
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Proof The assertion in (ii) is an immediate corollary to (i). In order to verify
(i), let λ1, . . . , λσ ′ be the σ ′ := σ(n′,D′) distinct eigenvalues of ICG(n′,D′).
If σ(p

k j
j ,D j ) = 1 for some j ∈ {1, 2, . . . , r}\{i1, i2, . . . , im}, the single eigen-

value of ICG(p
k j
j ,D j ) is 1 by Corollary 3.1, and if σ(p

k j
j ,D j ) ≥ 2, there is a

nonzero eigenvalue anyway. Thus ICG(p
k j
j ,D j ) always has an eigenvalue λ∗ �= 0.

Consequently, λ1 · λ∗, . . . , λσ ′ · λ∗ apparently are pairwise distinct and all lie in

Spec(ICG(n′ · pk jj ,D′ · D j )) by Proposition 4.1. This shows that σ(n′,D′) ≤ σ(n′ ·
p
k j
j ,D′ · D j ), and iterating the argument proves (i). �
We shall say that a divisor set D ⊆ D(pk) for a prime power pk is of type

X ∈ {A,B1,B2,C1,C2,D1,D2} if it has the corresponding form in Table 1 of
Corollary 3.1 (with admissible integers 0 ≤ u < k ifX ∈ {B1,B2}, or 0 ≤ u < v < k
if X ∈ {C1,C2}, or 0 ≤ u < v < w < k if X ∈ {D1,D2}, respectively). Given prime
powers pkii with distinct pi and Xi ∈ {A,B1,B2,C1,C2,D1,D2} for 1 ≤ i ≤ r ,
we call X1 ·X2 · . . . ·Xr the factorisation pattern of the—apparently multiplicative—
divisor set D1 · . . . · Dr if Di ⊆ D(pkii ) is of type Xi for 1 ≤ i ≤ r . Moreover, we
define

σX1·X2·...·Xr
:= min

{
σ
(
pk11 · . . . · pkrr ,D1 · . . . · Dr

)
:

Di ⊆ D
(
pkii

)
is of type Xi (1 ≤ i ≤ r)

}
,

σX1·X2·...·Xr := max
{
σ
(
pk11 · . . . · pkrr ,D1 · . . . · Dr

)
:

Di ⊆ D
(
pkii

)
is of type Xi (1 ≤ i ≤ r)

}
.

Only ifσX1·X2·...·Xr
= σX1·X2·...·Xr , we shall writeσX1·X2·...·Xr for the coinciding values

of minimum and maximum. This is the case when σ(pk11 · . . . · pkrr ,D1 · . . . ·Dr ) has

the same value for allDi ⊆ D(pkii ) of type Xi (1 ≤ i ≤ r ), i.e. it depends only on the
types X1,X2, . . . ,Xr , but does not depend on the special values of pi or ki or any of
the other parameters involved. Trivially, the order of the Xi in a factorisation pattern
X1 · X2 · . . . · Xr influences neither σX1·X2·...·Xr

nor σX1·X2·...·Xr nor σX1·X2·...·Xr .
The following proposition analyses the sizes of spectra of integral circulant graphs

whose multiplicative divisor sets have factorisation patterns composed of divisor sets
of the types occurring in Table 1.

Proposition 4.2 Given any positive integer r , let p1, p2, . . . , pr be distinct primes
and let k1, k2, . . . , kr be positive integers. For each i ∈ [1 · · · r ] and Xi ∈
{A,B1,B2,C1,C2,D1,D2} let Di ⊆ D(pkii ) be a divisor set of type Xi . For any
positive integer m and X ∈ {A,B1,B2} let Xm := X · X · . . . · X︸ ︷︷ ︸

m−fold

. Then we have

(i) σAm = 1 and σX1·X2·...·Xr ·Am = σX1·X2·...·Xr
; in particular σX1·X2·...·Xr ·Am =

σX1·X2·...·Xr in case σX1·X2·...·Xr
= σX1·X2·...·Xr ;

(ii) σB12 = 4, σB13 ≥ 5, σB12·B2 ≥ 5, σB2m = 2;
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Table 2 σX·Y or σX·Y, respectively, for all X,Y ∈ {B1,B2,C1,C2,D1,D2}
B1 B2 C1 C2 D1 D2

B1 σB12 = 4 σB1·B2 = 3 σB1·C1 ≥ 5 σB1·C2 ≥ 5 σB1·D1 ≥ 5 σB1·D2 ≥ 5

B2 σB2·B1 = 3 σB22 = 2 σB2·C1 = 3 σB2·C2 = 4 σB2·D1 ≥ 5 σB2·D2 = 4

C1 σC1·B1 ≥ 5 σC1·B2 = 3 σC12 ≥ 5 σC1·C2 ≥ 5 σC1·D1 ≥ 5 σC1·D2 ≥ 5

C2 σC2·B1 ≥ 5 σC2·B2 = 4 σC2·C1 ≥ 5 σC22 ≥ 5 σC2·D1 ≥ 5 σC2·D2 ≥ 5

D1 σD1·B1 ≥ 5 σD1·B2 ≥ 5 σD1·C1 ≥ 5 σD1·C2 ≥ 5 σD12 ≥ 5 σD1·D2 ≥ 5

D2 σD2·B1 ≥ 5 σD2·B2 = 4 σD2·C1 ≥ 5 σD2·C2 ≥ 5 σD2·D1 ≥ 5 σD22 ≥ 5

(iii) σX·Y or, if defined, σX·Y, respectively, for all X,Y ∈ {B1,B2,C1,C2,D1,D2}
as given in Table 2;

(iv) σB1·B2m = σB2m ·C1 = 3, σB2m ·C2 = σB2m ·D2 = 4.

Proof For given divisor sets Di ⊆ D(pkii ) of type Xi , 1 ≤ i ≤ r , D := D1 · . . . · Dr

is a multiplicative divisor set of n := pk11 · . . . · pkrr . Therefore

Spec(ICG(n,D)) =
r∏

i=1

Spec
(
ICG(pkii ,Di )

)
(10)

by Proposition 4.1. In particular the order of the Di does not influence the sets D
or Spec(ICG(n,D)). Consequently, σX1·X2·...·Xr

and, if defined, σX1·X2·...·Xr are unaf-
fected by the order of the Xi .

(i) Let Di ⊆ D(pkii ), r + 1 ≤ i ≤ r + m, be m further divisor sets all of type A,

i.e. Spec(ICG(pkii ,Di )) = {1} for r + 1 ≤ i ≤ r + m according to Corollary 3.1. It

follows by (10) that Spec(ICG(pkr+1
r+1 · . . . · pkr+m

r+m ,Dr+1 · . . . · Dr+m)) = {1}, hence
σAm = 1, independently of the pi and the ki (r + 1 ≤ i ≤ r + m).

Moreover, (10) and σAm = 1 imply that

σX1·...·Xr ·Am

= min
{
σ
(
pk11 ·. . .·pkr+m

r+m ,D1·. . .·Dr+m

)
: Di⊆D

(
pkii

)
of type Xi (1≤i≤r+m)

}
,

= min

{∣∣∣∣∣Spec
(
ICG(

r+m∏

i=1

pkii ,

r+m∏

i=1

Di )

)∣∣∣∣∣ : Di⊆D(pkii ) of type Xi (1≤i≤r+m)

}

= min

{∣∣∣∣∣Spec
(
ICG(

r∏

i=1

pkii ,

r∏

i=1

Di )

)∣∣∣∣∣ ·
∣∣∣∣∣Spec

(
ICG(

r+m∏

i=r+1

pkii ,

r+m∏

i=r+1

Di )

)∣∣∣∣∣

: Di of type Xi }

= min

{∣∣∣∣∣Spec
(
ICG(

r∏

i=1

pkii ,

r∏

i=1

Di )

)∣∣∣∣∣ · σAm : Di⊆D(pkii ) of type Xi (1≤i≤r )

}
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= min

{∣∣∣∣∣Spec
(
ICG(

r∏

i=1

pkii ,

r∏

i=1

Di )

)∣∣∣∣∣ : Di⊆D(pkii ) of type Xi (1≤i≤r)

}

= σX1·X2·...·Xr
.

If σX1·...·Xr
= σX1·...·Xr the corresponding formula for σX1·...·Xr ·Am follows immedi-

ately.
(ii) Let Di ⊆ D(pkii ), 1 ≤ i ≤ 3, be three divisor sets of type B1, i.e.

Spec(ICG(pkii ,Di )) = {−1, pki−ui
i −1} for suitable 0 ≤ ui < ki by Corollary 3.1. By

(10) it follows that

Spec
(
ICG(pk11 ·pk22 ,D1·D2)

)

=
{
1,−

(
pk1−u1
1 −1

)
,−

(
pk2−u2
2 −1

)
,
(
pk1−u1
1 −1

) (
pk2−u2
2 −1

)}
, (11)

and this set always contains two distinct positive and two distinct negative entries by
the fact that p1 and p2 are distinct primes and k1 > u1, k2 > u2. Therefore, σB12 = 4.
Furthermore, by (10)

Spec
(
ICG(pk11 · pk22 · pk33 ,D1 · D2 · D3)

)

= Spec
(
ICG(pk11 · pk22 ,D1 · D2)

)
· Spec

(
ICG(pk33 ,D3)

)

=
{
1,−

(
pk1−u1
1 −1

)
,−

(
pk2−u2
2 −1

)
,
(
pk1−u1
1 −1

) (
pk2−u2
2 −1

)}

·
{
−1, pk3−u3

3 −1
}

.

This set apparently contains the four distinct elements of (−1) · Spec(ICG(pk11 · pk22 ,

D1 · D2)) (cf. (11)) and additionally the integer
∏3

i=1(p
ki−ui
i −1), being bigger than

any of the former four integers. This shows that σB13 ≥ 5.

Assume alternatively that D3 ⊆ D(pk33 ) is a divisor sets of type B2, i.e.

Spec(ICG(pk33 ,D3)) = {0, pk3−u3
3 } for suitable 0 ≤ u3 < k3 by Corollary 3.1. Using

(11) we obtain

Spec
(
ICG(pk11 · pk22 · pk33 ,D1 · D2 · D3)

)

= Spec
(
ICG(pk11 · pk22 ,D1 · D2)

)
· Spec

(
ICG(pk33 ,D3)

)

=
{
1,−

(
pk1−u1
1 −1

)
,−

(
pk2−u2
2 −1

)
,
(
pk1−u1
1 −1

) (
pk2−u2
2 −1

)}

·
{
0, pk3−u3

3

}

containing the four distinct nonzero elements of pk3−u3
3 ·Spec(ICG(pk11 · pk22 ,D1 · D2))

and zero as well. This implies that σB12·B2 ≥ 5.
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Finally it is an easy consequenceofCorollary3.1 and (10) that Spec(ICG(pkii ,Di )) =
{0,∏m

i=1 p
ki−ui
i } for divisor sets Di ⊆ D(pkii ), 1 ≤ i ≤ m, which are all of type B2.

This confirms that σB2m = 2.
(iii) Let us show in an exemplary way that σB1·C2 ≥ 5. To this end, let D1 ⊆

D(pk11 ) be of type B1, i.e. Spec(ICG(pk11 ,D1)) = {−1, pk1−u1
1 −1} for suitable

0 ≤ u1 < k1, and let D2 ⊆ D(pk22 ) be of type C2, i.e. Spec(ICG(pk22 ,D2)) =
{1,−(pk2−v2

2 −1), pk2−u2
2 − pk2−v2

2 +1} for suitable 0 ≤ u2 < v2 < k2 by Corol-
lary 3.1. Using (10) we conclude that

Spec
(
ICG(pk11 · pk22 ,D1 · D2)

)

= Spec
(
ICG(pk11 ,D1)

)
· Spec

(
ICG(pk22 ,D2)

)

=
{
−1, pk1−u1

1 −1
} {

1,−
(
pk2−v2
2 −1

)
, pk2−u2

2 − pk2−v2
2 +1

}

=
{
−1,−

(
pk2−u2
2 − pk2−v2

2 +1
)

,−
(
pk1−u1
1 −1

) (
pk2−v2
2 −1

)}

∪
{
pk1−u1
1 −1, pk2−v2

2 −1,
(
pk1−u1
1 −1

) (
pk2−u2
2 − pk2−v2

2 +1
)}

=: S1 ∪ S2,

say. The second and third element of S1 are easily seen to be different from−1. More-
over, pk2−u2

2 − pk2−v2
2 +1 �= (

pk1−u1
1 −1

)(
pk2−v2
2 −1

)
, because otherwise pk2−u2

2 =
pk1−u1
1

(
pk2−v2
2 −1

)
would follow, which is impossible since p1 and p2 are different

primes. Hence |S1| = 3. By the same argument we also conclude that the two positive
elements pk1−u1

1 −1, pk2−v2
2 −1 ∈ S2 are distinct. Altogether σB1·C2 ≥ 5 has been

verified.
By careful reasoning along the line of the argument used above one can easily fill

Table 2 with the alleged entries.
(iv) By the observation already used in (ii) that Spec(ICG(pkii ,Di )) = {0,∏r

i=1

pki−ui
i } for divisor sets Di ⊆ D(pkii ), 1 ≤ i ≤ r , of type B1, it is easy to check the

four formulae in (iv). �

5 ICG(n,D)withmultiplicativeD and �(n,D) ≤ 3

Applying the results quoted in the introduction to integral circulant graphs ICG(n,D)

reveals that the cases σ(n,D) = 1 and σ(n,D) = 2 are trivial, and that in case of
connectivity σ(n,D) = 3 characterises strongly regular graphs. Although the follow-
ing result is essentially known (cf. commentary preceding Corollary 5.1) we use it to
illustrate our method. We agree to define empty products of integers as 1 and empty
products of sets to be {1}.
Theorem 5.1 Let n > 1 be an integer with r := ω(n) distinct prime factors and let
D ⊆ D(n) be a multiplicative divisor set. Then σ(n,D) = 3 if and only if D has
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Table 3 All factorisation patterns producing σ(n,D) = 3

Fact. pattern D
Spec(ICG(n,D)) (range of parameters)

Ar−1·C2
(r ≥ 1)

∏r−1
i=1 p

ki
i ·

{
pirr : ir ∈ [ur · · · vr−1] ∪ {kr }

}

{
1,−pkr−vr

r +1, pkr−ur
r −pkr−vr

r +1
}

(0 ≤ ur < vr < kr )

Ar−m−1·B2m ·C1 ∏r−m−1
i=1 p

ki
i ·

{
p
ir−m
r−m · . . . · pirr : i j∈[u j · · · k j ] (r−m≤ j<r), ir∈[ur · · · vr−1]

}

(0 ≤ m < r)
∏r−1

i=r−m p
ki−ui
i ·

{
0, −pkr−vr

r , pkr−ur
r − pkr−vr

r

}

(0 ≤ u j < k j for r − m ≤ j < r , 0 ≤ ur < vr < kr )

Ar−m−1·B1·B2m ∏r−m−1
i=1 p

ki
i ·

{
p
ir−m
r−m · . . . · pirr : i j∈[u j · · · k j ] (r−m≤ j<r), ir∈[ur · · · kr−1]

}

(0 < m < r)
∏r−1

i=r−m p
ki−ui
i ·

{
0, −1, pkr−ur

r −1
}

(0 ≤ u j < k j for r − m ≤ j ≤ r)

factorisation pattern Ar−1·C2, Ar−m−1·B2m ·C1 (0 ≤ m < r) or Ar−m−1·B1·B2m
(0 < m < r).

Given the prime factorisation n = pk11 · . . . · pkrr (indexed in suitable order), Table 3
provides the corresponding parameterised forms of D and the associated spectra
Spec(ICG(n,D)).

Proof The formulae for the divisor sets D and the spectra Spec(ICG(n,D)) corre-
sponding to the factorisation patterns in the four cases (cf. Table 3) are immediately
obtained by use of Table 1 in Corollary 3.1. Therefore it suffices to prove that
σ(n,D) = 3 if and only if the multiplicative divisor set D has one of the three
factorisation patterns in Table 3.

By Lemma 4.1(ii), σ(n,D) ≤ 3 for n = pk11 · . . . · pkrr and multiplicative D =
D1 · . . . · Dr ⊆ D(n) with Di ⊆ D(pkii ), 1 ≤ i ≤ r , implies σ(pkii ,Di ) ≤ 3 for
1 ≤ i ≤ r , and consequently the divisor sets Di are of type A, B1, B2, C1, C2 by
Corollary 3.1.

Let us denote by α(n,D), β1(n,D), β2(n,D), γ1(n,D) and γ2(n,D) the numbers
of Di of types A, B1, B2, C1 or C2 in D = D1 · . . . · Dr , respectively. Clearly
α(n,D) + β1(n,D) + β2(n,D) + γ1(n,D) + γ2(n,D) = r .

Since σB12 = 4 by Proposition 4.2(ii), we have β1(n,D) ∈ {0, 1} by use of
Lemma 4.1(i). Moreover σC12 ≥ 5, σC22 ≥ 5 and σC1·C2 ≥ 5 by Proposition 4.2(iii),
hence it follows that γ1(n,D), γ2(n,D) ∈ {0, 1}, but γ1(n,D) + γ2(n,D) ≤ 1. As
for the proof of these statements Lemma 4.1(i) is repeatedly applied in what follows.
Case 1: β1(n,D) = 0.

Case 1.1: β2(n,D) = 0.
Proposition 4.2(i) and Corollary 3.1 imply that σAm ·C1 = σC1 = 3 and σAm ·C2 =
σC2 = 3 for anym ≥ 0, andAm ·C1 andAm ·C2 are the only possible factorisation
patterns in this subcase, i.e. the second pattern with m = 0 or the first pattern in
Table 3.
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Case 1.2: β2(n,D) ≥ 1.
By Proposition 4.2(iii) we have σB2·C2 = 4, hence γ2(n,D) = 0. Moreover
Proposition 4.2(iv) shows that σB2m ·C1 = 3 for any m ≥ 1, and by Proposi-
tion 4.2(i) σAm1 ·B2m2 ·C1 = 3, which yields the only possible factorisation pattern
Am1 · B2m2 · C1, i.e. the second pattern with m ≥ 1 in Table 3.

Case 2: β1(n,D) = 1.
By Proposition 4.2(iii) we have σB1·C1 ≥ 5 and σB1·C2 ≥ 5, hence γ1(n,D) =
γ2(n,D) = 0. According to Proposition 4.2(iv) and Proposition 4.2(i) we have
σAm1 ·B1·B2m2 = 3, which yields the only possible pattern Am1 · B1 · B2m2 , i.e. the
third pattern in Table 3. �

As stated in Sect. 2, n ∈ D produces loops in ICG(n,D). Moreover, 1 ∈ D guar-
antees that ICG(n,D) is connected (see also Sect. 2). These are the graph-theoretical
reasons why we require 1 ∈ D, but n /∈ D in the following straightforward conse-
quence of Theorem5.1 (cf. [27, Theorems 4.1 and 4.2]). Recall the notation ep(n) (≥0)
for the order of a prime p in the prime factorisation of n > 1.

Corollary 5.1 Let n > 1 be an integer, and let D ⊆ D(n) be a multiplicative divisor
set with 1 ∈ D, n /∈ D. Then σ(n,D) = 3 if and only if D = {d ∈ D(n) : pt �

d} = D
( n
pep (n)−t+1

)
for some prime p | n, where 1 ≤ t ≤ ep(n) and ω(n) ≥ 2 in case

t = ep(n). The corresponding spectrum is Spec(ICG(n,D)) = {
0,− n

pt , n − n
pt
}
.

Proof Let n = pk11 · . . . · pkrr with r = ω(n) be the prime factorisation of n. SinceD is

multiplicative, there are Di ∈ D(pkii ) such that D = ∏r
i=1Di . The condition 1 ∈ D

implies 1 ∈ Di for 1 ≤ i ≤ r . Now our assertion is a special case of Theorem 5.1.
Since 1 lies in everyDi , we cannot have any setDi = {pkii } of typeA, i.e.α(n,D) = 0.

For the first pattern in Table 3 of Theorem 5.1, α(n,D) = 0 implies ω(n) = r = 1,
i.e. n = pk is a prime power and pk ∈ D, contradicting our assumptions.

We are left with the second or third pattern in Table 3, where α(n,D) = 0 yields
m = r−1, thereforeB2r−1·C1 for some r ≥ 1 orB1·B2r−1 for some r ≥ 2.Moreover,
in both cases ui = 0 for 1 ≤ i ≤ r , because 1 lies in every Di . Consequently, the
corresponding divisor sets look like D = ∏r−1

i=1 D
(
pkii

) · D(
pvr−1
r

)
with r ≥ 1 and

1 ≤ vr ≤ kr − 1 or like D = ∏r−1
i=1 D

(
pkii

) · D(
pkr−1
r

)
with r ≥ 2. For p := pr

and setting t := vr in the former case and t := kr = ep(n) in the latter case, we
combine the two cases to obtain D = {d ∈ D(n) : pt � d}, where 1 ≤ t ≤ ep(n) and
r = ω(n) ≥ 2 in case t = ep(n).

It remains to determine the corresponding spectra. Observe that Spec(ICG(n,D))

for the third pattern in Table 3 equals the extension of the spectrum for the second
pattern to the case vr = kr . Since ui = 0 for 1 ≤ i ≤ r , combining the cases yields
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Spec(ICG(n,D)) =
r−1∏

i=1

pkii ·
{
0,−pkr−vr

r , pkrr −pkr−vr
r

}
=

{
0,− n

pvr
r

, n− n

pvr
r

}

=
{
0,− n

pt
, n− n

pt

}
.

�

6 Strongly regular ICG(n,D)withmultiplicativeD
The goal of this section is to rephrase the results from the previous section such that
their connection to previously known results about strong regularity of integral cir-
culant graphs from other sources (e.g. [27, Theorems 4.1 and 4.2]) becomes more
transparent. To this end, Corollary 5.1 and Theorem 1.1 immediately imply the fol-
lowing characterisation, which has also been obtained in [2, Theorem 15] by use of
different tools.

Theorem 6.1 Let n > 1 be an integer, and let ICG(n,D) be a connected (loopless)
integral circulant graph with multiplicative D. Then ICG(n,D) is strongly regular if
and only if D = {d ∈ D(n) : pt � d} for some prime p | n, where 1 ≤ t ≤ ep(n) and
ω(n) ≥ 2 in case t = ep(n).

Proof Since ICG(n,D) is assumed to be connected, the elements of D are coprime
according to property 2. in Sect. 2. Moreover D is multiplicative, i.e. D = ∏r

i=1Di

with Di ∈ D(pkii ) for n = pk11 · . . . · pkrr , say. Consequently 1 ∈ Di for all i , because
otherwise some pi would divide all elements of D. Thus 1 ∈ D, and n /∈ D since
ICG(n,D) is loopless (cf. property 1 in Sect. 2). Now all assertions follow from
Corollary 5.1 by use of Theorem 1.1. �

By definition (cf. (1)) we have ICG(n,D) = Circ(n, S) for S = ⋃
d∈D Gn(d) and

some divisor set D of n, where Gn(d) = {1 ≤ a ≤ n − 1 : gcd(a, n) = d}. We
prepare the translation of Theorem 6.1 into the terminology of Circ(n, S) by

Lemma 6.1 Let n > 1 have prime factorisation n = pk11 · . . . · pkrr , and let Di =
{1, pi , p2i , . . . , psii } for some 0 ≤ si ≤ ki (1 ≤ i ≤ r). Then ICG(n,D1 · . . . · Dr ) =
Circ(n, S) satisfies

S = {1, 2, 3, . . . , n − 1}\
r⋃

i=1
si<ki

Mn
(
psi+1
i

)
,

where Mn(d) := {1 ≤ j · d < n : j = 1, 2, 3, . . .} = {d, 2d, 3d, . . . , n − d} for any
d | n. In case si = ki (1 ≤ i ≤ r − 1) in particular we have S = {1, 2, 3, . . . , n −
1}\Mn(p

sr+1
r ).
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Proof According to [25, Theorem 7.1] we know that

S =
⋃

d∈D
Gn(d) = {1 ≤ a ≤ n − 1 : gcd(a, n) = d for some d ∈ D}

= {1 ≤ a ≤ n − 1 : gcd(a, pkii ) ≤ psii (1 ≤ i ≤ r)}
= {1 ≤ a ≤ n − 1 : gcd(a, pkii ) ≤ psii for all 1 ≤ i ≤ r satisfying si < ki }
= {1, 2, 3, . . . , n − 1}\{1 ≤ a ≤ n − 1 : gcd(a, pkii ) > psii for some 1

≤ i ≤ r satisfying si < ki }
= {1, 2, 3, . . . , n − 1}\{1 ≤ a ≤ n − 1 : psi+1

i | a for some 1

≤ i ≤ r satisfying si < ki }

= {1, 2, 3, . . . , n − 1}\
r⋃

i=1
si<ki

{
psi+1
i j : j = 1, 2, 3, . . .

}
.

�
Theorem 6.1 can immediately be translated into

Theorem 6.2 Let n > 1 be an integer and let Circ(n, S) be a loop-free connected
integral circulant graph, i.e. S = ⋃

d∈D Gn(d) for some D ⊆ D(n) satisfying 1 ∈ D
and n /∈ D. Furthermore assume that D is multiplicative. Then Circ(n, S) is strongly
regular if and only if S = {1, 2, 3, . . . , n − 1}\Mn(pt ) for some prime power divisor
pt of n, where 1 ≤ t ≤ ep(n) and ω(n) ≥ 2 in case t = ep(n).

In case of strong regularityCirc(n, S)has parameters
(
n, n − n

pt , n − 2n
pt , n − n

pt

)
.

Proof By the conditions imposed on Circ(n, S) we have Circ(n, S) = ICG(n,D) for
some multiplicative D ⊆ D(n) with 1 ∈ D, but n /∈ D.

First assuming that Circ(n, S) is strongly regular, Theorem 6.1 implies that D =
{d ∈ D(n) : pt � d} for some prime p | n, where 1 ≤ t ≤ ep(n) and ω(n) ≥ 2

in case t = ep(n). Let n = pk11 · . . . · pkrr be the prime factorisation of n. Since D
is multiplicative, we have D = D1 · . . . · Dr , say, with Di ⊆ D(pkii ) for 1 ≤ i ≤ r .

It follows from D = {d ∈ D(n) : pt � d} that Di = D(pkii ) for pi �= p and
Di = D(pt−1) for pi = p. Setting si = ki for pi �= p and si = t − 1 for pi = p,
Lemma 6.1 implies S = {1, 2, 3, . . . , n − 1}\Mn(pt ).

Now suppose conversely that S = {1, 2, 3, . . . , n − 1}\Mn(pt ) as specified above.
For composite n, i.e. in case ω(n) ≥ 2, the strong regularity of Circ(n, S) as well
as its parameters have been verified in [27, Theorem 4.1]. It remains to consider
prime powers n = pk , say. Clearly, the degree ρ of regularity of Circ(n, S) is ρ =
|S| = n − n

pt . Let λ denote the number of common neighbours of every two adjacent
vertices of Circ(n, S), and let μ be the number of common neighbours of every two
non-adjacent vertices. Since 1 ∈ D, the vertices 0 and 1 are adjacent in Circ(n, S), and
clearly their common neighbours are all 1, 2, . . . , n−1 except for the vertices of type
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j · pt and those of type j · pt + 1. Hence λ = n − 2 · n
pt . Similarly 0 and pt are non-

adjacent vertices and have as common neighbours all vertices 1, 2, . . . , n − 1 except
for the vertices of type j · pt , thus μ = n − n

pt . Altogether, we have the parameters

(n, ρ, λ, μ) =
(
n, n − n

pt , n − 2n
pt , n − n

pt

)
as required. �

Remark 6.1 A connected circulant graph Circ(n, S) with exactly three integral eigen-
values satisfies S = {1, 2, 3, . . . , n − 1}\Mn(d) for some proper divisor d ∈
D(n)\{1, n} of n (cf. [27, Theorem 4.2]). Our Theorem 6.2 verifies this result for
the subclass of integral circulant graphs with multiplicative divisor sets and shows,
however, that admissable divisors d in Mn(d) for our subclass necessarily have to be
prime power divisors pt of n (see Corollary 6.2). Lemma 6.1 reveals that this special
arithmetic feature of possible “exceptional” d, namely that d cannot be a composite
divisor, is a consequence of two facts, which are (i) 1 ∈ D, in other words enforced
by the connectedness of Circ(n, S), and (ii) si = ki for all but one index i .

7 ICG(n,D)withmultiplicativeD and �(n,D) = 4

As already mentioned in the introduction, achieving a characterisation of integral
circulant graphs with exactly four distinct eigenvalues is currently an open and elusive
research goal. Hence it is useful to focus on subclasses first. The following theorem
provides a complete list of factorisation patterns of multiplicative divisor sets D with
σ(n,D) = 4. Observe that the primes dividing n are completely irrelevant for our
result. Even the arithmetic nature of n, e.g. the number ω(n) of prime factors or the
order of primes in n is negligible. All that is required for some factorisation patterns
to occur is ω(n) ≥ 2 and that some prime factor of n has a certain minimal order of 2
or 3 in n.

Theorem 7.1 Let n > 1 be an integer with r := ω(n) distinct prime factors and let
D ⊆ D(n) be a multiplicative divisor set. Then σ(n,D) = 4 if and only if D has
factorisation pattern Ar−1·D1, Ar−2·B12 (r ≥ 2), Ar−m−1·B2m ·D2 (0 ≤ m < r)

or Ar−m−1·B2m ·C2 (0 < m < r). Given the prime factorisation n = pk11 · . . . · pkrr
(indexed in suitable order), Table 4 provides the corresponding parameterised forms
of D and the associated spectra Spec(ICG(n,D)).

Proof The formulae for the divisor sets D and the spectra Spec(ICG(n,D)) corre-
sponding to the factorisation patterns in the four cases (cf. Table 4) are immediately
obtained by use of Table 1 in Corollary 3.1. Therefore it suffices to prove that
σ(n,D) = 4 if and only if the multiplicative divisor set D has one of the four factori-
sation patterns in Table 4.

By Lemma 4.1(ii), σ(n,D) ≤ 4 for n = pk11 · . . . · pkrr and multiplicative D =
D1 · . . . · Dr ⊆ D(n) with Di ⊆ D(pkii ), 1 ≤ i ≤ r , implies σ(pkii ,Di ) ≤ 4 for
1 ≤ i ≤ r , and consequently the divisor sets Di are of type A, B1, B2, C1, C2, D1 or
D2 by Corollary 3.1.

Let us denote by α(n,D), β1(n,D), β2(n,D), γ1(n,D), γ2(n,D), δ1(n,D) and
δ2(n,D) the numbers ofDi of typesA,B1,B2,C1,C2,D1 orD2 inD = D1 · . . . ·Dr ,
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respectively.Clearlyα(n,D)+β1(n,D)+β2(n,D)+γ1(n,D)+γ2(n,D)+δ1(n,D)+
δ2(n,D) = r .

Since σB13 ≥ 5 by Proposition 4.2(ii), we have β1(n,D) ∈ {0, 1, 2}. Moreover
σX·Y ≥ 5 for X,Y ∈ {C1,C2,D1,D2} by Proposition 4.2(iii), hence it follows that
γ1(n,D), γ2(n,D), δ1(n,D), δ2(n,D) ∈ {0, 1}, but γ1(n,D)+γ2(n,D)+δ1(n,D)+
δ2(n,D) ≤ 1.
Case 1: β1(n,D) = 0.

Case 1.1: β2(n,D) = 0.
Proposition 4.2(i) and Corollary 3.1 imply that σAm ·D1 = σD1 = 4 and σAm ·D2 =
σD2 = 4 for anym ≥ 0, andAm ·D1 andAm ·D2 are the only possible factorisation
patterns in this subcase, i.e. the first pattern or the third pattern with m = 0 in
Table 4.
Case 1.2: β2(n,D) ≥ 1.
By Proposition 4.2(iv) we have σB2m ·C1 = 3 and σB2m ·D1 ≥ 5, hence Proposi-
tion 4.2(i) implies γ1(n,D) = δ1(n,D) = 0. Moreover Proposition 4.2(iv) shows
thatσB2m ·C2 = σB2m ·D2 = 4 for anym ≥ 1, thusσAm1 ·B2m2 ·C2 = σAm1 ·B2m2 ·D2 = 4
according to Proposition 4.2(i). This yields the only possible two factorisation pat-
terns Am1 · B2m2 ·C2 and Am1 · B2m2 ·D2, i.e. we have the fourth patterns or the
third patterns with m ≥ 1 in Table 4.

Case 2: β1(n,D) ∈ {1, 2}.
By Proposition 4.2(iii) we have σB1·X ≥ 5 for X ∈ {C1,C2,D1,D2}, hence
γ1(n,D) = γ2(n,D) = δ1(n,D) = δ2(n,D) = 0. However, σAm1 ·B1·B2m2 = 3
according to Propositions 4.2(iv) and 4.2(i). Therefore, β1(n,D) = 2. Since Proposi-
tion 4.2(ii) shows that σB12·B2 ≥ 5, we also have β2(n,D) = 0. By Proposition 4.2(ii)
and Proposition 4.2(i), the only possible factorisation pattern is Am · B12, i.e. the
second pattern in Table 4. �

In analogy to the characterisation of strongly regular integral circulant graphs—i.e.
those connected regular graphs with exactly three distinct eigenvalues—in Corol-
lary 5.1 and Sect. 6 we now consider integral circulant graphs with precisely four
distinct eigenvalues, again imposing the graph-theoretical conditions that ICG(n,D)

is connected, i.e. 1 ∈ D, and loopfree, i.e. n /∈ D. These “natural” graph-theoretical
conditions imply the strong arithmetic restriction that n may not have more than two
distinct prime factors.

Corollary 7.1 Let n > 1 be an integer, and let D ⊆ D(n) be a multiplicative divisor
set with 1 ∈ D, n /∈ D. Then σ(n,D) = 4 if and only if ω(n) ≤ 2 with

D = D
(
pk−1)\{pv, . . . , pw−1}

Spec(ICG(n,D)) = {−1, pk−w−1,−pk−v+pk−w−1, pk−pk−v+pk−w−1
} (12)

for n = pk and some 0 < v < w < k in case ω(n) = 1, or

D = D
(
pk1−1
1 ·pk2−1

2

)
, Spec(ICG(n,D))

=
{
1,−

(
pk11 −1

)
,−

(
pk22 −1

)
,
(
pk11 −1

) (
pk22 −1

)}
(13)
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for n = pk11 · pk22 in case ω(n) = 2.

Proof Let n = pk11 · . . . · pkrr with r = ω(n) be the prime factorisation of n. SinceD is

multiplicative, there are Di ∈ D(pkii ) such that D = ∏r
i=1Di . The condition 1 ∈ D

implies 1 ∈ Di for 1 ≤ i ≤ r . Now our assertion is a special case of Theorem 7.1.
Since 1 lies in everyDi , we cannot have any setDi = {pkii } of typeA, i.e.α(n,D) = 0.

In case (i) of Theorem 7.1, α(n,D) = 0 implies ω(n) = r = 1, i.e. n = pk is a
prime power, and by the fact that 1 ∈ D we obtain D = {

pi : i ∈ [0 · · · v−1] ∪
[w · · · k−1]} and Spec(ICG(n,D)) = { − 1, pk−w−1,−pk−v+pk−w−1, pk−pk−v

+pk−w−1
}
, which prove (12).

In case (ii) of Theorem 7.1, α(n,D) = 0 implies ω(n) = r = 2, i.e. n = pk11 · pk22 ,

and 1 ∈ D yields D = {
pi11 · pi22 : i1 ∈ [0 · · · k1−1], i2 ∈ [0 · · · k2−1]} and

Spec(ICG(n,D)) = {
1,−(

pk11 −1
)
,−(

pk22 −1
)
,
(
pk11 −1

)(
pk22 −1

)}
for n = pk11 · pk22

in case ω(n) = 2, thus (13) follows.
We are left with cases (iii) and (iv) of Theorem 7.1, where α(n,D) = 0 yields

m = r−1, therefore π4(n,D) = (0, 0, r−1, 0, 0, 0, 1) for some r ≥ 1 or π4(n,D) =
(0, 0, r − 1, 0, 1, 0, 0) for some r ≥ 2. Moreover, in both cases ui = 0 for 1 ≤ i ≤ r ,
because 1 lies in every Di . Consequently, the corresponding divisor sets are of shape
D = ∏r−1

i=1 D
(
pkii

) · {pirr : ir ∈ [0 · · · vr−1] ∪ [wr · · · kr ]} with r ≥ 1 and 1 ≤ vr <

wr ≤ kr − 1 in case (iii) of Theorem 7.1, and of shape D = ∏r−1
i=1 D

(
pkii

) · {pirr :
ir ∈ [0 · · · vr−1] ∪ {kr }} with r ≥ 2 in case (iv). We observe that n ∈ D in both of
these cases, which contradicts our assumptions and completes the proof. �

8 Some open problems

Let us conclude with a couple of open questions.
Problem 1. Given an integer n > 1, characterise all multiplicative divisor sets D ⊆
D(n) with σ(n,D) = 5 (by their factorisation patterns).
Probably more difficult to solve might be
Problem 2. Given an integer n > 1, characterise all divisor sets D ⊆ D(n) with
σ(n,D) = 4.
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2. Bašić, M.: Characterization of strongly regular integral circulant graphs by spectral approach. Appl.

Anal. Discrete Math. 16, 288–306 (2022)
3. Boesch, F., Tindell, R.: Circulants and their connectivities. J. Graph Theory 8, 487–499 (1984)
4. Bose, R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math.

13, 389–419 (1963)
5. Braga, R.O., Del-Vecchio, R.R., Rodrigues, V.M., Trevisan, V.: Trees with 4 or 5 distinct normalized

Laplacian eigenvalues. Linear Algebra Appl. 471, 615–635 (2015)
6. Bridges,W.G.,Mena, R.A.: Rational circulants with rational spectra and cyclic strongly regular graphs.

Ars Combin. 8, 143–161 (1979)
7. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, Berlin (2012)
8. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications, 3rd edn. Wiley,

Hoboken (1998)
9. Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

10. Fan, F.,Weng,C.:A characterization of strongly regular graphs in terms of the largest signless Laplacian
eigenvalues. Linear Algebra Appl. 506, 1–5 (2016)

11. Gebremichel, B., Cao, M.-Y., Koolen, J.H.: Two characterizations of the grid graphs. Discrete Math.
344, 11p (2021)

12. Godsil, C.D., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)
13. Huang, X., Huang, Q.: On regular graphs with four distinct eigenvalues. Linear Algebra Appl. 512,

219–233 (2017)
14. Huang, X., Huang, Q.: On graphswith three or four distinct normalized Laplacian eigenvalues. Algebra

Colloq. 26, 65–82 (2019)
15. Klotz, W., Sander, T.: Some properties of unitary Cayley graphs. Electron. J. Comb. 14 (2007),

(Research Paper #R45, electronic)
16. Le, T.A., Sander, J.W.: Convolutions of Ramanujan sums and integral circulant graphs. Int. J. Number

Theory 8, 1777–1788 (2012)
17. Le, T.A., Sander, J.W.: Extremal energies of integral circulant graphs via multiplicativity. Linear

Algebra Appl. 437, 1408–1421 (2012)
18. Nozaki, H., Shinohara, M.: A geometrical characterization of strongly regular graphs. Linear Algebra

Appl. 437, 2587–2600 (2012)
19. Sander, J.W.: Integral circulant Ramanujan graphs via multiplicativity and ultrafriable integers. Linear

Algebra Appl. 477, 21–41 (2015)
20. Sander, J.W.: On the kernel of integral circulant graphs. Linear Algebra Appl. 549, 79–85 (2018)
21. Sander, J.W.: Structural propertiers and formulae of the spectra of integral circulant graphs. Acta Arith.

184, 297–315 (2018)
22. Sander, J.W., Sander, T.: On So’s conjecture for integral circulant graphs. Appl. Anal. Discrete Math.

9, 59–72 (2015)
23. Schwarz, W., Spilker, J.: Arithmetical functions. In: London Mathematical Society Lecture Note in

Mathematics, vol. 184. Cambridge University Press (1994)
24. Shrikhande, S.S.: Bhagwandas: duals of incomplete block designs. J. Indian Statist. Assoc. 3, 30–37

(1965)
25. So, W.: Integral circulant graphs. Discrete Math. 306, 153–158 (2005)
26. Tamizh Chelvam, T., Raja, S.: Integral circulant graphs with four distinct eigenvalues. Discrete Math.

Algorithms Appl. 10, 1850057 (2018)
27. Tamizh Chelvam, T., Raja, S., Gutman, I.: Strongly regular integral circulant graphs and their energies.

Bull. Int. Math. Virtual Inst. 2, 9–16 (2012)

123

http://creativecommons.org/licenses/by/4.0/


Journal of Algebraic Combinatorics (2023) 58:993–1017 1017

28. vanDam,E.R.,Omidi,G.R.:GraphswhosenormalizedLaplacianhas three eigenvalues.LinearAlgebra
Appl. 435, 2560–2569 (2011)

29. van Dam, E.R., Omidi, G.R.: Strongly walk-regular graphs. J. Combin. Theory Ser. A 120, 803–810
(2013)

30. van Dam, E.R., Spence, E.: Small regular graphs with four eigenvalues. Discrete Math. 189, 233–257
(1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Characterisation of all integral circulant graphs with multiplicative divisor sets and few eigenvalues
	Abstract
	1 Introduction
	2 Basics about integral circulant graphs
	3 Spec(ICG(mathcalD ,pk)) and gaps in the exponent set
	4 ICG(n,mathcalD ) with multiplicative mathcalD  and its spectrum
	5 ICG(n,mathcalD ) with multiplicative mathcalD  and σ(n,mathcalD )leq3
	6 Strongly regular ICG(n,mathcalD ) with multiplicative mathcalD 
	7 ICG(n,mathcalD ) with multiplicative mathcalD  and σ(n,mathcalD )=4
	8 Some open problems
	References




