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Abstract
Conventional Ramsey-theoretic investigations for edge-colourings of complete graphs
are framed around avoidance of certain configurations. Motivated by considerations
arising in thefieldofQualitativeReasoning,we explore edge colourings that in addition
to forbidding certain triangle configurations also require others to be present. These
conditions have natural combinatorial interest in their own right, but also correspond
to qualitative representability of certain nonassociative relation algebras, which we
will call chromatic.

Keywords Edge colouring · Relation algebra · Representation · Qualitative
representation · Forbidden triangles

1 Introduction

In an edge n-colouring of a complete graph, each triangle of edges consists of either
one colour, two colours or three colours: monochromatic, dichromatic or trichromatic.
In this article, we explore edge-colourings determined by disallowed triangle colour
combinations, but also requiring others. Thus, disallowing monochromatic triangles
restricts to edge-coloured complete graphs within the Ramsey bound R(3, 3, . . . , 3).
But what if in addition to disallowing monochromatic triangles, we also impose the
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dual constraint that all remaining colour combinations (trichromatic and dichromatic)
are present: is it possible to find such a network? These are natural combinatorial
considerations in their own right, but there is an additional motivation by way of the
algebraic foundations of qualitative reasoning, which finds wide application in AI set-
tings around scheduling [1], navigation [20, 28] and geospatial positioning amongst
others [29]. The constraint language underlying typical qualitative reasoning systems
determines a kind of non-associative relation algebra (in the sense of Maddux [23]),
which is attracting considerable attention from a theoretical computer science perspec-
tive; see [9, 14, 15, 21, 32] for example. The inverse problem of deciding if a suitably
defined non-associative algebra arises from a concrete constraint network is shown to
be NP-complete in [14]. The present work focusses on a natural family of combinato-
rially intriguing cases, that we find have nontrivial solutions, and provide some novel
extensions of classically understood connections between certain associative relation
algebras and combinatorial geometries, such as in Lyndon [22].

Let C+ = {1′, c1, . . . , cn} be a finite set of colours, let U be any set and let
λ : U × U → C+ be a surjective map such that λ(x, y) = λ(y, x) and λ(x, y) = 1′
iff x = y. Then, {λ−1(1′), λ−1(c1), . . . , λ−1(cn)} is a partition of U ×U with every
λ−1(ci ) symmetric and λ−1(1′) the identity relation. We call λ an edge n-colouring of
the complete graph with the set of vertices U , informally thinking of 1′ as an invisible
colour. The set C = C+ \ {1′} is the set of proper colours. We will consider natural
conditions on the colourings, forbidding certain triangles and requiring others. To
forbid the occurrence of monochromatic triangles for example, we can impose the
following condition

∀a, b, c ∈ C : |{a, b, c}| = 1⇒ λ−1(a) ◦ λ−1(b) ∩ λ−1(c) = ∅

where ◦ is the relational composition. Strengthening the condition above to an equiv-
alence

∀a, b, c ∈ C : |{a, b, c}| = 1⇔ λ−1(a) ◦ λ−1(b) ∩ λ−1(c) = ∅

we still have all monochromatic triangles forbidden, but moreover all non-monochro-
matic triangles must occur. As noted earlier, it is not immediately clear whether such
colourings exist: the Ramsey Theorem gives an upper bound on the size of the graphs,
the occurrence of all non-monochromatic triangles gives a lower bound – conceivably
greater than the upper bound.

In general, letting F be any subset of {1, 2, 3} we arrive at 8 natural conditions of
the form

∀a, b, c ∈ C : |{a, b, c}| ∈ F ⇔ λ−1(a) ◦ λ−1(b) ∩ λ−1(c) = ∅

and 8 corresponding existence questions; these are tied precisely to the algebraic
properties of interest in Lemma3.2 below.Wewill also consider theweaker conditions,
with forward implication only; these are somewhat less interesting since they do not
determine a unique algebraic object (see Lemma 3.3).
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2 Nonassociative relation algebras and their representations

In this section, we recall basic constructions and ideas from the theory of relation
algebras, which we then tie to the combinatorial conditions discussed informally at the
start of the article. This culminates in Lemma 3.2 of the next section, which shows that
the basic hierarchy of strengths of representability (strong implies qualitative implies
feeble) in the algebraic setting correspond precisely to three natural constraints around
forbidden colour combinations and required colour combinations. The reader wishing
to skip the algebraic connections can survive most of the remainder of the article with
only the notation presented in Definition 3.1 and by using Lemma 3.2 as a Rosetta
stone to relate algebraic terminology to combinatorial properties on edge-coloured
complete graphs.

Nonassociative algebras were introduced and first studied in [23]. A nonasso-
ciative relation algebra or simply a nonassociative algebra (NA) is an algebra
A = (A,∧,∨, ;, ˘,¬, 0, 1, 1′) with the following properties.

(1) (A,∨,∧,¬, 0, 1) is a Boolean algebra.
(2) (A, ;, ˘, 1′) is an involutive groupoid with unit. That is, ; is a binary operation, ˘

unary, 1′ nullary, and the following identities hold:

(a) 1′ ; x = x = x ; 1′
(b) x˘̆ = x .

(3) The non-Boolean operations are operators. That is, the following further identities
hold:

(a) x ; (y ∨ z) = (x ; y) ∨ (x ; z) and (x ∨ y) ; z = (x ; z) ∨ (y ; z)
(b) x ; 0 = 0 = 0 ; x
(c) (x ∨ y)˘ = x˘ ∨ y˘
(d) 0˘ = 0.

(4) (x ; y) ∧ z = 0 iff (x˘ ; z) ∧ y = 0 iff (z ; y˘) ∧ x = 0.

The equivalences in (4) are known as the triangle laws, or Peircean laws. If the
operation ; is associative, then A is a relation algebra (RA), in the sense of Tarski
[31]; see a monograph such as Givant [10], Hirsch and Hodkinson [13] or Maddux
[24]. For any setU and an equivalence relation E ⊆ U×U , the powersetP(E) carries
a natural relation algebra structure. The Boolean operations are set-theoretical, ; is the
relational composition, ˘ the converse, and 1′ the identity relation. Denote this algebra
by ReE (U ). If E = U × U , we write Re(U ), so Re(U ) is the algebra of all binary
relations onU . In general, E is always an equivalence relation onU , but not necessarily
the full relation. The bottom element of the of the Boolean reduct of P(E) is ∅ and
the top element is E , so the Boolean complement is calculated relative to E . A relation
algebra A is representable if there is an injective homomorphism φ : A→ ReE (U ),
for some U (called the base of the representation) and E . In particular, we have

(r1) 0φ = ∅, 1φ = E , (1′)φ = I dU ,
(r2) φ is a homomorphism of Boolean algebras,
(r3) (a˘)φ = (aφ)−1,
(r4) (a ; b)φ = aφ ◦ bφ ,
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where −1 and ◦ are the operations of relational converse and composition, respec-
tively. If E = U × U , the representation is called square. To avoid confusion with
‘representation’ in a generic sense of ‘any kind of representation’, we will refer to
representations above as strong representations. Two weakenings of this notion of
representation, which apply to nonassociative algebras, were defined in [14], and we
now recall them. A setH ⊆P(U ×U ) for some set U is called a herd if

(H1) H is a Boolean set algebra with top element U ×U ,
(H2) I dU ∈ H,
(H3) S ∈ H implies S−1 ∈ H.

In any herdH, the smallest element R containing S ◦ T , if it exists, is called the weak
composition of S and T and is often denoted by S � T . When H is finite (or more
generally, complete) as a Boolean algebra, then S � T always exists as we may simply
intersect the elements of H that fully contain the relation S ◦ T .

A nonassociative algebra A is said to be qualitatively representable if there is a
bijection φ from A to a herd H such that

(q1) 0φ = ∅, 1φ = U ×U , (1′)φ = I dU ,
(q2) φ is a homomorphism of Boolean algebras,
(q3) (a˘)φ = (aφ)−1,
(q4) aφ ◦ bφ ⊆ cφ ↔ a ; b ≤ c.

Note that (q4) states that cφ is the smallest solution to cφ ⊇ aφ◦bφ , and so cφ = aφ�bφ .
If (q4) is strengthened to (r4), then the qualitative representation φ is a strong square
representation.

On the other hand, if (q4) is weakened to ϕ(a ; b) ⊇ ϕ(a) ◦ ϕ(b), we obtain a still
weaker notion of representation, called feeble in [14]. The next lemma combines well
known facts on representations of relation algebras with parts of Lemmas 12 and 18
of [14].

Lemma 2.1 LetA be complete and atomic with the set of atoms At(A), and let ϕ : A→
P(U ×U ) satisfy (1)–(3) above. Then, (R1) is equivalent to (R2), (Q1) is equivalent
to (Q2), and (F1) is equivalent to (F2).

(R1) φ is a strong square representation of A.
(R2) For all a, b, c ∈ At(A), we have (a ; b) ∧ c �= 0 iff for all x, y ∈ U such that

(x, y) ∈ cφ , there exists z ∈ U with (x, z) ∈ aφ and (z, y) ∈ bφ .
(Q1) φ is a qualitative representation of A.
(Q2) For all a, b, c ∈ At(A), we have (a ; b)∧ c �= 0 iff there exist x, y, z ∈ U such

that (x, z) ∈ aφ , (z, y) ∈ bφ , (x, y) ∈ cφ .
(F1) φ is a feeble representation of A.
(F2) For all a, b, c ∈ At(A) if there exist x, y, z ∈ U such that (x, z) ∈ aφ , (z, y) ∈

bφ , (x, y) ∈ cφ , then (a ; b) ∧ c �= 0.

Since a, b, c are atoms, the equivalence (a ; b) ∧ c �= 0 ⇔ a ; b ≥ c holds in A.
Strong representations must reflect this property by (R2), but qualitative and feeble
representations do not need to.
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Fig. 1 If (a, b, c) ∈ T , then the
Peircean transforms correspond
to all of the other cyclic traverses
of this triangle. If any one is
present in a network, then all the
others are too. In this article, all
algebras are symmetric, so the
arrow direction is not important

a b

c

Definition 2.2 Let A be a nonassociative algebra. The atom structure of A is the
structure At(A) = (At(A), ˘, I , T ), where At(A) is the set of atoms of A, ˘ is the
converse operation of A restricted to atoms, I = {x ∈ At(A) | x ≤ 1′} is the set of
subidentity atoms (other atoms are called diversity atoms), T = {(x, y, z) ∈ At(A)3 |
z ≤ x ; y} is the set of consistent triples. Triples (x, y, z) /∈ T are called forbidden.

Conversely, for a relational structure X = (X , ˘, I , T ) where ˘ is a unary func-
tion, I ⊆ X , and T ⊆ X3, the complex algebra Cm(X ) of X is the algebra
(P(X),∩,∪, ;,¬, ˘, ∅, X , I ), where for R, S ⊆ X , we put S˘ = {s˘ : s ∈ S},
and S ; R = {u ∈ X : (s, r , u) ∈ T , for some s ∈ S, r ∈ R}.

If A is an atomic nonassociative algebra, then the map x �→ {a ∈ At(A) : a ≤
x} is an embedding of A into Cm(At(A)). If A is moreover complete, then it is
an isomorphism. It is convenient and very common to present complete and atomic
nonassociative algebras in terms of their atom structures. The next lemma, proved in
[23], characterises structures that are atom structures of nonassociative algebras.

Lemma 2.3 Let X = (X , ˘, I , T ) be a structure such that I is a subset of X, T is a
subset of X3, and ˘ is a function satisfying a˘̆ = a. The following are equivalent:

• X is the atom structure of some nonassociative algebra.
• For all a, b, c ∈ X, we have

– b = c iff there is some e ∈ I such that (e, b, c) ∈ T
– if (a, b, c) ∈ T then (c˘, a, b˘) ∈ T and (b˘, a˘, c˘) ∈ T .

The triples (a, b, c), (a˘, c, b), (c, b˘, a), (b, c˘, a˘), (c˘, a, b˘), (b˘, a˘, c˘) are called
the Peircean transforms of (a, b, c). See Fig. 1 for a pictorial explanation of Peircean
triples. The relation T above is always closed under Peircean transforms.

There aremanyfinite relation algebras that admit strong representations over infinite
sets but no finite set, and in general deciding strong representability for finite relation
algebras is algorithmically undecidable, by Hirsch and Hodkinson [12]. Qualitative
representability is decidable, though is NP-complete [14, Theorem 15]. Much of the
simplification is due to the following useful lemma, whose easy proof is a brute-force
argument relying on the fact that in a finite algebraA there are atmost 3|At(A)| distinct
triangles that must be witnessed; so if a qualitative representation exists it can always
be pruned to contain only as many points as are needed to witness all the necessary
triangles.

Lemma 2.4 [14, Lemma 13] If an atomic nonassociative algebra A admits a qualita-
tive representation, then it admits a qualitative representation as relations on set of
size at most 3|At(A)| points.
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3 Chromatic algebras

Definition 3.1 Let S ⊆ {1, 2, 3}. We define a nonassociative algebra ES
n+1 with n+ 1

atoms as the complex algebra Cm(C) of the structure C = (C+, ˘, I , T ), where
C+ = {1′, c1, . . . , cn}, c˘ = c for any c ∈ C+, I = {1′}, and T is given by

(1) ∀b, c ∈ C+ : b = c ⇔ (1′, b, c) ∈ T ,
(2) ∀a, b, c ∈ C : |{a, b, c}| ∈ S ⇔ (a, b, c) ∈ T , where C = C+\{1′}.
We call algebras ES

n+1 chromatic.

It is easy to see that T is closed under the Peircean transforms. Note that S gives the
types of consistent triples rather than forbidden ones, whichwould bemore in linewith
the remarks in Sect. 1. We stated the definition this way to keep the notation ES

n+1 in
agreement with [24]. Expressing (2) in terms of the operations in the complex algebra
Cm(C), and identifying singletons with their single elements in a set-theoretically
incorrect but notationally convenient way, we get

∀a, b, c ∈ C : |{a, b, c}| ∈ S ⇔ (a ; b) ∧ c �= 0.

Then, putting F = {1, 2, 3} \ S, we arrive at an equivalent version of (2)

∀a, b, c ∈ C : |{a, b, c}| ∈ F ⇔ (a ; b) ∧ c = 0

matching the remarks in Sect. 1 and the statement of Lemma 2.1. With this the next
lemma is not difficult to prove: the representation (strong, qualitative or feeble) on the
atoms is precisely λ−1.

Lemma 3.2 Let S ⊆ {1, 2, 3} and F = {1, 2, 3} \ S. The following hold.

(1) ES
n+1 is strongly representable if and only if there exists an edge n-colouring λ of

a complete graph, satisfying

(a) ∀a, b, c ∈ C : |{a, b, c}| ∈ F ⇔ λ−1(a) ◦ λ−1(b) ∩ λ−1(c) = ∅, and
(b) ∀a, b, c ∈ C : |{a, b, c}| ∈ S ⇔ λ−1(a) ◦ λ−1(b) ⊇ λ−1(c).

(2) ES
n+1 is qualitatively representable if and only if there exists an edge n-colouring

λ of a complete graph, satisfying

(a) ∀a, b, c ∈ C : |{a, b, c}| ∈ F ⇔ λ−1(a) ◦ λ−1(b) ∩ λ−1(c) = ∅.

(3) ES
n+1 is feebly representable if and only if there exists an edge n-colouring λ of a

complete graph satisfying

(a′) ∀a, b, c ∈ C : |{a, b, c}| ∈ F ⇒ λ−1(a) ◦ λ−1(b) ∩ λ−1(c) = ∅.

Note that the left-hand sides of (a) and (b) above are negations of one another, but the
right-hand sides are not. Thus, (a) alone forces ; to be represented asweak composition,
but (a) together with (b) force ; to be represented as composition.

Lemma 3.3 If S ⊆ S′ and ES
n+1 has a feeble representation given as a colouring, the

same colouring is also a feeble representation of ES′
n+1.

123



Journal of Algebraic Combinatorics (2023) 58:157–182 163

Proof Let F = {1, 2, 3} \ S and F ′ = {1, 2, 3} \ S′. Then, F ′ ⊆ F and the claim
follows by Lemma 3.2(3)(a′). ��

4 Algebras E∅

n+1, E
{1}
n+1, E

{1,2}
n+1 and E

{1,2,3}
n+1

For E∅

n+1, all triangles are forbidden, so the only possible representation is the colour-
ing of K2 with a single colour (n = 1). For E{1}n+1, the only possible representation is
Km for m ≥ 3 coloured with a single colour (n = 1). These representations are strong.

The existence of strong (infinite) representations for E{1,2}n+1 is Theorem 453 of
Maddux [24], and the lack of finite representability for n > 3 is Theorem 455 there.
The proof of Theorem 453 can be presented in terms of the representability games of
Hirsch and Hodkinson [13]. A finite qualitative representation can be then extracted
by Lemma 2.4.

Finite strong representations of E{1,2,3}n+1 are obtained by Jipsen, Maddux and Tuza
in [16]. A qualitative representation is much easier to get: take the disjoint union of
all possible triangles, and use an arbitrary colour for all the missing edges.

5 Algebras E{3}
n+1

The algebraE{3}4 has a unique strong representation on 4 points. For n > 3, the algebras

E
{3}
n+1 are not associative, so strong representability is impossible, making qualitative

representability of particular interest. Our construction for representability will be
based around quasigroups, and we direct the reader to a text such as Smith [30] for
further background.

Let (Q, ·) be a commutative idempotent quasigroup on {0, . . . , n − 1}. We
define edge colourings λ1 on the complete graph on {0, . . . , n − 1} and λ2 on
{−1, 0, 1, . . . , n − 1} into the colours1 {1′, c0, . . . , cn−1} as follows:

λ1(i, j) =
{
1′ (invisible) if i = j

ci · j otherwise

and

λ2(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1′ (invisible) if i = j

λ1(i, j) if i, j �= −1
c j if i = −1 �= j

ci if j = −1 �= i .

Commutativity of (Q, ·) ensures that λi ( j, k) = λi (k, j).

1 Note that the set of proper colours in this section is {c0, . . . , cn−1}, instead of {c1, . . . , cn} used in the
other sections. It makes calculations easier and should not cause confusion.
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Lemma 5.1 If (Q, ·) is a commutative idempotent quasigroup on {0, 1, . . . , n−1}, then
λ−11 and λ−12 are feeble representations of E{3}n+1. Moreover, the following properties
are related by (1)⇔(3) and (1)⇒(2):

(1) λ1 is a qualitative representation of E{3}n+1,

(2) λ2 is a qualitative representation of E{3}n+1,
(3) (Q, ·) satisfies the following 3-cycle condition: for each x, y, z with |{x, y, z}| = 3,

there exists u, v, w with u · v = x, v · w = y and w · u = z.

Proof It is clear that λ1 and λ2 are surjective, so to establish that both determine
feeble representations wemust ensure that there are nomonochromatic or dichromatic
triangles. For λ1, this is just the cancellativity property of quasigroups: for i, j, k ∈
{0, . . . , n−1}with j �= k, we have λ1(i, j) �= λ1(i, k) because i · j = i · k ⇒ j = k,
showing that no triangle contains two edges of the same colour. Thus, λ−11 is a feeble
representation. Now, observe that under λ1, each point i is incident to edges of all
colours c0, . . . , cn−1 except colour ci (this is where idempotency of (Q, ·) is used).
The colouring λ2 extends λ1 to the extra vertex −1 by adding the missing colour for
each vertex: an edge of colour ci between −1 and i , for each i ∈ {0, . . . , n − 1}. It
follows immediately that no non-trichromatic triangles are added under this extension:
edges leaving −1 are coloured according to the name of the vertex at the other end,
so cannot be the same colour; and such an edge does not coincide in colour with any
other edge incident to that vertex. Thus, λ−12 also is a feeble representations of E{3}n+1.

For the three conditions: (1) implies (2) because λ2 extends λ1, while according
to the definition of λ1, the 3-cycle condition in (3) is precisely the condition that λ1
provides instances of each trichromatic triangle, so (1) is equivalent to (3). ��

It is well known that commutative idempotent quasigroups exist for all and only
odd orders, though we omit details because it emerges naturally from the proof of
our main classification of qualitative representability E

{3}
n+1; Theorem 5.3 below. We

next recall a standard example of a commutative idempotent quasigroup, for every
odd order, and verify that it satisfies the 3-cycle condition.

On universe Qn = {0, . . . , n − 1} for an odd n, define a multiplication · by

i · j = i + j

2

where x
2 stands for the unique integer u ∈ Zn such that 2u = x (mod n), which exists

because n is odd.

Lemma 5.2 The quasigroup (Qn, ·) satisfies the 3-cycle condition.

Proof Let |{i, j, k}| = 3 (equivalently |{ci , c j , ck}| = 3). We claim that it is possible
to choose a, ya, xa ∈ Qn , so that we have i = a · xa, j = a · ya, k = xa · ya , verifying
the 3-cycle condition. By the unique solution property of (Qn, ·), for each a ∈ Qn ,
there exists xa, ya ∈ Qn , where

a · xa = i

a · ya = j .
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Then, a simple calculation shows that

xa · ya = i + j − a (mod n)

holds. It follows that choosing a to be k− i− j (mod n) provides the desired solution.
��

Theorem 5.3 The algebra E
{3}
n+1 is qualitatively representable if and only if n ≥ 3 is

odd. Up to isomorphism, every representation of E{3}n+1 arises from a representation of

the form λ−11 or λ−12 of Lemma 5.1.

Proof Assume E
{3}
n+1 is qualitatively representable for some n. Then, there exists a

finite representation, over a complete graph Km . Equivalently, there is a colouring
map λ : Km×Km → C , with |C | = n. Consider an arbitrarily chosen vertex v ∈ Km .
Since dichromatic andmonochromatic triangles are forbidden, all adjacent edgesmust
be of different colours, so m − 1 ≤ n. As there are

(n
3

)
different trichromatic triangles

to realise, we must have m ≥ n. So, n ≤ m ≤ n + 1.
If m = n+1, then every vertex has adjacent edges of all colours. Since edges of the

same colour cannot be adjacent, the edges of any given colour form a disjoint union
of copies of K2 and there are no isolated vertices. So the number of vertices is even,
hence n is odd.

Next, assume m = n. Since there are
(n
3

)
trichromatic triangles to realise, each

necessary triangle appears exactly once in the representation. By symmetry of the
colouring condition, each edge of a given colour appears the same number of times,
and as there are n(n−1)

2 edges and n colours, each edge appears n−1
2 times, so n is odd.

Thus, qualitative representations can exist only for odd orders, and Lemma 5.2 and
Lemma 5.1 show that all odd orders of size at least 3 are possible.

For the second part, first consider a representation on n vertices. Each vertex has
adjacent edges of all but one colour, call it the missing colour. Suppose there are
vertices v and w such that they miss the same colour, say m, so that no edge coloured
m is adjacent to either v orw. As each edge appears n−1

2 times, Kn\{v,w} contains n−1
2

edges coloured m. These edges are disjoint, so Kn \{v,w}must contain n−1 vertices,
in contradiction to |Kn \ {v,w}| = n − 2. It follows that each vertex has a different
missing colour. It follows further that adding one vertex, say v−1 to Kn and letting
λ(v−1, vi ) be the missing colour of vi , we obtain a representation on n + 1 vertices.
So, every representation on n vertices is uniquely extendable to a representation on
n + 1 vertices. Equivalently, every representation on n vertices can be obtained from
a representation on n + 1 vertices by removing one vertex.

Now, consider a representation on n + 1 vertices. Numbering the vertices v−1,
v0, . . . , vn−1 in such a way that λ(v−1, vi ) = ci for any i �= −1, we define multi-
plication on the set of indices {0, . . . , n − 1} putting i · i and i · j = k if i �= j and
λ(vi , v j ) = ck . It is then routine to verify that {0, . . . , n − 1} is a commutative idem-
potent quasigroup, and that the colouring coincides with λ2 (restricting to coincide
with λ1 amongst the vertices v0, . . . , vn−1). ��

The two qualitative representations of E{3}n can be visualised on the complex plane
as follows. Let v−1 be the origin, and v0, . . . , vn−1 be the n-th roots of unity. Put
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Fig. 2 First stages of drawing a

qualitative representation of E{3}7
on the complex plane

v−1 v0

v1
v2

v3

v4 = v3

v5 = v2
v6 = v1

λ(v−1, v0) = c0 = λ(v j , v j ), for j ∈ {1, . . . , � n
2 �}, where v j is the complex conjugate

of v j . Rotate and repeat with a different colour, as in Fig. 2. To get a representation on
n points remove the origin and its outgoing edges.

For feeble representations, we only need to consider E{3}n+1 for an even n. Taking a

qualitative representation for E{3}n , and re-colouring a single arbitrarily chosen edge
with a new colour gives a feeble representation of E{3}n+1. Hence, E

{3}
n+1 is feebly repre-

sentable for all n ≥ 3. Now, using Lemma 3.3 we immediately obtain the following.

Observation 5.4 Let 3 ∈ S. Then, ES
n+1 is feebly representable for all n ≥ 3.

6 Algebras E{2}
n+1

The algebras E{2}n+1 are associative. The pentagon algebra is the unique strong repre-

sentation of E{2}3 , and it is easy to show that strong representations do not exist for
n > 2. At the other extreme, feeble representations always exist.

Observation 6.1 Let 2 ∈ S. Then, ES
n+1 is feebly representable for all n ≥ 2.

Proof By Lemma 3.3, it suffices to show that E{2}n+1 is feebly representable for all
n ≥ 2. Let V = {v0, . . . , vn} be a set of vertices, and C = {c1, . . . , cn} a set of proper
colours. Define a colouring λ : V 2 → C by λ(vi , v j ) = c j if i < j . Then, any triangle
that occurs is dichromatic, and all colours are used, so we have a feeble representation.

��
Qualitative representations do not exist for n > 2, but proving this is considerably

more difficult than for strong representations. We will work our way towards a contra-
diction. Assume a qualitative representation over a base B exists, and let v ∈ B. The
chromatic degree degχ (v) of v is the number of colours of its adjacent edges. If a vertex
v has degχ (v) = n, we call v chromatically saturated. To distinguish clearly between
triangles given as sets of vertices, and triangles given as sets of edges, we will use
parentheses (vi , v j , vk) for vertices and square brackets [�, p, q] for edges/colours.
Lemma 6.2 If E{2}n+1 has a qualitative representation over a base B, and v0 ∈ B, then
it also has a qualitative representation over a base B′, extending B, in which v0 is
chromatically saturated.

123



Journal of Algebraic Combinatorics (2023) 58:157–182 167

Proof Assume E{2}n+1 has a qualitative representation over B. Pick an arbitrary v0 ∈ B.
We can assume B = {v0, . . . , vm}. If degχ (v) = n, there is nothing to prove, so
assume degχ (v) = k < n. Let d be a colour not adjacent to v0. Add a vertex v′ and
extend the labelling by

λ(v′, vi ) =
{

d if i = 0

λ(v0, vi ) otherwise

We will show that this labelling is consistent. As the only possible inconsistency
involves v′, consider vi , vk , v′ with |{vi , vk, v

′}| = 3. If i �= 0 �= k, then we have
λ(v′, vi ) = λ(v0, vi ) and λ(v′, vk) = λ(v0, vk). Since the triangle (v0, vi , vk) is
consistent, so is (v′, vi , vk). Next, assume i �= 0 = k, so we consider the triangle
(v′, v0, vi ). Then, we have λ(v′, v0) = d, and λ(v′, vi ) = λ(v0, vi ) by construction.
By assumption, λ(v0, vi ) �= d, so the triangle (v′, v0, vi ) is consistent.

Repeating the extension procedure sufficiently many times produces the desired
qualitative representation. ��

By Lemma 6.2, we can assume thatE{2}n+1 has a qualitative representation over some
B such that there is a chromatically saturated vertex v ∈ B. Every vertex u ∈ B defines
a partition of B\{u} by adjacent colours, i.e. z ∼u w if and only if λ(u, z) = λ(u, w).
Let v0 be chromatically saturated. Pick a single representative of each equivalence
class of∼v0 and let the representatives be v1, . . . , vn , for the colours 1, . . . , n, so that
λ(v0, vi ) = i . LetG be the induced labelled subgraph of B on the vertices {v0, . . . , vn}.
Define a binary relation � on {v0, . . . , vn} by putting vi � v j if λ(vi , v j ) = j . Note
that v0 � vi for every i > 0.

Lemma 6.3 The relation � is a strict linear order on {v0, . . . , vn}.
Proof Antireflexivity is immediate from the definition. To show transitivity, assume
vp � vq and vq � vr . By definition of �, only p can be 0, and in this case the claim
follows immediately, as λ(v0, vr ) = r by definition.

Assume p �= 0. Then, λ(vp, vq) = q = λ(v0, vq) and λ(vq , vr ) = r = λ(v0, vr ).
Now, consider λ(p, r). Since λ(v0, vp) = p, wemust have λ(vp, vr ) ∈ {q, r}∩{p, r},
and since p �= q, we get λ(vp, vr ) = r as required.

Linearity is also immediate. Take arbitrary vp and vq . If p = 0 or q = 0, the claim
holds trivially. Otherwise, we have λ(vp, vq) ∈ {λ(v0, vp), λ(v0, vq)} = {p, q}. ��

Although G is a feeble representation of E{2}n+1 (isomorphic to the one of Observa-

tion 6.1), it is not a qualitative representation of E{2}n+1, as no triangle (vi , vi , v j ) with

i � j is realised in G. Hence, if B is the base of a qualitative representation of E{2}n+1,
then G �= B. Consider a vertex u /∈ G. As |G| = n + 1, by the pigeonhole principle
we must have λ(u, vp) = λ(u, vq) for some distinct vertices vp, vq ∈ G. Assume that
� denotes the value λ(u, vp) = λ(u, vq).

Renumbering the colours, we can assume that � coincides with the usual strict
order on natural numbers. From now on, we will work under this assumption, using <

for the induced order on colours. We will refer to G as a naturally ordered subgraph of
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B. While there may be many subgraphs of this form, it suffices to work with a single
chosen one and only vary the choice of u /∈ G, as the values p, q, � depend on the
choice of u.

We can assume p < q, so λ(vp, vq) = q, and thus, � �= q. We can also assume that
q is the largest vertex (amongst v0, . . . , vn) with a repeat, that is, such that λ(u, vs) =
λ(u, vq) holds for some s �= q. Thus, for every distinct s, t ≥ q we have λ(u, vs) �=
λ(u, vt ). We will keep these assumptions fixed throughout the rest of the section and
invite the reader to draw pictures while reading.

Lemma 6.4 Let G be a naturally ordered subgraph of B, and let u /∈ G. The following
hold:

(1) If p �= �, then, for every r ≤ p we have λ(u, vr ) = �.
(2) If p = �, then, for every r < p we have λ(u, vr ) = q.
(3) For every r , r ′ < p, we have λ(u, vr ) = λ(u, vr ′).
(4) If p < � < q, we have λ(u, v�) = q.
(5) For every r �= � with p < r < q, we have λ(u, vr ) = �.
(6) For every r �= � with q < r , we have λ(u, vr ) = r .

Proof For (1), let vr � vp. Then, λ(vr , vp) = p and λ(vr , vq) = q, so λ(u, vr ) ∈
{�, p} ∩ {�, q}, as p �= �. Hence, λ(u, vr ) = �.

For (2), let vr � vp. By transitivity, vr � vq , so λ(vr , vq) = q, hence λ(u, vr ) ∈
{�, q}. As p = �, we also have λ(vr , vp) = �, so λ(u, vr ) �= �, hence λ(u, vr ) = q.

Next, (3) follows immediately from (1) and (2).
For (4), let vp � v� � vq . Then, λ(u, v�) ∈ {�, q}, as λ(u, vq) = � and λ(v�, vq) =

q. Since λ(u, vp) = � = λ(v�, vp), we also have λ(u, v�) �= �, hence λ(u, vr ) = q.
For (5), let vp � vr � vq and r �= �. Then, λ(vp, vr ) = r and λ(vq , vr ) = q, so

λ(u, vr ) ∈ {�, r} ∩ {�, q}, as r �= �. Hence, λ(u, vr ) = �.
For (6), we have λ(u, vr ) ∈ {�, r}, but λ(u, vr ) = � contradicts the assumption that

vq is the largest vertex with a repeat. Hence, λ(u, vr ) = r . ��
Lemma 6.5 Let G be a naturally ordered subgraph of B, and let u /∈ G. Then, v� =
vq−1 or v� = vq+1. Therefore, � = q − 1 or � = q + 1.

Proof We will apply Lemma 6.4 repeatedly, and referring to numbers (1)–(6) under
the tacit understanding that these will be the items in Lemma 6.4. Firstly, assume that
p = � and p < r < q. From (5), we get λ(u, vr ) = �. By assumption, λ(u, vq) = �.
By transitivity, if i < p, then λ(vi , vr ) = r , and λ(vi , vq) = q, hence λ(u, vi ) ∈
{�, r} ∩ {�, q}. Since r �= q, we have λ(u, vi ) = �. This contradicts (2), so such a
configuration cannot occur. As p > 0, such an i always exists. So, when p = �, we
require that no such r exists, i.e. that � = p = q − 1. We can now assume that p �= �.

Now, assume p < � < q − 1. Then, p < q − 1 < q, so by (5), we have
λ(u, vq−1) = �. As λ(v�, vq−1) = q − 1 and λ(v�, vq) = q, we have λ(u, v�) ∈
{�, q} ∩ {�, q − 1} = {�}. This contradicts (4), as � �= q. It follows that p < � < q
implies � = q − 1.

Assume q < �. Clearly, λ(vq , v�) = �. By (6), q+1 < �means λ(u, vq+1) = q+1,
so λ(u, v�) ∈ {�, q + 1}. But λ(u, vq) = � = λ(vq , v�), so we have λ(u, v�) = q + 1,
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which contradicts ourminimality assumption on repeated labels of edges with u. Thus,
we must have � = q + 1 if q < �.

Assume0 < � < p. Then, by (1),wehave [�, �, �] = [λ(v�, v0), λ(u, v�), λ(u, v0)],
which is a contradiction, as monochromatic triangles are forbidden.

Finally, the case q = � is impossible due to [λ(u, vq), λ(u, vp), λ(vp, vq)], so the
results cover all cases. ��
Lemma 6.6 Let G be a naturally ordered subgraph of B, and let u /∈ G. Let p, q and
� be as in Lemmas 6.4 and 6.5. Then, exactly one of the following three cases occurs:

(1) λ(u, vi ) = q + 1 for all i ∈ {0, . . . , q},
λ(u, vq+1) ∈ {1, . . . , q},
λ(u, v j ) = j for all j ∈ {q + 2, . . . , n}.

(2) λ(u, vi ) = q − 1 for all i ∈ {0, . . . , q − 2} ∪ {q},
λ(u, vq−1) = q,
λ(u, v j ) = j for all j ∈ {q + 1, . . . , n}.

(3) λ(u, vi ) = q for all i ∈ {0, . . . , q − 2},
λ(u, vq−1) = λ(u, vq) = q − 1,
λ(u, v j ) = j for all j ∈ {q + 1, . . . , n}.

Proof By Lemma 6.5, we have either � = q+1 or � = q−1. Thus, � = q+1 implies
λ(u, vq) = q + 1, and then cases (1), (5), and (6) of Lemma 6.4 apply, showing
that the first and the third items of (1) above hold. For the second item, note that
λ(u, vq+1) ≥ q + 1 contradicts the assumption of vq being the largest vertex with a
repeat.

If � = q − 1, then we have λ(u, vq) = q − 1 = λ(u, vp). Recalling that p < q,
we will discover that case (3) above will result from p = q − 1 and case (2) from
p < q − 1.

If p = q − 1, then case (2) of Lemma 6.4 applies yielding λ(u, v j ) = q for all
j ∈ {0, . . . , q − 2}, and these together with case (6) of the same lemma imply that (3)
above holds.

Finally, if � = q − 1 and λ(u, vp) = q − 1 for p < q − 1, then λ(u, vq) = q − 1,
and by case (4) of Lemma 6.4 we have λ(u, vq−1) = q. As p �= q − 1, case (1) of
Lemma 6.4 applies, giving λ(u, v j ) = q − 1 for all j ≤ p. Further, case (5) yields
λ(u, v j ) = q − 1 for all j ∈ {p + 1, . . . , q − 2}. Putting all of these together, we
have λ(u, v j ) = q − 1 for all j ∈ {0, . . . , q − 2} ∪ {q}, and then applying case (6) we
obtain λ(u, v j ) = j for all j > q, as required by (2) above. ��
Corollary 6.7 Let G be a naturally ordered subgraph of B, and let u /∈ G. Then, the
following hold:

(1) If λ(u, vi ) < i , then λ(u, v j ) = j for all j > i .
(2) If for some j we have λ(u, v j ) = j and λ(u, v j−1) = j − 1, then there is an

i < j − 1 with λ(u, vi ) < i .
(3) |λ(u, v0)− λ(u, v1)| ≤ 1.

Proof Follows by inspecting the cases of Lemma 6.6. ��
It will be useful to state separately one special case of Lemma 6.6, covering the

case where the largest repeat occurs somewhere at the last three vertices.
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Lemma 6.8 Let G be a naturally ordered subgraph of B, and let u /∈ G. Assume
λ(u, vn) �= n. The exactly one of the following three cases occurs:

(1) λ(u, vi ) = n for all i ∈ {0, . . . , n − 1},
λ(u, vn) ∈ {1, . . . , n − 1}.

(2) λ(u, vi ) = n − 1 for all i ∈ {0, . . . , n − 2} ∪ {n},
λ(u, vn−1) = n.

(3) λ(u, vi ) = n for all i ∈ {0, . . . , n − 2},
λ(u, vn−1) = λ(u, vn) = n − 1.

Now, by definition, G does not contain the triangle [1, 1, n], so if B is the base of
a qualitative representation of E{1,3}n+1 , there must exist vertices a, b, c ∈ B realising
this triangle. We can assume λ(a, b) = n and λ(a, c) = 1 = λ(b, c). We have several
cases to consider.

Lemma 6.9 Let a, b, c /∈ G. Then, G ∪ {a, b, c} is an inconsistent configuration.

Proof Consider λ(a, vn) and λ(b, vn). They cannot be both equal to n, so assume
λ(a, vn) �= n. Taking u = a, we see that the following possibilities can occur.

We begin with case (2) of Lemma 6.8. We have λ(a, vi ) = n − 1 for all i ∈
{0, . . . , n − 2} ∪ {n} and λ(a, vn−1) = n. This implies λ(b, vn−1) �= n. Let k =
λ(b, vn−1).

(2.1) If k < n − 1, then by Corollary 6.7(1) we get λ(b, vn) = n. Hence,
λ(c, vn) ∈ {λ(c, a), λ(a, vn)} ∩ {λ(c, b), λ(b, vn)} = {1, n − 1} ∩ {1, n} = {1}.
So, λ(c, vn) = 1 and then Lemma 6.8(1) applies, giving λ(c, vi ) = n for all i < n. In
particular, λ(c, vn−2) = n, and since λ(c, a) = 1 and λ(a, vn−2) = n − 1, we obtain
an inconsistent, trichromatic triangle (a, c, vn−2).

(2.2) If k = n−1, then λ(c, vn−1) ∈ {λ(c, a), λ(a, vn−1)}∩{λ(c, b), λ(b, vn−1)} =
{1, n} ∩ {1, n − 1} = {1}. So, λ(c, vn−1) = 1 and thus, by Corollary 6.7(1), we
have λ(c, vn) = n. Then, however, we obtain λ(a, c) = 1, λ(a, vn) = n − 1, and
λ(c, vn) = n; an inconsistent, trichromatic triangle.

Next, cases (1) and (3) of Lemma 6.8 will be dealt with together. For case (1), we
have λ(a, vi ) = n for all i < n. As λ(a, b) = n, it follows that λ(b, vi ) �= n for all
i < n. For case (3), we have λ(a, vn−1) = λ(a, vn) = n − 1, and λ(a, vi ) = n for all
i < n − 1. Then, λ(b, vi ) �= n for all i < n − 1. Therefore, in both cases we have
λ(b, vi ) �= n for all i < n − 1. Since n > 2, we get λ(b, v0) �= n �= λ(b, v1).

(1.1/3.1) If λ(b, vi ) �= 1 for i ∈ {0, 1}, then λ(c, vi ) ∈ {1, n} ∩ {1, λ(b, vi )} =
{1} for i ∈ {0, 1}, and then λ(c, v0) = λ(c, v1) = λ(v0, v1) = 1; an inconsistent,
monochromatic triangle.

(1.2/3.2) Assume λ(b, vi ) = 1 for exactly one i ∈ {0, 1}. Putting {s, t} = {0, 1},
let λ(b, vs) = 1 and λ(b, vt ) �= 1. Thus, λ(c, vs) = n and λ(c, vt ) = 1, contradicting
Corollary 6.7(3). ��
Lemma 6.10 Let a, b /∈ G and c ∈ G. Then, G∪{a, b} is an inconsistent configuration.

Proof By the assumption, c = v j for some j , so λ(a, v j ) = 1 = λ(b, v j ). As in the
previous lemma, we can have at most one of λ(a, vn), λ(b, vn) equal to n, so without
loss assume λ(a, vn) �= n. We analyse possible cases.
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Case (1) of Lemma 6.8. We have λ(a, vi ) = n for all i ∈ {0, . . . , n − 1}, which
can only happen if j = n. But, λ(b, v j ) = 1 as well, so, as 1 < n − 1, case (1) is the
only possibility for λ(b, v j ), and thus, we get λ(b, vi ) = n for all i ∈ {0, . . . , n − 1}.
In particular, λ(a, vn−1) = λ(b, vn−1) = λ(a, b) = n, producing an inconsistent,
monochromatic triangle.

Case (2) of Lemma 6.8. We have λ(a, vi ) = n − 1 for all i ∈ {0, . . . , n − 2} ∪ {n}
and λ(a, vn−1) = n. Since λ(a, v j ) = 1 for some j , it implies n = 2, contradicting
the assumptions.

Case (3) of Lemma 6.8. We have λ(a, vn−1) = λ(a, vn) = n− 1, and λ(a, vi ) = n
for all i ∈ {0, . . . , n−2}. Sinceλ(a, v j ) = 1 for some j , it impliesn = 2, contradicting
the assumptions. ��

Lemma 6.11 Let b, c /∈ G and a ∈ G. Then, G∪{b, c} is an inconsistent configuration.

Proof We have a = v j for some j . First, we show that we can assume j �= n. If j = n,
then λ(c, vn) = 1, and since n > 2 only the case (1) of Lemma 6.8 applies. It follows
that λ(c, vi ) = n for all i < n. Then, λ(b, vn−1) ∈ {λ(b, c), λ(c, vn−1)} = {1, n}.
But λ(b, vn) = λ(vn, vn−1) = n, so λ(b, vn−1) �= n, hence λ(b, vn−1) = 1. Thus, we
have a [1, 1, n] triangle on (c, b, vn−1), so switching the roles of b and c, and putting
a = vn−1 we get λ(a, b) = n with a �= vn , and λ(a, c) = 1 = λ(b, c).

Now,we can assumea = v j for some j �= n. Then, sinceλ(b, c) = 1 andλ(c, vn) ∈
{λ(c, v j ), λ(v j , vn)} = {1, n}, we have λ(b, vn) ∈ {1, n}. However, λ(b, v j ) = n =
λ(v j , vn), so λ(b, vn) = 1. This excludes cases (2) and (3) of Lemma 6.8, as n > 2.
The remaining case (1) gives λ(b, vi ) = n for all i < n, and then, it follows that
λ(c, vk) ∈ {λ(c, v j ), λ(v j , vk)} ∩ {λ(c, b), λ(b, vk)} = {1, λ(v j , vk)} ∩ {1, n} = {1},
for all k ∈ {0, . . . , j − 1} ∪ { j + 1, n − 1} as λ(v j , vk) �= n for all such k. Therefore,
λ(c, vk) = 1 for all k < n. In particular, λ(v0, v1) = λ(c, v1) = λ(c, v0) = 1,
producing an inconsistent, monochromatic triangle. ��

Lemma 6.12 Let c /∈ G and a, b ∈ G. Then, G ∪ {c} is an inconsistent configuration.

Proof Let a = vi for some i < n and b = vn . As λ(c, vn) = 1 and n > 2, the only
applicable case of Lemma 6.8 is (1). However, it implies λ(c, vi ) = n for all i < n,
contradicting λ(c, a) = 1. ��

Lemma 6.13 Let b /∈ G and a, c ∈ G. Then, G ∪ {b} is an inconsistent configuration.

Proof We must have {a, c} = {v0, v1}. But then λ(b, a) = n and λ(b, c) = 1 contra-
dicts Corollary 6.7(3). ��

Lemma 6.13 completed the last possibility for the triangle {a, b, c}, and as each
possibility led to inconsistent networks, the proof of the claimed impossibility of
qualitative representability is complete.

Theorem 6.14 The algebra E
{2}
n+1 is not qualitatively representable for any n > 2.
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Fig. 3 The Walecki construction u1
u2

u3
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7 Algebras E{2,3}
n+1

The so-called Ramsey algebras E{2,3}n+1 (sometimes also known as Monk algebras and
as Comer relation algebras) have received particularly ardent attention in the litera-
ture, with the obvious close connection to classical Ramsey-theoretic considerations
of avoidance of monochromatic triangles, as discussed in the introduction; [11] and
[17] for example. The problem of determining when E{2,3}n+1 has a strong representation
was posed by Maddux in [23] and by Comer in [8], and remains open. Strong rep-
resentability presents very tightly constrained condition (see Lemma 3.2) and proves
to be particularly challenging. Ramsey algebras appear in both of the texts [13] and
[24], with strong representability for 1 ≤ n ≤ 5 established by Comer [8] and later
n = 6, 7 by Maddux [25]. The limits of strong representability were subsequently
pushed upward via a series of efforts of Kowalski [18], Alm and Manske [4] and
finally Alm [2], which is the current state of knowledge: strong representability is
achievable for all n ≤ 2000 except possibly n = 8, 13. The cases of n = 8, 13
and n > 2000 remain tantalisingly unresolved, though the finite field constructions
in the above articles have been computationally verified as not providing solutions
for n = 8, 13 (see A263308 in the Online Encyclopædia of Integer Sequences [3]).
In [19], Kramer and Maddux develop a version of Ramsey theory where monochro-
matic and trichromatic triangles must both be avoided. Their results give the existence
and an upper bound for the sizes of feeble representations. Qualitative representabil-
ity presents an interesting intermediate condition, and in this section, we show that
qualitative representability is possible for all n.

We employ a variant of Walecki’s construction (see, e.g. [5]) originally used to
partition K2k into k Hamiltonian paths. Let the vertices of K2n be distributed evenly
on a circle. Colour a zigzagging path in one colour, as in Fig. 3. Then, rotate the picture
one step, change the colour and repeat. Rotating n times and using n different colours
gives the desired colouring of K2n .

It is clear that no monochromatic triangles occur, so it remains to be shown that
all non-monochromatic triangles are realised. To avoid cluttering subscripts, we will
use 1, . . . , n as the colours, instead of c1, . . . , cn . For each n ∈ N, define a map
sn : Z → {1, . . . , n} by x �→ Rn(x −1)+1, where Rn(k) is k (mod n). In particular,
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we have sn(s2n(a)+ s2n(b)) = sn(a+ b) for all a, b ∈ Z and n ∈ N. We will use this
fact repeatedly below to omit s2n within parentheses.

It can be seen from the construction that the colour of (u1, u1+s) is � s+1
2 �, for each

s ∈ {1, 2, . . . , 2n−1}. Rotating i steps clockwise, we get that for each i ∈ {1, . . . , 2n}
and s ∈ Z\{2mn : m ∈ Z}, the colour of (ui , us2n(i+s)) is

sn

(⌈
s + 1

2

⌉
+ i − 1

)
.

To see this, note that the colour of (u1, us2n(1+s)) is sn(� s+1
2 �) and then, shift the colour

i − 1 steps forward using the rotational symmetry and the fact that the colours cycle
with period n.

Lemma 7.1 The colouring defined above realises all non-monochromatic triangles.

Proof Take i, j, k ∈ {1, . . . , n} with i < j . We will show that there is a triangle
coloured (i, j, k). We consider two cases: k �= i and k �= j . Assume first that k �= i .
Put

� := s2n(i + j − k), s := 2k − 2 j + 1, and t := 2k − 2i .

Note that s, t ∈ Z \ {2mn : m ∈ Z}. Hence, the colour of (u�, us2n(�+s)) is

sn

(⌈
(2k − 2 j + 1)+ 1

2

⌉
+ (i + j − k)− 1

)
= sn(k − j + 1+ i + j − k − 1) = i .

The colour of (u�, us2n(�+t)) is

sn

(⌈
(2k − 2i)+ 1

2

⌉
+ (i + j − k)− 1

)
= sn(k − i + 1+ i + j − k − 1) = j .

As i < j , we have s < t . Now,

t − s = (2k − 2i)− (2k − 2 j + 1) = 2( j − i)− 1,

which is not a multiple of 2n. Hence, the colour of (us2n(�+s), us2n(�+t)) is

sn

(⌈
(2( j − i)− 1)+ 1

2

⌉
+ (i + j − k)+ (2k − 2 j + 1)− 1

)
= sn( j − i + i + j − k + 2k − 2 j + 1− 1) = k.

So, (u�, us2n(�+s), us2n(�+t)) is a triangle with edges coloured by i , j , and k. Next,
assume k �= j and put

� := s2n(i + j − k), s := 2k − 2 j, and t := 2k − 2i + 1.
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Again, s, t ∈ Z \ {2mn : m ∈ Z}. By calculations similar to the first case, we get that
the colour of (u�, us2n(�+s)) is i , and the colour of (u�, us2n(�+t)) is j . Moreover,

t − s = (2k − 2i + 1)− (2k − 2 j) = 2( j − i)+ 1,

so the colour of (us2n(�+s), us2n(�+t)) is

sn

(⌈
(2( j − i)+ 1)+ 1

2

⌉
+ (i + j − k)+ (2k − 2 j)− 1

)
=

sn( j − i + 1+ i + j − k + 2k − 2 j − 1) = k.

Choosing between the two cases, as needed for (i) k = i, k �= j , (ii) k �= i, k = j ,
or (iii) k �= i, j we can construct all non-monochromatic triangles. ��
Theorem 7.2 For any natural number n, the algebra E

{2,3}
n+1 is qualitatively repre-

sentable on the graph K2n.

Proof Immediate by Lemma 7.1. ��

8 Algebras E{1,3}
n+1

These algebras are better known as Lyndon algebras. Lyndon [22] showed that for
n ≥ 4, strong representations of the algebraE{1,3}n+1 precisely correspond to affine planes
of order n−1, so that by theBruck–RyserTheorem [7] and standardfield constructions,
there are infinitely many n for which E

{1,3}
n+1 is strongly representable, and infinitely

many for which it is not strongly representable. This was used by Monk to show that
the strongly representable relation algebras admit no finite axiomatisation [26]. We
now explore how qualitative and even feeble representations of E{1,3}n+1 relate similarly
to geometric objects. The natural starting point will be feeble representations, which
we find correspond to parallelisms of linear spaces, in the sense of finite geometry.
We direct the reader to a text on linear spaces such as [6] for further background on
linear spaces, though the connection with feeble representations of Lyndon algebras
is presented here for the first time.

A linear space is a system (G,L), where G is a set of points, and L a family of
subsets of G called lines satisfying the following axioms:

(LS1) Every pair of distinct points is contained in a line;
(LS2) Every pair of distinct lines have intersection that is either empty or a singleton;
(LS3) Every line contains at least two points.

An obvious consequence of LS1 and LS2 is that each pair of points p, q are contained
within a unique line, which we denote by pq . As usual, points lying on the same line
are said to be collinear, two lines are incident if they intersect to a common point.

A parallelism of a linear space (G,L) is an equivalence relation � on L with
the property that lines within a common block do not intersect. The blocks of �

are referred to as parallel classes and lines within a block are parallel. The identity
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relation on L is always an example of a parallelism, and we refer to this as the trivial
parallelism. But in general theremaybemanyother parallelisms,with various numbers
of parallel classes. The next theorem shows that n-block parallelisms of linear spaces
precisely capture feeble representations of the algebra E

{1,3}
n+1 , modulo the choice of

bijection between diversity atoms and parallel classes.

Theorem 8.1 Every linear space (G,L) with n-block parallelism � yields a feeble
representation of E{1,3}n+1 by relating p, q ∈ G by the i th colour whenever p is collinear
with q by way of a line in the i th block of � . Moreover, every feeble representation
E
{1,3}
n+1 arises in this way.

Proof For the forward direction, we consider the n-block parallelism � of (G,L)

and the defined mapping of diversity atoms of E{1,3}n+1 to parallel classes as given. For
convenience, we allow the parallel classes to share the same name as the colour of
the atom to which they are matched. So the (attempted) feeble representation aθ of a
diversity atom a labels the edge from p to q if p is collinear to q by way of a line in
a (the identity atom is represented, as required, by the identity relation). By Axioms
LS1 and LS2, all pairs receive a unique colour. By LS3, all colours appear, so that θ

is a feeble representation of E{1,3}n+1 .
For the converse direction, let θ be a feeble representation of E{1,3}n+1 on a set G. To

define the lines L, for each diversity atom a we will include maximal cliques with
respect to edges aθ as lines in L. To define the parallelism � , we define lines to be
parallel if they are cliques with respect to a common atom. Because each pair of points
in G are related by aθ for some atom a, we have that Axiom LS1 holds. Because no
edge is coloured bymore than one atom,we have that AxiomLS2 holds. It is trivial that
Axiom LS3 holds. Because θ is a feeble representation, each atom labels at least one
edge, so that the number of blocks in� is exactly n. Because there are no dichromatic
triangles in the feeble representation θ , we have that the lines within common blocks
of � do not intersect, so that � is a parallelism of (G,L). Finally, it is clear that the
representation of E{1,3}n+1 over (G,L), � agrees with the one defined in the first half of
the proof, with the obvious matching of atoms to parallel classes. ��

An example of a linear space with parallelism is given in Fig. 4. It is not a Lyndon
geometry, but its resemblance to the projective plane of order 3 is not accidental: it
illustrates a construction to be used shortly for projective planes of order at least 4.

We mention in passing that an alternative presentation here is to begin with a
linear space (G,L) in which there is a distinguished line L∞ (the line at infinity)
that is incident with all other lines and contains precisely n points. Provided that
every line other than L∞ contains at least 3 points, we may obtain a linear space
(G\L∞,L\{L∞}) and define an n-block parallelism by letting two lines be parallel if
they were incident in (G,L) to a common point on L∞. Conversely, any parallelism
� of a linear space gives rise to a new linear space by letting the blocks of� be treated
as additional new points, and the set of blocks of� be considered as an additional new
line (“at infinity”). This of course is a general case of the familiar interplay between
projective planes and affine planes.

Since 3 ∈ {1, 3}, applying Observation 5.4 immediately gives the next result.
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d2

d4d3 d5

ab
d1

cde

fgh

Fig. 4 A linear space (G,L) with parallelism, where G = {a, b, c, d, e, f , g, h} and lines of L are drawn.
The points at infinity d1, . . . , d5 define the parallel classes. For instance, d1 contains lines ab, d f , eh, and
cg. Each line in this class has precisely two points

Observation 8.2 Feeble representations of Lyndon algebras, and hence the corre-
sponding linear spaces, exist for all n ≥ 3.

A simple application of Theorem 8.1 yields another solution. The near pencil is a
linear space on n ≥ 3 points p0, p1, . . . , pn−1, where the lines are {p1, . . . , pn−1}
along with {p0, pi } for each i = 1, . . . , n − 1. This near pencil has n lines, and with
the trivial parallelism yields a further easy feeble representation of E{1,3}n+1 .

We now consider qualitative representations; each triangle type has a natural geo-
metric interpretation, the first that there are large enough lines, the second that there
are enough points in general position.

Theorem 8.3 A linear space (G,L) with n-block parallelism � represents all
monochromatic triangles in E

{1,3}
n+1 precisely when (LS4) holds and all trichromatic

triangles precisely when (LS5) holds:

LS4 each parallel class contains a line with at least 3 points.
LS5 each triple of parallel classes are witnessed by 3 points in general position. That

is, for parallel classes d1, d2, d3 there are points p1, p2, p3 in general position,
with p1 p2 ∈ d1, p2 p3 ∈ d1, p3 p1 ∈ d3.

Proof This is immediate, as it simply states the condition on representations in the
geometric formulation shown equivalent by Theorem 8.1. ��

We will refer to a linear space with parallelism (G,L,�) as an affine Lyndon
geometry if it satisfies the extra axioms LS4 and LS5. The linear space obtained from
an affine Lyndon geometry by adjoining the line at infinity and associated directions
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will be called a Lyndon geometry; note that a Lyndon geometry is a linear space with
a distinguished line. As with affine planes and projective planes, these two concepts
in some sense differ only in that parallel classes and the parallelism is given the name
“points at infinity” and “line at infinity”. In order to match the case for affine planes,
we let the order of affine Lyndon geometry (G,L,�) be the number n such that �

has n + 1 blocks.
We now show that affine Lyndon geometries of every order exist.

Theorem 8.4 Let (G,L) be an affine plane of order n > 3 and consider any set D of
k ≤ n − 2 points in G. Define a parallelism � on the subspace on G \ D by defining
two lines parallel if : in (G,L), they pass through a unique point of D; and otherwise,
if they were parallel in (G,L). The parallelism � has n + k + 1 blocks.

Proof Let LD denote the lines in the defined subspace: so K ∈ LD is of the form
L \ D for a unique L ∈ L. For L ∈ L, we will write L− to denote L \ D. We will refer
to blocks of� corresponding to a parallel class in (G,L), as old directions, and those
consisting of the pencil of lines that pass through precisely one single point p ∈ D
as new directions. Since each line in L contains n points, each line in LD contains at
least 2 points, verifying the axiom (LS3). The axioms (LS1) and (LS2) are inherited
from (G,L), so (G\D,LD) is a linear space.

To verify axiom (LS4) note that as there are n lines in each direction of the affine
plane (G,L), and at most n−2 of these lines are through unique points in D, there are
at least 2 lines in each old direction. Let m be the number of lines in an old direction
o. These lines contain at least mn − (n − 2) points, and as n > 3 and m ≥ 2 we
have mn − n + 2 > 2m, showing that at least one of the m lines must contain strictly
more than 2 points. Analogously, there are n + 1 lines through each point p of D,
and at most k − 1 ≤ n − 3 of them can pass through a second point of D, so each
new direction contains at least 4 lines. As above, let m be the number of the lines
in a new direction d. Each of these lines contains at least n − 1 points, so the lines
together contain at least m(n − 1)− (n − 2) points, and thus, m > 3 and 2 ≥ 2 give
m(n− 1)− (n− 2) > 2m. Hence, at least one of these lines contains at least 3 points.
It is now also clear that the parallelism � has n + k + 1 blocks.

For axiom (LS5), consider three directions from � . If all three are old, say, o1,
o2 and o3, then as there are n lines of L in o1, there is a line L1 ∈ L ∩ o1, with
L1∩D = ∅, so L1 ∈ LD∩o1, that is, L−1 = L1. Similarly, there is a line L2 ∈ L∩o2
with L−2 = L2. Let p be the unique point in L1∩L2. As there are n lines inL∩o3, and
|D ∪ {p}| = k + 1 ≤ n − 1, there is a line L3 ∈ L∩ o3 with L3 ∩ (D ∪ {p}) = ∅, so
that L−3 = L3. Since L1, L2 and L3 are lines from L, not all through the same point,
they intersect pairwise at 3 distinct points. Hence, p ∈ L1 ∩ L2, q ∈ L1 ∩ L3 and
r ∈ L2 ∩ L3 are 3 points in general position in G \ D. But since L1 = L−1 , L2 = L−2
and L3 = L−3 they witness (LS5) for o1, o2 and o3 in (G \ D,LD).

Next, let o1 and o2 be old directions and let d3 be a new direction. Reasoning as
before, we find lines L1 ∈ L ∩ o1 and L2 ∈ L ∩ o2 such that L−1 = L1, L−2 = L2,
and L1 ∩ L2 = {p} with p ∈ G\D. As there are n + 1 lines in L passing through d3,
there is a line L3 ∈ L passing through d3, with L3 ∩ ((D ∪ {p})\{d3}) = ∅. Then,
p ∈ L1 ∩ L2, q ∈ L1 ∩ L3 and r ∈ L2 ∩ L3 are 3 points in general position in G \ D.
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Moreover, L−3 = L3\{d3}, so L−1 , L−2 and L−3 witness (LS5) for o1, o2 and d3 in
(G \ D,LD).

Further, let o1 be an old direction and let d2 and d3 be new directions. As there are
n + 1 lines in L passing through d2, there are n lines in L \ o1 passing through d2, so
we find a line L2 ∈ L\o1 such that d2 ∈ L2 and L2 ∩ (D\{d2}) = ∅. Let o2 be the
direction of L2 in (G,L). As there are n− 1 lines in L \ (o1 ∪ o2) passing through d3,
we find L3 ∈ L\(o1 ∪ o2) with d3 ∈ L3 such that L3 ∩ (D \ {d3, }) = ∅. Then, L2
and L3 intersect at a point r ∈ G \ D. Now, consider o1. There are n lines of L in o1,
at most k + 1 = n − 1 of them having nonempty intersections with D ∪ {r}, so there
is a line L1 ∈ o1 such that L1 ∩ (D ∪ {r}) = ∅. Then, p ∈ L1 ∩ L2, q ∈ L1 ∩ L3
and r ∈ L2 ∩ L3 are 3 points in general position in G \ D. So the lines L−1 = L1,
L−2 = L2\{d2} and L−3 = L3\{d3}, witness (LS5) for o1, d2 and d3 in (G \ D,LD).

Finally, let d1, d2 and d3 be new directions. We find L2 ∈ L such that d2 ∈ L2 and
L2∩(D\{d2}) = ∅. Let o2 be the direction of L2 in (G,L). Then, we find L3 ∈ L\o2,
with d3 ∈ L3 and L3 ∩ (D\{d3, }) = ∅, so r ∈ L2 ∩ L3 is a point in G \ D. Let o3 be
the direction of L3 in (G,L). There are n − 1 lines in L \ (o2 ∪ o3) passing through
d1, and |(D\{d1}) ∪ {r}| = k ≤ n − 2, so there is a line L1 ∈ L \ (o2 ∪ o3) passing
through d1 with L1 ∩ ((D\{d1}) ∪ {r}) = ∅. Then, p ∈ L1 ∩ L2, q ∈ L1 ∩ L3 and
r ∈ L2 ∩ L3 are 3 points in general position in G \ D, and the lines L−1 = L1\{d1},
L−2 = L2\{d2} and L−3 = L3\{d3}, witness (LS5) for d1, d2 and d3 in (G \ D,LD). ��

The construction described above can be applied to the projective plane of order 3,
and it results in a linear space isomorphic to the one from Fig. 4. To see it, extend ab,
eh and d f to pass through d1, d4 and d5, respectively; then make cg incident with d3.
The resulting linear space fails LG4, showing that the condition n > 3 in Theorem 8.4
is the best possible.

Corollary 8.5 There exist affine Lyndon geometries of all orders greater than 3; equiv-
alently, E{1,3}n+1 is qualitatively representable for all n ≥ 3.

Proof By Theorem 8.3, it suffices to cover all n ≥ 3 using Theorem 8.4. There
exist affine planes of every prime power order, so orders 3 and 4 are covered, and
Theorem 8.4 shows that there are affine Lyndon geometries of all orders p, p +
1, . . . , 2(p − 1), for all p ≥ 5. All numbers n ≥ 2 lie in the interval [p, 2(p − 1)]
for some prime p: this is trivial to verify for small n, and follows, for example, from
Nagura’s variant of Bertrand’s postulate [27], showing that form ≥ 25 there is a prime
between m and 5m/4. ��

9 Infinite cardinalities

The definition of chromatic algebras ES
n easily extends to allow for the case n = κ

for an infinite cardinal κ . Strong representations for ES
κ are known for S = {1, 3} (by

way of affine planes of order κ), while strong representations for ES
κ in the case of

S = {1, 2}, {2, 3}, {1, 2, 3} are easily achievable using the game-theoretic methods
of Hirsch and Hodkinson [13], but they are somewhat convoluted, being subdirect
products of representations of countable subalgebras of ES

κ (even in the case κ = ω).
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We will not investigate them here. The remaining cases do not admit strong represen-
tations: for ∅ and {1} this is trivial, while for S = {3} and S = {2}, the situation is
discussed in the relevant Sects. 5 and 6.

For qualitative representations, there emerges an interesting contrast with the finite
colour results, namely, E{2}κ becomes qualitatively representable for all infinite κ ,
despite E{2}n+1 not being qualitatively representable for any finite n. Moreover, there is
a direct, uniform method of constructing representations for all infinite cases.

Theorem 9.1 Let κ be an infinite cardinal. For S ⊆ {1, 2, 3}, the algebra ES
κ has a

qualitative representation if and only if S ∩ {2, 3} �= ∅.

Proof For S = ∅ or S = {1}, it is trivial that no representations exist.
Now, assume that 3 ∈ S, and let Cκ be the set of all colours. There are κ triangles

(Tα : α < κ) to be witnessed in order to achieve a qualitative representation of ES
κ .

We will construct a chain of complete networks (Nα : α < κ) and a chain of sets of
colours (Cα : α < κ) such that Cα is the set of all colours used in Nα . We use ⊗ and
⊕ for cardinal multiplication and addition, and + for ordinal addition. Let N0 be the
empty network. Assume inductively that a chain of complete networks (Nβ : β < α)

has been constructed, such that (i) each Nβ witnesses the triangles Tγ for all γ < β,
(ii) |Nβ | ≤ 3⊗ |β|, and (iii) |Cβ | ≤ 9⊗ |β| ⊗ |β|. Construct Nα as follows.

• Ifα = γ+1 for some γ , let N ′α := Nγ !Tγ . Then, |N ′α| = |Nγ |⊕3 ≤ 3⊗|γ |⊕3 ≤
3⊗ |α|, and N ′α witnesses all triangles Tβ for β < α. So N ′α satisfies (i) and (ii),
but it is not complete (except for γ = 0). Let M ′

α := {{x, y} : x ∈ Nγ , y ∈ Tγ }.
Then, |M ′

α| = 3⊗ |Nγ |, and putting C ′α for the set of colours used in N ′α we get
|C ′α| = |Cγ | ⊕ 3 ≤ 9⊗ |γ | ⊗ |γ | ⊕ 3 < κ . Hence, |Cκ \ C ′α| = κ and therefore,
we can choose from Cκ \ C ′α a unique colour for each {x, y} ∈ M ′

α and thus,
complete N ′α to Nα . Then, |Nα| = |N ′α| ≤ 3 ⊗ |α|, and |Cα| ≤ |C ′α ∪ M ′

α| ≤
9 ⊗ |γ | ⊗ |γ | ⊕ 3 ⊕ 3 ⊗ |Nγ | ≤ 9 ⊗ |γ | ⊗ |γ | ⊕ 3 ⊕ 9 ⊗ |γ | ≤ 9 ⊗ |α| ⊗ |α|.
Thus, (i), (ii) and (iii) are satisfied.

• If α is a limit ordinal, let Nα := ⋃
β<α Nβ . Then, Nα is a complete network

witnessing the triangles Tβ for all β < α, so (i) is satisfied. Moreover, |Nβ | ≤
3⊗ |β| ≤ |α| for each β < α, so Nα is a union of |α| sets, each of cardinality at
most |α|; hence, |Nα| ≤ |α|, satisfying (ii). Similarly, |Cβ | ≤ 9⊗ |β| ⊗ |β| ≤ |α|
for each β < α, so |Cα| = |⋃β<α Cβ | ≤ |α|, showing that (iii) is satisfied.

The union
⋃

α<κ Nα is a well-defined qualitative representation of ES
κ . If 3 /∈ S but

2 ∈ S, we can apply same methodology as for 3 ∈ S, except that now to complete N ′α
to Nα for a successor α we select a single colour from κ unused ones for all the missing
edges. ��

10 Summary

The table summarises the known results on representability of finite chromatic alge-
bras. The main question that remains open is for which n strong representations of
Ramsey algebras E{2,3}n+1 exist.
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