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Abstract
We provide a new tableau model from which one can easily deduce the characters
of finite-dimensional irreducible polynomial representations of the special orthogonal
group SOn(C). This model originates from the representation theory of the ıquantum
group (also known as the quantum symmetric pair coideal subalgebra) of type AI and
is equipped with a combinatorial structure, which we call AI-crystal structure. This
structure enables us to describe combinatorially the tensor product of an SOn(C)-
module and a GLn(C)-module, and the branching from GLn(C) to SOn(C).
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1 Introduction

Combinatorial objects such as partitions, Young tableaux, and their variants have been
effectively used to understand the representation theory of the symmetric group, the
general linear group GLn = GLn(C), the general linear algebra gln = gln(C), and
their variants. For example, the set of standard (resp., semistandard) Young tableaux
of a fixed shape parametrizes a basis of the corresponding irreducible representation
of the symmetric group (resp., GLn and gln).

For a better understanding of a representation theory, it is quite useful to construct
a concrete combinatorial model which uniformly models a certain class of represen-
tations. For example, in the representation theory of reductive groups and their Lie
algebras, one may want a combinatorial model from which one can easily deduce the
character of a representation under consideration.
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The semistandard Young tableau model for GLn and gln is such a typical example.
Let us see this in more detail. Let Parn denote the set of partitions of length not
greater than n. For each λ ∈ Parn , let SSTn(λ) denote the set of semistandard Young
tableaux of shape λ with entries in {1, . . . , n}. To each semistandard Young tableau
T ∈ SSTn(λ), a weight wt(T ) ∈ Z

n is assigned. Then, SSTn(λ) models the finite-
dimensional irreducible gln-module (equivalently, GLn-module) V gln (λ) of highest
weight λ in the sense that the character of V gln (λ) equals the generating function

∑

T∈SSTn(λ)

xwt(T ) ∈ Z[x±1
1 , . . . , x±1

n ]

of weights of SSTn(λ), where

x(a1,...,an) := xa11 · · · xann .

The aim of this paper is to introduce a new tableau model for the finite-dimensional
irreducible representations of integer highest weight for the special orthogonal algebra
son = son(C), equivalently, the finite-dimensional irreducible polynomial representa-
tions for the special orthogonal group.The isomorphismclasses of such representations
are parametrized by the set

X+
son ,int

:=
{

{ν = (ν1, ν3, . . . , ν2m−1) ∈ Z
m | ν1 ≥ ν3 ≥ · · · ≥ ν2m−1} if n is odd,

{ν = (ν1, ν3, . . . , ν2m−1) ∈ Z
m | ν1 ≥ ν3 ≥ · · · ≥ ν2m−3 ≥ |ν2m−1|} if n is even

of dominant integer weights, where

m :=
{

n−1
2 if n is odd,

n
2 if n is even

denotes the rank of son . It is convenient to introduce the following family of son-
modules parametrized by Parm . For each ρ ∈ Parm , set

V son (ρ) :=
{
V son (νρ) if �(ρ) < n

2 ,

V son (ν+
ρ ) ⊕ V son (ν−

ρ ) if �(ρ) = n
2 ,

where

νρ := (ρ1, ρ2, . . . , ρ�(ρ), 0, . . . , 0), ν±
ρ := (ρ1, ρ2, . . . , ρm−1,±ρm) ∈ X+

son ,int
.

Let ρ ∈ Parm and T ∈ SSTn(ρ). We say that T is an AI-tableau (the origin of the
name will be clear later) if

tci,1 ≤ ti,2 for all 1 ≤ i ≤ d2,
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where ti, j denotes the (i, j)th entry of T , and

d j := max{k | ρk ≥ j}, {tc1,1, . . . , tcn−d1,1} := {1, . . . , n} \ {t1,1, . . . , td1,1}.

For each ρ ∈ Parm , set

SSTAI
n (ρ) := {T ∈ SSTn(ρ) | T is an AI − tableau}.

To each T ∈ SSTAI
n (ρ), a degree deg(T ) = (deg1(T ), deg3(T ), . . . , deg2m−1(T )) ∈

Z
m is assigned. Then, we can say that SSTAI

n (ρ) models the son-module V son (ρ) in
the following sense.

Theorem A Let ρ ∈ Parm. Then, we have

ch V son (ρ) = 1

2m
∑

T∈SSTAI
n (ρ)

∑

σ1,σ3,...,σ2m−1∈{+,−}
y
σ1 deg1(T )

1 y
σ3 deg3(T )

3 · · · yσ2m−1 deg2m−1(T )

2m−1 ,

where the left-hand side denotes the character of the son-module V son (ρ).

Let us compare the already known tableau models, some of which can model
irreducible representations of half-integer highest weight as well, with ours. King
and El-Sharkaway [7] introduced the notion of orthogonal tableaux by investigating
the branching from son to son−2. A weight is assigned to each orthogonal tableau.
Then, they proved that the associated generating functions are irreducible characters
of son . Koike and Terada [8] introduced another tableau model for son . Their tableaux
need 3m (resp., 4m) kinds of letters when n is odd (resp., even). Sundaram [16] (for
so2m+1), Proctor [14], and Okada [13] (for so2m) constructed similar, but more or less
simple, tableau models. Kashiwara and Nakashima [6] constructed totally different
tableau model. Their model is equipped with a crystal structure, which originates from
the representation theory of the quantum groups. Our new tableau model is, as a set,
different from the other models above and is much simpler than models of King-El-
Sharkaway, Koike-Terada, and Kashiwara-Nakashima; the constraints are only the
ordinary semistandardness condition and an easily checked condition on the first two
columns. Our character formula is a little bit involved compared to the other models,
but it is still easy. What is unique to our model is a new combinatorial structure, which
we call the AI-crystal structure. This structure is closely related to the representation
theory of the ıquantum group (also known as the quantum symmetric pair coideal
subalgebra) of type AI.

An ıquantum group is a certain right coideal subalgebra of a quantum group appear-
ing in the theory of quantum symmetric pairs formulated byLetzter [10]. Among them,
the ıquantum group of type AI, which has appeared in [2] earlier than [10], is the sub-
algebra Uı of the quantum group U = Uq(gln) associated to gln generated by

Bi := Fi + q−1Ei K
−1
i , i ∈ {1, . . . , n − 1},
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where Ei , Fi , K
±1
i , i ∈ {1, . . . , n−1} denote theChevalley generators ofU. Under the

classical limit q → 1, it tends to the universal enveloping algebraU (son). Here, son is
embedded into gln as the Lie subalgebra generated by bi := fi +ei , i ∈ {1, . . . , n−1}.

In [18], the crystal limit q → ∞ of the action of Bi on a certain class of Uı -
modules was defined. It is a linear operator B̃i . Abstracting properties of B̃i ’s, we
introduce the notion of AI-crystals. An AI-crystal is a set B equipped with structure
maps B̃i : B → B � {0} and degi : B → Z satisfying certain axioms. Then, it is
shown that for each ρ ∈ Parm , the set SSTAI

n (ρ) admits an AI-crystal structure which
can be thought of as the crystal limit of the Uı -module V son

q (ρ) (a q-analog of the
son-module V son (ρ)). This is the second achievement in an attempt to generalize the
theory of crystal basis to ıquantum groups; the first example was given in [17] for
quasi-split-type AIII2r with asymptotic parameters. No general theory unifying these
two crystal theory is known.

Thanks to thisUı -representation theoretic interpretation, it turns out that AI-crystals
model not only the son-modules V son (ρ) but also the tensor product of an son-module
and a gln-module, and the branching from gln to son .

Let λ ∈ Parn and ρ ∈ Parm . Then, SSTAI
n (ρ)⊗SSTn(λ) := SSTAI

n (ρ)×SSTn(λ) is
equipped with an AI-crystal structure. This structure reflects the son-module structure
of V son (ρ) ⊗ V gln (λ), which is the classical limit of the Uı -module structure of the
corresponding tensor productmodule (recall thatUı is a right coideal ofU).Mimicking
Schensted’s insertion algorithm, we introduce an algorithm which tells us how the
tensor product SSTAI

n (ρ) ⊗ SSTn(λ) decomposes into several copies of SSTAI
n (σ )’s,

σ ∈ Parm . Such insertion schemes for other tableau models have been invented in [9,
13, 14, 16].

As a special case of the tensor product modules, one can consider V gln (λ) =
V son (∅)⊗V gln (λ) because V son (∅) is the trivial representation. Recall that SSTn(λ)

models V gln (λ). By the argument above, we see that SSTn(λ) = SSTAI
n (∅)⊗SSTn(λ)

is equipped with an AI-crystal structure. This structure reflects the son-module struc-
ture of V gln (λ). To each T ∈ SSTn(λ), an AI-tableau PAI(T ), called the PAI-symbol
of T , is assigned. For each ρ ∈ Parm , the subset

{T ∈ SSTn(λ) | the shape of PAI(T ) is ρ}

forms an AI-crystal isomorphic to the disjoint union of several copies of SSTAI
n (ρ).

In this way, we obtain an “irreducible decomposition” of SSTn(λ) as an AI-crystal,
which corresponds to a decomposition of V gln (λ) as an son-module.

This paper is organized as follows. In Sect. 2, we prepare notation concerning com-
binatorial objects and introduce the notion of AI-crystals and AI-tableaux, which play
key roles in the construction of our new tableaumodel. In Sect. 3, we give a representa-
tion theoretic interpretation to combinatorial objects introduced in the previous section.
Also, our main theorem is proved there. In Sect. 4, we develop an insertion scheme
for our model. This enables us to understand the tensor product of an son-module and
a gln-module and the branching from gln to son from an AI-crystal theoretic point of
view.
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Notation

Throughout this paper, we use the following notation:

• Z≥0: the set of nonnegative integers.
• Zev: the set of even integers.
• Zodd: the set of odd integers.
• For p ∈ {ev, odd}, Z≥0,p := Z≥0 ∩ Zp.
• For a, b ∈ Z, [a, b] := {c ∈ Z | a ≤ c ≤ b}.
• For a, b ∈ Z and p ∈ {ev, odd}, [a, b]p := [a, b] ∩ Zp.

2 Combinatorics

In this section, we prepare notation concerning combinatorial objects used throughout
the paper. After reviewing the theory of crystals of type A, we introduce the notion
of AI-crystals and AI-tableaux, which play key roles in the construction of our new
tableau model for finite-dimensional son-modules of integer highest weight.

2.1 Tableaux

A partition is a non-increasing sequence λ = (λ1, . . . , λl) of positive integers; l is
referred to as the length of λ, and is denoted by �(λ). The empty sequence ∅ is the
unique partition of length 0. The size of a partition λ = (λ1, . . . , λl) is defined to
be

∑l
i=1 λi , and is denoted by |λ|. Let Parl denote the set of partitions of length not

greater than l, and Par := ⋃
l≥0 Parl the set of partitions.

The Young diagram of shape λ ∈ Par is the set

D(λ) := {(i, j) | i ∈ [1, �(λ)], j ∈ [1, λi ]}.

For λ,μ ∈ Par, we write λ � μ if D(λ) ⊂ D(μ) and |μ| − |λ| = 1.
Let A be a set. A Young tableau of shape λ ∈ Par in alphabet A is a map

T : D(λ) → A.

Unless otherwise stated, we always fix n ≥ 2 and take A = [1, n] as the alphabet.
When considering Young tableaux, each element of the alphabet is referred to as a
letter. For a Young tableau T of shape λ ∈ Par and (i, j) ∈ D(λ), the letter T (i, j) is
referred to as the (i, j)th entry of T . The partition λ is referred to as the shape of T ,
and is denoted by sh(T ). The size of T is defined to be |λ|, and is denoted by |T |. For
a subset A ⊂ [1, n], let T |A denote the map

T |A : {(i, j) ∈ D(λ) | T (i, j) ∈ A} → A; (i, j) �→ T (i, j).
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Given n ≥ d1 ≥ d2 ≥ · · · ≥ dl > 0 and C j = (c1, j , c2, j , . . . , cd j , j ) ∈ [1, n]d j , let
C1C2 · · ·Cl denote the Young tableau given by

(C1C2 · · ·Cl)(i, j) := ci, j .

A sequence of letters is referred to as a word. LetW denote the set of words, i.e.,

W :=
⊔

d≥0

[1, n]d .

For two words w1, w2 ∈ W , let w1 ∗ w2 ∈ W denote the concatenation of them. The
column reading of a Young tableau T is a word CR(T ) ∈ W defined to be

(td1,1, td1−1,1, . . . , t1,1) ∗ (td2,2, td2−1,2, . . . , t1,2) ∗ · · · ∗ (tdλ1 ,λ1 , tdλ1−1,λ1 , . . . , t1,λ1),

where

d j := max{i | λi ≥ j}
denotes the length of the j th column of D(λ).

Example 2.1.1 Let λ = (4, 2, 1), and

T =
1 2 3 3
2 3
4

.

Then, its column reading is

CR(T ) = (4, 2, 1) ∗ (3, 2) ∗ (3) ∗ (3) = (4, 2, 1, 3, 2, 3, 3).

A Young tableau is said to be semistandard if its entries weakly increase along the
rows from left to right, and strongly increase along the columns from top to bottom.
Let SSTn(λ) denote the set of semistandard Young tableaux of shape λ ∈ Par. Note
that SSTn(λ) = ∅ unless �(λ) ≤ n.

A semistandard Young tableau of shape λ ∈ Par in alphabet [1, N ] for some N > 0
is said to be standard if the assignment (i, j) �→ T (i, j) is injective. Let STN (λ)

denote the set of standard Young tableaux of shape λ in alphabet [1, N ].
For a semistandard Young tableau T ∈ SSTn(λ) and a letter l ∈ [1, n], let (T ← l)

denote the semistandard Young tableau obtained by Schensted’s row insertion algo-
rithm (see, e.g., [1, Chapter 7.1] for a precise definition).

Example 2.1.2 Let T be as in Example 2.1.1. Then, we have

(T ← 1) =
1 1 3 3
2 2
3
4

, (T ← 2) =
1 2 2 3
2 3 3
4

, (T ← 3) =
1 2 3 3 3
2 3
4

.
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Let us recall theRobinson–Schensted correspondence. Fix awordw = (w1, . . . , wd)

∈ W . For each k ∈ [0, d], define a semistandard Young tableau Pk inductively by

Pk :=
{

∅ if k = 0,

(Pk−1 ← wk) if k > 0.

Let λk denote the shape of Pk . Note that we have λk−1 � λk . Define a standard Young
tableau Qk ∈ STk(λ

k) inductively by Q0 := ∅, and

Qk(i, j) :=
{
Qk−1(i, j) if (i, j) ∈ D(λk−1),

k if (i, j) ∈ D(λk) \ D(λk−1)

for k ∈ [1, d]. The tableaux Pd and Qd and the partition λd are referred to as the
P-symbol, the Q-symbol, and the shape of w, and are denoted by P(w), Q(w), and
sh(w), respectively. The assignment

RS : W →
⊔

λ∈Parn
SSTn(λ) × ST|λ|(λ); w �→ (P(w), Q(w))

is called the Robinson–Schensted correspondence. As is well known, RS is bijective.

Example 2.1.3 Let w = (4, 2, 3, 1, 3, 2). Then, Pk and Qk , k ∈ [0, 6] are as follows:

P0 = ∅, 4 ,
2
4

,
2 3
4

,

1 3
2
4

,

1 3 3
2
4

,

1 2 3
2 3
4

= P6 = P(w),

Q0 = ∅, 1 ,
1
2

,
1 3
2

,

1 3
2
4

,

1 3 5
2
4

,

1 3 5
2 6
4

= Q6 = Q(w).

2.2 gl-Crystal

Combinatorics which have been introduced so far are closely related to the represen-
tation theory of the general linear algebra gln = gln(C) via the theory of crystals.

A gln-crystal (we omit the subscript “n” when there is no confusion) is a set B
equipped with structure maps

Ẽi , F̃i : B → B � {0}, εi , ϕi : B → Z � {−∞}, i ∈ [1, n − 1],

where 0 is a formal symbol, and

wt : B → Z
n

satisfying certain axioms (see, e.g., [1, Definition 2.13]). Every gl-crystal appearing in
this paper is a Stembridge crystal in the sense of [1, Chapter 4.2]. Among the axioms
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of (Stembridge) crystals, what are particularly important for us are the following: Let
b, b′ ∈ B, i, j ∈ [1, n − 1]. Then, the following hold.

(1) F̃i b = b′ if and only if b = Ẽi b′.
(2) εi (b) := max{k | Ẽk

i b �= 0}.
(3) ϕi (b) := max{k | F̃k

i b �= 0}.
(4) If |i − j | > 1 and Ẽi b �= 0, then ε j (Ẽi b) = ε j (b), ϕ j (Ẽi b) = ϕ j (b), and

Ẽ j Ẽi b = Ẽi Ẽ j b.
(5) If |i− j | = 1 and Ẽi b �= 0, then either ε j (Ẽi b) = ε j (b) and ϕ j (Ẽi b) = ϕ j (b)−1,

or ε j (Ẽi b) = ε j (b) + 1 and ϕ j (Ẽ j b) = ϕ j (b).

Here, we set Ẽi0 = 0 and F̃i0 = 0.
Let B1,B2 be gl-crystals. A morphism ψ : B1 → B2 of gl-crystals is a map

ψ : B1 � {0} → B2 � {0} such that

ψ(0) = 0, ψ(Ẽi b) = Ẽiψ(b), ψ(F̃i b) = F̃iψ(b),

εi (ψ(b′)) = εi (b
′), ϕi (ψ(b′)) = ϕi (b

′), wt(ψ(b′)) = wt(b′)

for all b, b′ ∈ B1 and i ∈ [1, n − 1] such that ψ(b′) �= 0. A morphism of gl-crystals
is said to be an isomorphism if the underlying map B1 � {0} → B2 � {0} is bijective.

The character chgl B of B is a Laurent polynomial in n variables x1, . . . , xn given
by

chgl B :=
∑

b∈B
xwt(b) ∈ Z[x±1

1 , . . . , x±1
n ],

where x(a1,...,an) := xa11 · · · xann .
The crystal graph of B is a colored directed graph defined as follows. The vertex

set is B. For each b, b′ ∈ B and i ∈ [1, n − 1], there is an i-colored arrow from b to
b′ if and only if b′ = F̃i (b).

Example 2.2.1 The set SSTn(1) is equipped with a gl-crystal structure as follows:

wt
(
j

) := ε j , Ẽi j :=
{
j−1 if j = i + 1,

0 otherwise,
F̃i j :=

{
j+1 if j = i,

0 otherwise,

where

ε j := (

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0) ∈ Z

n .

Then, we have

chgl SSTn(1) = x1 + x2 + · · · + xn .

123



Journal of Algebraic Combinatorics (2023) 58:183–230 191

The crystal graph of SSTn(1) is

1
1−→ 2

2−→ 3
3−→ · · · n−1−−→ n .

Let B1,B2 be gl-crystals. Then, B1 ⊗B2 := B1 ×B2 is equipped with a gl-crystal
structure as follows (cf. [1, Section 2.3]): It is customary to denote (b1, b2) ∈ B1 ⊗B2
by b1 ⊗ b2. For each i ∈ [1, n − 1], we set

wt(b1 ⊗ b2) := wt(b1) + wt(b2),

F̃i (b1 ⊗ b2) :=
{
F̃i (b1) ⊗ b2 if εi (b1) ≥ ϕi (b2),

b1 ⊗ F̃i (b2) if εi (b1) < ϕi (b2),

Ẽi (b1 ⊗ b2) :=
{
Ẽi (b1) ⊗ b2 if εi (b1) > ϕi (b2),

b1 ⊗ Ẽi (b2) if εi (b1) ≤ ϕi (b2).

Here, we set 0⊗ b2 = b1 ⊗ 0 = 0. This definition is consistent with [1], and opposite
to [5]. The tensor product of gl-crystals is associative;

(B1 ⊗ B2) ⊗ B3 = B1 ⊗ (B2 ⊗ B3).

For each d ≥ 0, we can construct a gl-crystal SSTn(1)⊗d inductively by

SSTn(1)
⊗d := SSTn(1)

⊗d−1 ⊗ SSTn(1),

where, SSTn(1)⊗0 = {∅} with gl-crystal structure given by

wt(∅) = (0, . . . , 0), Ẽi (∅) = 0 = F̃i (∅).

By associativity of the tensor product of gl-crystals, we see that

SSTn(1)
⊗d1 ⊗ SSTn(1)

⊗d2 = SSTn(1)
⊗d1+d2 .

Recall that W = ⊔
d≥0[1, n]d denotes the set of words. By identifying each word

(w1, w2, . . . , wd) ∈ W with

w1 ⊗ w2 ⊗ · · · ⊗ wd ∈ SSTn(1)
⊗d ,

one can equip W with a gl-crystal structure. Then, the concatenation of words is
identical to the tensor product of gl-crystals.

Let λ ∈ Parn . Then, SSTn(λ) is equipped with a gl-crystal structure as follows: For
each T ∈ SSTn(λ) and i ∈ [1, n − 1], we set

wt(T ) := wt(CR(T )), Ẽi T := P(ẼiCR(T )), F̃i T := P(F̃iCR(T )),
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where we set P(0) = 0. For example, the crystal graph of SST3(2, 1) is as follows.

1 1
2

1 2

1 2
2

2

1 1
3

1

1 3
2

2

1 2
3

1

1 3
3

1

2 2
3

2
2 3
3

.

(1)

Then, the Robinson–Schensted correspondence

RS : W →
⊔

λ∈Parn
SSTn(λ) × ST|λ|(λ); w �→ (P(w), Q(w))

is an isomorphism of gl-crystals (cf. [1, Section 8.3]), where the gl-crystal structure
of SSTn(λ) × ST|λ|(λ) is given by

wt(P, Q) := wt(P), Ẽi (P, Q) := (Ẽi P, Q), F̃i (P, Q) := (F̃i P, Q).

Given partitions λ,μ ∈ Parn and tableaux T ∈ SSTn(λ), S ∈ SSTn(μ), define the
P-symbol P(T ⊗ S) of T ⊗ S to be the P-symbol of CR(T ) ∗ CR(S). For example,
we have

P

⎛

⎝ 1 3
3

⊗
1 2
2 3
4

⎞

⎠ = P((3, 1, 3) ∗ (4, 2, 1, 3, 2)) =
1 1 2
2 3 3
3 4

.

For a later use, we put here an easy observation.

Lemma 2.2.2 Let k, l ∈ [1, n], 1 ≤ i1 < · · · < ik ≤ n, and 1 ≤ j1 < · · · < jl ≤ n,
and set

C1 := P(ik, . . . , i1) =
i1...
ik

, C2 := P( jl , . . . , j1) =
j1...
jl

,

and λ := sh(P(C1 ⊗ C2)). Then, we have �(λ) ≥ k. Furthermore, the following are
equivalent:

123



Journal of Algebraic Combinatorics (2023) 58:183–230 193

(1) �(λ) = k.
(2) k ≥ l and ir ≤ jr for all r ∈ [1, l].
(3) P(C1 ⊗ C2) = C1C2.

Let B be a gl-crystal and b, b1, b2 ∈ B. We say that b1 and b2 are connected, or b2
is connected to b1 if we have

b2 = X̃i1 X̃i2 · · · X̃ir b1

for some X̃i1 , . . . , X̃ir ∈ {Ẽi , F̃i | i ∈ [1, n − 1]}. The connected component C(b) of
B containing b is defined by

C(b) := {b′ ∈ B | b′ is connected to b}.

We say that B is connected if we have B = C(b) for some b ∈ B.
Letw,w1, w2 ∈ W . As is well known,w1 andw2 are connected if and only if their

Q-symbols coincide. Hence, we have

C(w) = {w′ ∈ W | Q(w′) = Q(w)}.

Under the Robinson–Schensted correspondence, this connected component corre-
sponds to SSTn(λ) × {Q(w)} � SSTn(λ).

2.3 AI-crystal

In this subsection, we introduce the notion of AIn−1-crystals (we omit the subscript
“n − 1” when there is no confusion). From now on, we assume that n ≥ 3, and set

m :=
{

n
2 if n ∈ Zev,
n−1
2 if n ∈ Zodd.

(2)

Definition 2.3.1 An AI-crystal is a set B equipped with structure maps B̃i : B →
B � {0} and degi : B → Z≥0, i ∈ [1, n − 1] satisfying the following axioms: Let
b ∈ B and i, j ∈ [1, n − 1].
(1) If B̃i b �= 0, then degi (B̃i b) = degi (b) and B̃2

i b = b.
(2) If B̃i b �= 0 and |i − j | = 1, then deg j (B̃i b) − deg j (b) ∈ {1,−1}.
(3) If B̃i b �= 0 and |i − j | > 1, then deg j (B̃i b) = deg j (b).

Definition 2.3.2 Let B1,B2 be AI-crystals. A morphism ψ : B1 → B2 of AI-crystals
is a map ψ : B1 � {0} → B2 � {0} such that

ψ(0) = 0, ψ(B̃i b) = B̃iψ(b), degi (ψ(b)) = degi (b)

for allb ∈ B1 and i ∈ [1, n−1]. AmorphismofAI-crystals is said to be an isomorphism
if the underlying map is bijective.
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Definition 2.3.3 Let B be an AI-crystal. The AI-crystal graph of B is a colored (non-
directed) graph defined as follows. The vertex set is B. For each b, b′ ∈ B and i ∈
[1, n − 1], there is an i-colored edge between b and b′ if and only if b′ = B̃i (b).

Definition 2.3.4 Let B be an AI-crystal and b, b1, b2 ∈ B. We say that b1 and b2 are
connected, or b2 is connected to b1 if we have

b2 = B̃i1 B̃i2 · · · B̃ir b1

for some i1, . . . , ir ∈ [1, n − 1]. We call

CAI(b) := {b′ ∈ B | b′ is connected to b}

the connected component CAI(b) of B containing b. We say that B is connected if we
have B = CAI(b) for some b ∈ B.

Example 2.3.5 SSTn(1) is equipped with an AI-crystal structure such that

degi
(
j

) =
{
1 if j ∈ {i, i + 1},
0 otherwise

, B̃i j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j−1 if j = i + 1,

j+1 if j = i,

0 otherwise.

Then, its AI-crystal graph is

1 1 2 2 3 3 · · · n−1
n .

Proposition 2.3.6 Let B1 be an AI-crystal and B2 a gl-crystal. Then, B1 ⊗ B2 :=
B1 × B2 is equipped with an AI-crystal structure as follows:

degi (b1 ⊗ b2) =

⎧
⎪⎨

⎪⎩

degi (b1) − ϕi (b2) + εi (b2) if degi (b1) > ϕi (b2),

εi (b2) if ϕi (b2) − degi (b1) ∈ Z≥0,ev,

εi (b2) + 1 if ϕi (b2) − degi (b1) ∈ Z≥0,odd.

B̃i (b1 ⊗ b2) =

⎧
⎪⎨

⎪⎩

B̃i b1 ⊗ b2 if degi (b1) > ϕi (b2),

b1 ⊗ Ẽi b2 if ϕi (b2) − degi (b1) ∈ Z≥0,ev,

b1 ⊗ F̃i b2 if ϕi (b2) − degi (b1) ∈ Z≥0,odd.

Proof Let us verify that B1 ⊗ B2 satisfies the axioms of AI-crystal. During the proof,
we use axioms of gl-crystal and AI-crystal without mentioning one by one.

(1) Let b1 ∈ B1, b2 ∈ B2 and i ∈ [1, n − 1] be such that B̃i (b1 ⊗ b2) �= 0. We show
that degi (B̃i (b1 ⊗ b2)) = degi (b1 ⊗ b2) and B̃2

i (b1 ⊗ b2) = b1 ⊗ b2.
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First, suppose that degi (b1) > ϕi (b2). In this case, we have

B̃i (b1 ⊗ b2) = B̃i b1 ⊗ b2.

Since degi (B̃i b1) = degi (b1) > ϕi (b2), we obtain

degi (B̃i b1 ⊗ b2) = degi (B̃i b1) − ϕi (b2) + εi (b2)

= degi (b1) − ϕi (b2) + εi (b2) = degi (b1 ⊗ b2),

and

B̃i (B̃i b1 ⊗ b2) = B̃2
i b1 ⊗ b2 = b1 ⊗ b2,

as desired.
Next, suppose that ϕi (b2) − degi (b1) ∈ Z≥0,ev. In this case, we have

B̃i (b1 ⊗ b2) = b1 ⊗ Ẽi b2.

Since ϕi (Ẽi b2) = ϕi (b2) + 1, we have ϕi (Ẽi b2) − degi (b1) ∈ Z≥0,odd. Hence,
we obtain

degi (b1 ⊗ Ẽi b2) = εi (Ẽi b2) + 1 = εi (b2) = degi (b1 ⊗ b2),

and

B̃i (b1 ⊗ Ẽi b2) = b1 ⊗ F̃i Ẽi b2 = b1 ⊗ b2,

as desired.
Finally, suppose that ϕi (b2) − degi (b1) ∈ Z≥0,odd. In this case, we have

B̃i (b1 ⊗ b2) = b1 ⊗ F̃i b2.

Since ϕi (F̃i b2) = ϕi (b2) − 1, we have ϕi (F̃i b2) − degi (b1) ∈ Z≥0,ev. Hence, we
obtain

degi (b1 ⊗ F̃i b2) = εi (F̃i b2) = εi (b2) + 1 = degi (b1 ⊗ b2),

and

B̃i (b1 ⊗ F̃i b2) = b1 ⊗ Ẽi F̃i b2 = b1 ⊗ b2,

as desired.
(2) Let b1 ∈ B1, b2 ∈ B2, i, j ∈ [1, n−1] be such that |i− j | = 1 and B̃i (b1⊗b2) �= 0.

We show that deg j (B̃i (b1 ⊗ b2)) − deg j (b1 ⊗ b2) ∈ {1,−1}.
Let us write B̃i (b1 ⊗ b2) = b′

1 ⊗ b′
2 for some b′

1 ∈ {b1, B̃i b1}\{0} and b′
2 ∈

{b2, Ẽi b2, F̃i b2}\{0}. Then, exactly one of the following holds:
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• deg j (b
′
1) − deg j (b1) = 1, ϕ j (b′

2) − ϕ j (b2) = 0, and ε j (b′
2) − ε j (b2) = 0.

• deg j (b
′
1) − deg j (b1) = −1, ϕ j (b′

2) − ϕ j (b2) = 0, and ε j (b′
2) − ε j (b2) = 0.

• deg j (b
′
1) − deg j (b1) = 0, ϕ j (b′

2) − ϕ j (b2) = −1, and ε j (b′
2) − ε j (b2) = 0.

• deg j (b
′
1) − deg j (b1) = 0, ϕ j (b′

2) − ϕ j (b2) = 0, and ε j (b′
2) − ε j (b2) = 1.

• deg j (b
′
1) − deg j (b1) = 0, ϕ j (b′

2) − ϕ j (b2) = 1, and ε j (b′
2) − ε j (b2) = 0.

• deg j (b
′
1) − deg j (b1) = 0, ϕ j (b′

2) − ϕ j (b2) = 0, and ε j (b′
2) − ε j (b2) = −1.

Therefore, we have either

deg j (b
′
1) − ϕ j (b

′
2) ∈ {deg j (b1) − ϕ j (b2) ± 1} and ε j (b

′
2) = ε j (b2)

or

deg j (b
′
1) − ϕ j (b

′
2) = deg j (b1) − ϕ j (b2) and ε j (b

′
2) ∈ {ε j (b2) ± 1}.

First, suppose that deg j (b
′
1)−ϕ j (b′

2) = deg j (b1)−ϕ j (b2)+1. Then, we compute
as

deg j (b
′
1 ⊗ b′

2)

=

⎧
⎪⎨

⎪⎩

deg j (b
′
1) − ϕ j (b′

2) + ε j (b′
2) if deg j (b

′
1) > ϕ j (b′

2),

ε j (b′
2) if ϕ j (b′

2) − deg j (b
′
1) ∈ Z≥0,ev,

ε j (b′
2) + 1 if ϕ j (b′

2) − deg j (b
′
1) ∈ Z≥0,odd

=

⎧
⎪⎨

⎪⎩

deg j (b1) − ϕ j (b2) + 1 + ε j (b2) if deg j (b1) ≥ ϕ j (b2),

ε j (b2) if ϕ j (b2) − deg j (b1) ∈ Z≥0,odd,

ε j (b2) + 1 if ϕ j (b2) − deg j (b1) ∈ Z≥0,ev \ {0}

=

⎧
⎪⎨

⎪⎩

deg j (b1 ⊗ b2) + 1 if deg j (b1) ≥ ϕ j (b2),

deg j (b1 ⊗ b2) − 1 if ϕ j (b2) − deg j (b1) ∈ Z≥0,odd,

deg j (b1 ⊗ b2) + 1 if ϕ j (b2) − deg j (b1) ∈ Z≥0,ev \ {0}
∈ {deg j (b1 ⊗ b2) ± 1}.

Next, suppose that deg j (b
′
1)−ϕ j (b′

2) = deg j (b1)−ϕ j (b2)−1. Then, we compute
as

deg j (b
′
1 ⊗ b′

2)

=

⎧
⎪⎨

⎪⎩

deg j (b
′
1) − ϕ j (b′

2) + ε j (b′
2) if deg j (b

′
1) > ϕ j (b′

2),

ε j (b′
2) if ϕ j (b′

2) − deg j (b
′
1) ∈ Z≥0,ev,

ε j (b′
2) + 1 if ϕ j (b′

2) − deg j (b
′
1) ∈ Z≥0,odd

=

⎧
⎪⎨

⎪⎩

deg j (b1) − ϕ j (b2) − 1 + ε j (b2) if deg j (b1) > ϕ j (b2) + 1,

ε j (b2) if ϕ j (b2) − deg j (b1) ∈ Z≥0,odd � {−1},
ε j (b2) + 1 if ϕ j (b2) − deg j (b1) ∈ Z≥0,ev

123



Journal of Algebraic Combinatorics (2023) 58:183–230 197

=

⎧
⎪⎨

⎪⎩

deg j (b1 ⊗ b2) − 1 if deg j (b1) > ϕ j (b2) + 1,

deg j (b1 ⊗ b2) − 1 if ϕ j (b2) − deg j (b1) ∈ Z≥0,odd � {−1},
deg j (b1 ⊗ b2) + 1 if ϕ j (b2) − deg j (b1) ∈ Z≥0,ev

∈ {deg j (b1 ⊗ b2) ± 1}.

Finally, suppose that deg j (b
′
1) − ϕ j (b′

2) = deg j (b1) − ϕ j (b2). Setting a :=
ε j (b′

2) − ε j (b2) ∈ {±1}, we compute as

deg j (b
′
1 ⊗ b′

2)

=

⎧
⎪⎨

⎪⎩

deg j (b
′
1) − ϕ j (b′

2) + ε j (b′
2) if deg j (b

′
1) > ϕ j (b′

2),

ε j (b′
2) if ϕ j (b′

2) − deg j (b
′
1) ∈ Z≥0,ev,

ε j (b′
2) + 1 if ϕ j (b′

2) − deg j (b
′
1) ∈ Z≥0,odd

=

⎧
⎪⎨

⎪⎩

deg j (b1) − ϕ j (b2) + ε j (b2) + a if deg j (b1) > ϕ j (b2),

ε j (b2) + a if ϕ j (b2) − deg j (b1) ∈ Z≥0,ev,

ε j (b2) + a + 1 if ϕ j (b2) − deg j (b1) ∈ Z≥0,odd

= deg j (b1 ⊗ b2) + a

∈ {deg j (b1 ⊗ b2) ± 1}.

Thus, our claim follows.
(3) Let b1 ∈ B1, b2 ∈ B2, and i, j ∈ [1, n − 1] be such that |i − j | > 1 and

B̃i (b1 ⊗ b2) �= 0. We show that deg j (B̃i (b1 ⊗ b2)) = deg j (b1 ⊗ b2).
Let us write B̃i (b1 ⊗ b2) = b′

1 ⊗ b′
2 for some b′

1 ∈ {b1, B̃i b1}\{0} and b′
2 ∈

{b2, Ẽi b2, F̃i b2}\{0}. Then, we have

deg j (b
′
1) = deg j (b1), ε j (b

′
2) = ε j (b2), ϕ j (b

′
2) = ϕ j (b2).

This implies that

deg j (b
′
1 ⊗ b′

2) = deg j (b1 ⊗ b2),

as desired.

��
Corollary 2.3.7 Let B be a gl-crystal. Then, B is equipped with anAI-crystal structure
as follows: For each b ∈ B and i ∈ [1, n − 1], we set

degi (b) :=
{

εi (b) if ϕi (b) ∈ Zev,

εi (b) + 1 if ϕi (b) ∈ Zodd,

B̃i b :=
{
Ẽi b if ϕi (b) ∈ Zev,

F̃i b if ϕi (b) ∈ Zodd.
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Proof Consider a gl-crystal SSTn(∅) = {∅}. Then, we have an isomorphism

SSTn(∅) ⊗ B → B; ∅ ⊗ b �→ b

of gl-crystals. On the other hand, SSTn(∅) admits an AI-crystal structure given by

B̃i (∅) = 0, degi (∅) = 0.

Then, under the identification SSTn(∅)⊗B � B, theAI-crystal structure on SSTn(∅)⊗
B given by Proposition 2.3.6 is the same as the one on B given by this corollary. Thus,
the proof completes. ��
Remark 2.3.8 In the sequel, whenever we regard a gl-crystal as an AI-crystal, we
assume that its AI-crystal structure is given by Corollary 2.3.7.

Example 2.3.9 TheAI2-crystal graph of thegl3-crystal SST3(2, 1), whose crystal graph
is given in equation (1), is as follows:

1 1
2

1 2

1 2
2

1 1
3

1 3
2

2

1 2
3

1

1 3
3

1

2 2
3

2
2 3
3

.

(3)

Proposition 2.3.10 Let B be a gl-crystal, b ∈ B, and i, j ∈ [1, n − 1].
(1) We have B̃i b = 0 if and only if degi (b) = 0.
(2) If |i − j | > 1 and B̃i b �= 0, then we have B̃ j B̃i b = B̃i B̃ j b.

Proof Let us prove thefirst assertion. Suppose that B̃i b = 0.We show thatϕi (b) ∈ Zev.
Otherwise, we have

0 = B̃i b = F̃i b,

which implies ϕi (b) = 0. This is a contradiction. Hence, we obtain ϕi (b) ∈ Zev, and
consequently,

0 = B̃i b = Ẽi b.
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This shows that εi (b) = 0, and hence, we have

degi (b) = εi (b) = 0.

Conversely, suppose that degi (b) = 0. Then, we must have ϕi (b) ∈ Zev; otherwise,
degi (b) = εi (b) + 1 > 0. Hence, we obtain

0 = degi (b) = εi (b),

and consequently,

B̃i b = Ẽi b = 0,

as desired. This completes the proof of the first assertion.
Now, let us prove the second assertion. Note that for each X ,Y ∈ {E, F}, we have

ϕ j (X̃i b) = ϕ j (b), ϕi (Ỹ j b) = ϕi (b),

and

Ỹ j X̃i b = X̃i Ỹ j b.

Then, if we write B̃i b = X̃i b for some X ∈ {E, F}, we compute as

B̃ j B̃i b = B̃ j X̃i b

=
{
Ẽ j X̃i b if ϕ j (b) ∈ Zev,

F̃j X̃i b if ϕ j (b) ∈ Zodd

=
{
X̃i Ẽ j b if ϕ j (b) ∈ Zev,

X̃i F̃ j b if ϕ j (b) ∈ Zodd

= X̃i B̃ j b

=
{
Ẽi B̃ j b if ϕi (b) ∈ Zev,

F̃i B̃ j b if ϕi (b) ∈ Zodd

= B̃i B̃ j b.

This implies the assertion. ��
Proposition 2.3.11 Let B1 be an AI-crystal, and B2,B3 be gl-crystals. Then, we have

(B1 ⊗ B2) ⊗ B3 = B1 ⊗ (B2 ⊗ B3).

Proof The proof is straightforward but long. Hence, we omit it. ��
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Remark 2.3.12 Let B1,B2 be gl-crystals. Then, we can equip B1 ⊗ B2 with two AI-
crystal structures; one is obtained by regarding B1 as an AI-crystal by means of
Corollary 2.3.7 and then by taking tensor product, and the other is obtained by regard-
ing the gl-crystal B1 ⊗ B2 as an AI-crystal by means of Corollary 2.3.7. These two
structures are identical because the former is (SSTn(∅) ⊗ B1) ⊗ B2, while the latter
is SSTn(∅) ⊗ (B1 ⊗ B2).

Corollary 2.3.13 Let B1,B2 be AI-crystals, B3,B4 be gl-crystals, ψ1 : B1 → B2 a
morphism of AI-crystals, and ψ2 : B3 → B4 a morphism of gl-crystals. Then,

ψ1 ⊗ ψ2 : B1 ⊗ B3 → B2 ⊗ B4; b1 ⊗ b2 �→ ψ1(b1) ⊗ ψ2(b2)

is a morphism of AI-crystals. Furthermore, if both ψ1 and ψ2 are isomorphisms, then
so is ψ1 ⊗ ψ2.

Proof The assertion follows from Proposition 2.3.6. In fact, degi (b1 ⊗ b2) (resp.,
degi (ψ1(b1)⊗ψ2(b2))) is determined by degi (b1), εi (b2), ϕi (b2) (resp., degi (ψ(b1)),
εi (ψ(b2)), ϕi (ψ(b2))), and B̃i acts on b1 ⊗ b2 (resp., ψ1(b1) ⊗ ψ2(b2)) by
either B̃i ⊗ 1, 1 ⊗ Ẽi , or 1 ⊗ F̃i depending on degi (b1), εi (b2), ϕi (b2) (resp.,
degi (ψ(b1)), εi (ψ(b2)), ϕi (ψ(b2))). ��
Definition 2.3.14 Let B be an AI-crystal. Define its character chAI B to be a Laurent
polynomial in m variables y1, y3, . . . , y2m−1 given by

1

2m
∑

b∈B

∑

σ1,σ3,...,σ2m−1∈{+,−}
y
σ1 deg1(b)
1 y

σ3 deg3(b)
3 · · · yσ2m−1 deg2m−1(b)

2m−1 ∈ Z[y±1
1 , y±1

3 , . . . , y±1
2m−1].

Example 2.3.15 We have

chAI2 SST3(1) = y1 + 1 + y−1
1 , chAI3 SST4(1) = y1 + y−1

1 + y3 + y−1
3 .

Let us explain the meaning of the character of an AI-crystal B. Assume that B has
the following property:

(1) For each b ∈ B and i ∈ [1,m], we have B̃2i−1(b) = 0 if and only if deg2i−1(b) =
0.

(2) For each b ∈ B and i �= j ∈ [1,m], we have B̃2i−1 B̃2 j−1b = B̃2 j−1 B̃2i−1b.

For example, an AI-subcrystal of a gl-crystal admits this property (see Proposition
2.3.10). Set L := CB, and extend the maps B̃i to linear operators on L. Note that
the operators B̃1, B̃3, . . . , B̃2m−1 pairwise commute. We say that a vector u ∈ L is a
weight vector of weight ν = (ν1, ν3, . . . , ν2m−1) ∈ Z

m if it satisfies the following:

(1) u is a linear combination of b ∈ B such that deg2i−1(b) = |ν2i−1| for all i ∈ [1,m].

(2) B̃2i−1(u) =

⎧
⎪⎨

⎪⎩

u if ν2i−1 > 0,

0 if ν2i−1 = 0,

−u if ν2i−1 < 0,
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Let Lν denote the subspace of weight vectors of weight ν. Then, L admits the weight
space decomposition

L =
⊕

ν∈Zm

Lν .

In fact, if we take a complete set B′ of representatives for B/∼ with respect to the
equivalence relation given by

b1 ∼ b2 if and only if b2 ∈ {B̃2i1−1 B̃2i2−1 · · · B̃2ir−1b1 | r ∈ [0,m], 1 ≤ i1 < · · · < ir ≤ m},

then the set

{(1 + σ1 B̃1)(1 + σ3 B̃3) · · · (1 + σ2m−1 B̃2m−1)b | b ∈ B′,
deg2i−1(b) = |ν2i−1| for all i ∈ [1,m]},

where σ2i−1 ∈ {+,−} denotes the signature of ν2i−1, forms a basis of Lν . Therefore,
we have

chAI B =
∑

ν∈Zm

(dimLν)yν,

where

y(ν1,ν3,...,ν2m−1) := yν1
1 yν3

3 · · · yν2m−1
2m−1 .

2.4 K-matrices

In this subsection, we introduce a family of isomorphisms of AI-crystals. They are
closely related to K -matrices appearing in the representation theory of ıquantum
group of type AI.

Let k ∈ [0, n] and consider a gl-crystal SSTn(1k), where

1k :=

⎧
⎪⎨

⎪⎩
(

k︷ ︸︸ ︷
1, . . . , 1) if k �= 0,

∅ if k = 0.

For each 1 ≤ j1 < · · · < jk ≤ n, set

u j1,..., jk :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

j1...
jk

if k �= 0,

∅ if k = 0.
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Then, we have

SSTn(1
k) =

{
{u j1,..., jk | 1 ≤ j1 < · · · < jk ≤ n} if k �= 0,

{∅} if k = 0.

The AI-crystal structure of SSTn(1k) can be easily described as follows.

Lemma 2.4.1 Let 1 ≤ j1 < · · · < jk ≤ n and i ∈ [1, n − 1]. Then, we have

degi (u j1,..., jk ) =
{
1 if |{ j1, . . . , jk} ∩ {i, i + 1}| = 1

0 otherwise,

B̃i u j1,..., jk =

⎧
⎪⎨

⎪⎩

u j1,..., jl−1,i, jl+1,..., jk if jl−1 < i = jl − 1 for some l ∈ [1, k],
u j1,..., jl−1,i+1, jl+1,..., jk if jl + 1 = i + 1 < jl+1 for some l ∈ [1, k],
0 otherwise.

Definition 2.4.2 For each k ∈ [0, n], define a map K = K (k) : SSTn(1k) →
SSTn(1n−k) by

K (u j1,..., jk ) = u jc1 ,..., j cn−k
,

where { j c1 , . . . , j cn−k} = [1, n]\{ j1, . . . , jk}.

Proposition 2.4.3 Let k ∈ [0, n]. Then, K (k) : SSTn(1k) → SSTn(1n−k) is an iso-
morphism of AI-crystals with inverse K (n−k) : SSTn(1n−k) → SSTn(1k).

Proof It is clear from the definition that K (k) is a bijection with inverse K (n−k). For
each 1 ≤ j1 < · · · < jk ≤ n and i ∈ [1, n − 1], by Lemma 2.4.1, we see that

K (B̃i u j1,..., jk ) = B̃i K (u j1,..., jk ),

and

degi (K (u j1,..., jk )) = degi (u j1,..., jk ).

Thus, the proof completes. ��
Corollary 2.4.4 Let B be a gl-crystal. Then, for each k ∈ [0, n], the map

K ⊗ 1 : SSTn(1
k) ⊗ B → SSTn(1

n−k) ⊗ B; b1 ⊗ b2 �→ K (b1) ⊗ b2

is an isomorphism of AI-crystals.

Proof The assertion follows from Proposition 2.4.3 and Corollary 2.3.13. ��
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Let λ ∈ Parn . For each j ∈ [1, λ1], let d j denote the length of the j th column
of D(λ). By the definition of the gl-crystal structure of SSTn(λ), there exists an
embedding

SSTn(λ) ↪→ SSTn(1
d1) ⊗ SSTn(1

d2) ⊗ · · · ⊗ SSTn(1
dλ1 )

of a gl-crystal which sends T = C1 · · ·Cλ1 to C1 ⊗ · · · ⊗ Cλ1 , where C j denotes the
j th column of T . Define a new semistandard Young tableau K1(T ) by

K1(T ) := P(K (C1) ⊗ C2 ⊗ · · · ⊗ Cλ1).

Then, the following are immediate from the definition of K1 and Corollary 2.4.4.

Proposition 2.4.5 Let λ ∈ Parn and T ∈ SSTn(λ). Then, we have

|K1(T )| − |T | = n − 2�(λ).

Proposition 2.4.6 Let λ ∈ Parn and T ∈ SSTn(λ). Then, for each i ∈ [1, n − 1], we
have

B̃i (K1(T )) = K1(B̃i T ), degi (K1(T )) = degi (T ).

Here, we set K1(0) := 0.

2.5 AI-tableaux

In this subsection, we introduce AI-tableaux, which are central objects in this paper.
They provide us many concrete examples of AI-crystals which are not gl-crystals.

Definition 2.5.1 Let λ ∈ Parn and T ∈ SSTn(λ). We say that T satisfies the AI-
condition, or T is an AI-tableau, if it satisfies the following two conditions:

(1) d1 ≤ m (see equation (2) for the definition of m).
(2) tci,1 ≤ ti,2 for all i ∈ [1, d2], where {tc1,1, . . . , tcn−d1,1

} = [1, n]\{t1,1, . . . , td1,1}.
Here, d j denotes the length of the j th column of D(λ), and ti, j denotes the (i, j)th
entry of T . For each λ ∈ Parn , let SSTAI

n (λ) denote the set of semistandard Young
tableaux of shape λ satisfying the AI-condition.

Remark 2.5.2 By Lemma 2.2.2, the second condition for AI-tableaux is equivalent to
saying that if we write T = C1C2 · · ·Cλ1 , where C j denotes the j th column of T ,
then

K1(T ) = K (C1)C2 · · ·Cλ1 .

Remark 2.5.3 If T satisfies the AI-condition for some n, then so does for all n′ ≥ n.
However, AI-condition depends on n, in general. For example, 1

2 is anAI-tableauwhen
n ≥ 4, but not when n = 3.
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Remark 2.5.4 It is clear that SSTAI
n (λ) = ∅ unless �(λ) ≤ m.

Example 2.5.5

(1) Let n ≥ 3, λ = (l), l ≥ 0. Then, T ∈ SSTn(l) is an AI-tableau if and only if T
does not begin with 1 1 . For example,

SSTAI
3 (2) = { 1 2 , 1 3 , 2 2 , 2 3 , 3 3 }

(2) Let n ≥ 4, λ = (l1, l2), l1 ≥ l2 > 0. Then, T ∈ SSTn(l1, l2) is an AI-tableau if
and only if the following conditions are satisfied:

(a) The first row of T does not begin with 1 1 .
(b) The second row of T does not begin with 3 3 .
(c) The first two rows of T do not begin with 1 2

2 .

For example,

SSTAI
4 (2, 1) = { 1 2

3 , 1 2
4 , 1 3

2 , 1 3
3 , 1 3

4 , 1 4
2 , 1 4

3 , 1 4
4 ,

2 2
3 , 2 2

4 , 2 3
3 , 2 3

4 , 2 4
3 , 2 4

4 , 3 3
4 , 3 4

4 }.

Lemma 2.5.6 Let λ ∈ Parn and T ∈ SSTn(λ). Then, there exists r ≥ 0 such that
Kr
1(T ) is an AI-tableau.

Proof Weprove by induction on |T |.When T is anAI-tableau, there is nothing to prove.
Suppose that T is not an AI-tableau. Set d1 := �(λ). Then, we have two possibilities;
(1) d1 > m or (2) d1 ≤ m and the second condition in Definition 2.5.1 fails. If we are
in the first case, then by Proposition 2.4.5, we have

|K1(T )| − |T | = n − 2d1 ≤ n − 2(m + 1) < 0.

Hence, the assertion follows from our induction hypothesis.
Now, assume that we are in the second case. Then, by Remark 2.5.2 and Lemma

2.2.2, the length of sh(K1(T )) must be n− d1 +α for some α > 0. Using Proposition
2.4.5, we compute as

|K 2
1 (T )| − |T | = (|K 2

1 (T )| − |K1(T )|) + (|K1(T )| − |T |)
= (n − 2(n − d1 + α)) + (n − 2d1)

= −2α < 0.

Hence, the assertion follows from our induction hypothesis. This completes the proof.
��

Lemma 2.5.7 Let ρ ∈ Parm, T ∈ SSTAI
n (ρ). Then, we have K 2

1 (T ) = T . Furthermore,
K1(T ) is an AI-tableau if and only if �(ρ) = n

2 .
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Proof For each j ∈ [1, λ1], let d j denote the length of the j th column of D(λ), and
C j the j th column of T . By Remark 2.5.2, we have

K1(T ) = K (C1)C2 · · ·Cλ1 . (4)

Since T is a semistandard Young tableau, by Lemma 2.2.2, we see that

K 2
1 (T ) = K 2(C1)C2 · · ·Cλ1 = C1C2 · · ·Cλ1 = T . (5)

This implies the first assertion. Combining Remark 2.5.2 and equation (5), we see
that K1(T ) is an AI-tableau if and only if �(sh(K1(T ))) ≤ m. Since �(sh(K1(T ))) =
n − �(λ) by equation (4), and since �(λ) ≤ m, the second assertion follows. This
completes the proof. ��
Definition 2.5.8 Letλ ∈ Parn and T ∈ SSTn(λ). The PAI-symbol of T is anAI-tableau
PAI(T ) given by

PAI(T ) := Kr
1(T ),

where r := min{s | Ks
1(T )is an AI − tableau}.

Example 2.5.9 Let n = 4 and T = 2 2
3 3 /∈ SSTAI

4 (2, 2). Then, we compute as

K1

(
2 2
3 3

)
= P

(
1
4

⊗ 2
3

)
=

1 2
3
4

/∈ SSTAI
4 (2, 1, 1),

K1

⎛

⎝
1 2
3
4

⎞

⎠ = P
(
2 ⊗ 2

) = 2 2 ∈ SSTAI
4 (2).

Hence, we obtain PAI(T ) = 2 2 .

Remark 2.5.10 PAI(T ) depends on n, in general. For example, we have

PAI
(

1
2

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 if n = 3,

1
2

if n > 3.

Proposition 2.5.11 Let ρ ∈ Parm. Then, SSTAI
n (ρ) is an AI-subcrystal of SSTn(ρ).

Proof Let T ∈ SSTAI
n (ρ) and i ∈ [1, n − 1] be such that B̃i T �= 0. It suffices to show

that B̃i T ∈ SSTAI
n (ρ). Assume contrary. Then, by the proof of Lemma 2.5.6, we have

|PAI(B̃i T )| < |B̃i T | = |T |.
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On the other hand, if we write PAI(B̃i T ) = Kr
1(B̃i T ) for some r > 0, then we have

PAI(B̃i T ) = B̃i K
r
1(T )

by Proposition 2.4.6. Hence, we compute as

|PAI(B̃i T )| = |B̃i K r
1(T )| = |Kr

1(T )| ≥ |T |,
where the last inequality follows from Lemma 2.5.7. Thus, we obtain a contradiction.
Hence, the proof completes. ��
Proposition 2.5.12 The map

PAI :
⊔

λ∈Parn
SSTn(λ) →

⊔

ρ∈Parm
SSTAI

n (ρ); T �→ PAI(T )

is a morphism of AI-crystals.

Proof Let λ ∈ Parn , T ∈ SSTn(λ), i ∈ [1, n − 1]. Let r ≥ 0 be the minimum integer
such that PAI(T ) = Kr

1(T ). By Proposition 2.4.6, we see that

B̃i P
AI(T ) = Kr

1(B̃i T ), degi (P
AI(T )) = degi (T ).

Hence, it suffices to show that

PAI(B̃i T ) = Kr
1(B̃i T ).

First, suppose that B̃i T = 0. Since Kr
1 is a morphism of AI-crystals, our claim follows

immediately.
Next, suppose that B̃i T �= 0. Let r ′ ≥ 0 be the minimum integer such that

PAI(B̃i T ) = Kr ′
1 (B̃i T ).

By Proposition 2.5.11, we see that B̃i PAI(T ), which equals Kr
1(B̃i T ), is an AI-tableau.

By the minimality of r ′, we have r ′ ≤ r . Let us show that r ′ = r . If r ′ < r , then

Kr ′
1 (T ) = B̃2

i K
r ′
1 (T ) = B̃i K

r ′
1 (B̃i T ) = B̃i P

AI(B̃i T ).

Here, the first equality holds because B̃i T �= 0, and hence,

B̃i K
r ′
1 (T ) = Kr ′

1 (B̃i T ) �= 0.

Since PAI(B̃i T ) is an AI-tableau, so is B̃i PAI(B̃i T ), which equals Kr ′
1 (T ). This con-

tradicts the minimality of r . Thus, we obtain r ′ = r , and hence,

PAI(B̃i T ) = Kr
1(B̃i T ),

as desired. ��
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2.6 Low rank examples

In this subsection, we investigate the AI-crystal structures of SSTAI
n (ρ), ρ ∈ Parm in

the case when n = 3, 4.
First, assume that n = 3 and consider SSTAI

3 (l), l ≥ 0. For each a ∈ {1, 2} and
b ∈ [0, l − 1], set

Ta,b := a 2 2 · · · 2 3 3 · · · 3 ∈ SSTAI
3 (l),

where b is the number of 3’s. Also, set

Tl := 3 3 · · · 3 ∈ SSTAI
3 (l).

Then, we have

SSTAI
3 (l) = {Ta,b | a ∈ {1, 2}, b ∈ [0, l − 1]} � {Tl},

and hence,

|SSTAI
3 (l)| = 2l + 1. (6)

Lemma 2.6.1 Let n = 3 and l ≥ 0. Then, the AI2-crystal SSTAI
3 (l) is connected.

Proof From definitions, we obtain

B̃1Ta,b = Ta′,b,

B̃2Ta,b =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if l − δa,1 − b ∈ Zev and b = 0,

Ta,b−1 if l − δa,1 − b ∈ Zev and b > 0,

Ta,b+1 if l − δa,1 − b ∈ Zodd and b < l − 1,

Tl if l − δa,1 − b ∈ Zodd and b = l − 1,

B̃1Tl = 0,

B̃2Tl = T2,l−1,

where a′ ∈ {1, 2} \ {a}. Then, we see that

B̃2 B̃1T1,l−1 = B̃2T2,l−1 = Tl ,

and

B̃2 B̃1Ta′,b = B̃2Ta,b = Ta,b+1

for all b ∈ [0, l − 2], where a = 1 if l − b ∈ Zev and a = 2 otherwise, and
a′ ∈ {1, 2} \ {a}. These show that each T ∈ SSTAI

3 (ρ) is connected to Tl . Therefore,
SSTAI

3 (ρ) is connected. ��
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Next, assume that n = 4 and consider SSTAI
4 (l), l ≥ 0. For each a ∈ {1, 2},

c ∈ [0, l − 1], and b ∈ [0, l − c − 1], set

Ta,b,c := a 2 2 · · · 2 3 3 · · · 3 4 4 · · · 4 ∈ SSTAI
4 (l),

where b and c are the numbers of 3’s and 4’s, respectively. Also, for each c ∈ [0, l],
set

Tc := 3 3 · · · 3 4 4 · · · 4 ∈ SSTAI
4 (l),

where c is the number of 4’s. Then, we have

SSTAI
4 (l) = {Ta,b,c | a ∈ {1, 2}, c ∈ [0, l − 1], b ∈ [0, l − c − 1]} � {Tc | c ∈ [0, l]},

and hence,

|SSTAI
4 (l)| =

l−1∑

c=0

2(l − c) + (l + 1) = (l + 1)2. (7)

Lemma 2.6.2 Let n = 4 and l ≥ 0. Then, the AI3-crystal SSTAI
4 (l) is connected.

Proof From definitions, we obtain

B̃1Ta,b,c = Ta′,b,c,

B̃2Ta,b,c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if l − δa,1 − b − c ∈ Zev and b = 0,

Ta,b−1,c if l − δa,1 − b − c ∈ Zev and b > 0,

Ta,b+1,c if l − δa,1 − b − c ∈ Zodd and b < l − c − 1,

Tc if l − δa,1 − b − c ∈ Zodd and b = l − c − 1,

B̃3Ta,b,c =

⎧
⎪⎨

⎪⎩

0 if b ∈ Zev and c = 0,

Ta,b+1,c−1 if b ∈ Zev and c > 0,

Ta,b−1,c+1 if b ∈ Zodd,

B̃1Tc = 0,

B̃2Tc =
{
0 if l − c = 0,

T2,l−c−1,c if l − c > 0,

B̃3Tc =

⎧
⎪⎨

⎪⎩

0 if l − c ∈ Zev and c = 0,

Tc−1 if l − c ∈ Zev and c > 0,

Tc+1 if l − c ∈ Zodd.

where a′ ∈ {1, 2} \ {a}. We show that each Ta,b,c and Tc are connected to T1,0,0
by induction on c. When c = 0, our claim follows from Lemma 2.6.1. Assume that
c > 0. Then, by Lemma 2.6.1, we see that Ta,b,c is connected to Tc. Then, we have
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B̃3(Tc) = Tc−1 (resp., B̃3 B̃2Tc = T2,l−c,c−1) if l − c is even (resp., l − c is odd).
Hence, our induction hypothesis implies that Tc is connected to T1,0,0. Thus, the proof
completes. ��

Finally, assume that n = 4 and consider SSTAI
4 (l1, l2), l1 ≥ l2 > 0. For each

a ∈ {1, 2}, c ∈ [0, l1 − l2], and b ∈ [0, l1 − c − 1], set

Ta,b,c := a 2 2 · · · 2 3 3 · · · 3 4 4 · · · 4
4 4 · · · 4 ∈ SST4(l1, l2),

where b and c are the numbers of 3’s and 4’s in the first row, respectively. Also, for
each c ∈ [0, l1 − l2], set

Tc := 3 3 · · ·· · · 3 4 4 · · · 4
4 4 · · · 4 ∈ SST4(l),

where c is the number of 4’s in the first row. Then, we have

SSTAI
4 (l1, l2) ={Ta,b,c, K1(Ta,b,c) | a ∈ {1, 2}, c ∈ [0, l1 − l2], b ∈ [0, l1 − c − 1]}

� {Tc, K1(Tc) | c ∈ [0, l1 − l2]},

and hence,

|SSTAI
4 (l1, l2)| = 2(

l1−l2∑

c=0

2(l1 − c) + (l1 − l2 + 1)) = 2(l1 − l2 + 1)(l1 + l2 + 1).

(8)

Note that we have

K1(Ta,b,c), K1(Tc) /∈{Ta′,b′,c′ | a′ ∈ {1, 2}, c′ ∈ [0, l1 − l2], b′ ∈ [0, l1 − c′ − 1]}
� {Tc′ | c′ ∈ [0, l1 − l2]}

because the (2, 1)th entries of K1(Ta,b,c) and K1(Tc) are not 4, while those of Ta′,b′,c′
and Tc′ are 4.

Lemma 2.6.3 Let n = 4 and l1 ≥ l2 > 0. Then, the AI3-crystal SSTAI
4 (l1, l2) is

connected.
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Proof By definitions, we obtain

B̃1Ta,b,c = Ta′,b,c,

B̃2Ta,b,c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if l1 − δa,1 − b − c ∈ Zev and b = 0,

Ta,b−1,c if l1 − δa,1 − b − c ∈ Zev and b > 0,

Ta,b+1,c if l1 − δa,1 − b − c ∈ Zodd and b < l1 − c − 1,

Tc if l1 − δa,1 − b − c ∈ Zodd and b = l1 − c − 1,

B̃3Ta,b,c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K1(Ta′,b,c) if b < l2,

0 if b − l2 ∈ Z≥0,ev and c = 0,

Ta,b+1,c−1 if b − l2 ∈ Z≥0,ev and c > 0,

Ta,b−1,c+1 if b − l2 ∈ Z≥0,odd,

B̃1Tc = 0,

B̃2Tc = T2,l1−c−1,c,

B̃3Tc =

⎧
⎪⎨

⎪⎩

0 if l1 − l2 − c ∈ Zev and c = 0,

Tc−1 if l1 − l2 − c ∈ Zev and c > 0,

Tc+1 if l1 − l2 − c ∈ Zodd.

where a′ ∈ {1, 2} \ {a}. We show that each Ta,b,c and Tc are connected to T1,0,0 by
induction on c. If this is the case, then the assertion follows from the fact that K1
commutes with B̃i ’s and that K1(T1,0,0) = B̃1 B̃3T1,0,0 as verified from computation
above. When c = 0, our claim follows from Lemma 2.6.1. Assume that c > 0. By
Lemma 2.6.1, we see that Ta,b,c is connected to Tc. Then, we have B̃3Tc = Tc−1
(resp., B̃3 B̃2Tc = T2,l1−c,c−1) if l1 − l2 − c is even (resp., if l1 − l2 − c is odd).
Hence, our induction hypothesis implies that Tc is connected to T1,0,0. Thus, the proof
completes. ��

3 Representation theoretic interpretation

In this section, we show that the characters of SSTAI
n (ρ), ρ ∈ Parm coincide with the

characters of certain son-modules. To do so, we need results from the representation
theory of the ıquantum group of type AI obtained in [18].

3.1 Representation theoretic interpretation of gl-crystals

Let us briefly review the finite-dimensional representation theory of the general linear
algebra gln = gln(C). The gln is realized as the Lie algebra of n × n matrices. For
each 1 ≤ i, j ≤ n, let Ei, j denote the matrix unit with entry 1 at (i, j)-position. Let
ei := Ei,i+1, fi := Ei+1,i , i ∈ {1, . . . , n − 1} denote the Chevalley generators.
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Let M be a finite-dimensional gln-module. Then, it admits a weight space decom-
position

M =
⊕

λ=(λ1,...,λn)∈Xgln

Mλ, Mλ := {m ∈ M | Ei,im = λim for all i ∈ {1, . . . , n}},

where Xgln := Z
n denotes the weight lattice for gln . The character chgln M of M is

a Laurent polynomial defined by

chgln M :=
∑

λ∈Xgln

(dim Mλ)xλ ∈ Z[x±1
1 , . . . , x±1

n ],

where

x(λ1,...,λn) := xλ1
1 · · · xλn

n .

The finite-dimensional gln-modules are completely reducible, and the isomorphism
classes of finite-dimensional irreducible gln-modules are parametrized by the set

X+
gln

:= {λ = (λ1, . . . , λn) ∈ Xgln | λ1 ≥ · · · ≥ λn}

of dominant integral weights. For λ ∈ X+
gln

, let V gln (λ) denote the corresponding
gln-module, i.e., the finite-dimensional irreducible gln-module of highest weight λ.

The assignment

Parn → X+
gln ,≥0 := {λ = (λ1, . . . , λn) ∈ X+

gln
| λn ≥ 0}; λ �→ (λ1, . . . , λ�(λ), 0, . . . , 0)

is bijective. In this way, we often identify these two sets. In particular, for a partition
λ ∈ Parn , we understandλi = 0 for i > �(λ). As iswell known, the gl-crystal SSTn(λ)

models V gln (λ) in the following sense:

chgln V
gln (λ) = chgln SSTn(λ).

3.2 Representation theory of the ıquantum group of type AI

Let son = son(C) denote the special orthogonal algebra. It is realized as the Lie
subalgebra of gln generated by bi := fi + ei , i ∈ {1, . . . , n − 1} (cf. [18, Section
4.1]). Recall the integer m from equation (2). Note that it is the rank of son .

Let M be a finite-dimensional son-module. Then, it admits a weight space decom-
position

M =
⊕

ν=(ν1,ν3,...,ν2m−1)∈Xson

Mν,

Mν := {m ∈ M | b2i−1m = ν2i−1m for all i ∈ {1, . . . ,m}},
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where Xson := Z
m � ( 12 + Z)m denotes the weight lattice for son . Note that

b1, b3, . . . , b2m−1 generate a Cartan subalgebra of son , and the sets {b1 − b3, b3 −
b5, . . . , b2m−3−b2m−1, 2b2m−1} and {b1−b3, b3−b5, . . . , b2m−3−b2m−1, b2m−3+
b2m−1} form the simple coroots when n is odd and when n is even, respectively (cf.
[18, Section 4.1]). A weight ν ∈ Xson is said to be an integer weight if ν ∈ Z

m . Let
Xson ,int denote the set of integer weights. The character chson M of M is a Laurent
polynomial defined by

chson M :=
∑

ν∈Xson

(dim Mλ)yν ∈ Z[y± 1
2

1 , y
± 1

2
3 , . . . , y

± 1
2

2m−1],

where

y(ν1,ν3,...,ν2m−1) := yν1
1 yν3

3 · · · yν2m−1
2m−1 .

Thefinite-dimensional son-modules are completely reducible, and the isomorphism
classes of irreducible finite-dimensional son-modules are parametrized by the set

X+
son

:=
{

{(ν1, ν3, . . . , ν2m−1) ∈ Xson | ν1 ≥ · · · ≥ ν2m−3 ≥ |ν2m−1|} if n ∈ Zev,

{(ν1, ν3, . . . , ν2m−1) ∈ Xson | ν1 ≥ · · · ≥ ν2m−1 ≥ 0} if n ∈ Zodd

of dominant integral weights. For ν ∈ X+
son

, let V son (ν) denote the corresponding
son-module, that is, the irreduciblemodule of highest weight ν. Set X+

son ,int
:= X+

son
∩

Xson ,int.
For each ρ ∈ Parm , set

V son (ρ) :=
{
V son (νρ) if �(ρ) < n

2 ,

V son (ν+
ρ ) ⊕ V son (ν−

ρ ) if �(ρ) = n
2 ,

where

νρ := (ρ1, ρ2, . . . , ρ�(ρ), 0, . . . , 0), ν±
ρ := (ρ1, ρ2, . . . , ρm−1,±ρm) ∈ X+

son ,int
.

The rest of this section is devoted to showing that SSTAI
n (ρ) models V son (ρ).

Let λ ∈ Parn and consider SSTn(λ). Set

L(λ) := CSSTn(λ),

and extend the operators Ẽi , F̃i , B̃i on SSTn(λ) to linear operators on L(λ). As we
have seen in the end of Subsection 2.3, the space L(λ) admits an son-weight space
decomposition

L(λ) =
⊕

ν∈Xson ,int

L(λ)ν.
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This decomposition corresponds to the weight space decomposition of V gln (λ)

regarded as an son-module: For each ν ∈ Xson ,int, it holds that

dim V gln (λ)ν = dimL(λ)ν.

Hence, we have

chson V
gln (λ) = chAI SSTn(λ).

From this, we can say that the AI-crystal SSTn(λ) models the son-module V gln (λ).
In [18], certain linear operators on L(λ) are defined via the representation theory

of the ıquantum group of type AI. They are denoted by X̃ j , Ỹ j with j ∈ Ĩ (in [18], Ĩ
is denoted by Ĩk), where

Ĩ := {(i,+), (i,−) | i ∈ [1, n − 2]ev} � [1, n − 1]ev.

These operators are defined locally in the following sense: X̃2, Ỹ2 (resp., X̃2,±, Ỹ2,±)
are defined in terms of Ẽi , F̃i , i ∈ {1, 2} (resp., i ∈ {1, 2, 3}). And X̃i , Ỹi , i ∈
[1, n − 1]ev (resp., X̃i,±, Ỹi,±, i ∈ [1, n − 2]ev) are defined in the same way as X̃2, Ỹ2
(resp., X̃2,±, Ỹ2,±) with the role of {1, 2} (resp., {1, 2, 3}) replaced by {i −1, i} (resp.,
{i − 1, i, i + 1}).

A nonzero weight vector v ∈ L(λ)ν is said to be a highest weight vector of weight
ν ∈ X+

son ,int
if X̃ jv = 0 for all j ∈ Ĩ . For a highest weight vector v of weight ν, set

Ỹv := C{Ỹ j1 · · · Ỹ jr v | r ≥ 0, j1, . . . , jr ∈ Ĩ }.

This space corresponds to an irreducible son-submodule of V gln (λ) isomorphic to
V son (ν). Similarly, for a vector u ∈ L(λ), set

B̃u := C{B̃i1 · · · B̃ir u | r ≥ 0, i1, . . . , ir ∈ [1, n − 1]}.

By definitions of Ỹ j ’s and B̃i ’s, for each highest weight vector v, we see that

B̃v ⊂ Ỹv.

Also, Ỹv admits an son-weight space decomposition

Ỹv =
⊕

ξ∈Xson ,int

(Ỹv ∩ L(λ)ξ ),

and it holds that

dim(Ỹv ∩ L(λ)ξ ) = dim V son (ν)ξ .
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For each ν ∈ X+
son ,int

, choose a basis {vν
1 , . . . , v

ν
mν

} of the subspace H(ν) ⊂ L(λ)

consisting of highest weight vectors of weight ν. Then, we have

L(λ) =
⊕

ν∈X+
son ,int

mν⊕

k=1

Ỹvν
k .

By observation above, this corresponds to an irreducible decomposition of V gln (λ) as
an son-module.

A basis of the subspace H(ν) can be found as follows (see [18] for detail).

Definition 3.2.1 Let B be an AI-crystal. An element b ∈ B is said to be a singular
element of degree ρ ∈ Parm if it satisfies the following:

(1) deg2i−1(b) = ρi for all i ∈ [1,m].
(2) deg2i (b) = 0 for all i ∈ [1,m] such that 2i < n.
(3) deg2i+1((B̃2i−1 B̃2i )

ρi+1b) = 0 for all i ∈ [1,m] such that 2i + 1 < n.

Let Sing(B, ρ) denote the set of singular elements of degree ρ.

Let ρ ∈ Parm , and set

Sing(λ, ρ) := Sing(SSTn(λ), ρ).

For each S ∈ Sing(λ, ρ), set

h(S) := (1 + B̃1)(1 + B̃3) · · · (1 + B̃2m−3)S.

Then, when �(ρ) < n
2 (resp., �(ρ) = n

2 ), the vector h(S) (resp., h(S)± := (1 ±
B̃2m−1)h(S)) is a highest weight vector of weight

ν := (ρ1, ρ2, . . . , ρ�(ρ), 0, . . . , 0)

(resp., ν± := (ρ1, ρ2, . . . , ρm−1,±ρm)).

Furthermore, {h(S) | S ∈ Sing(λ, ρ)} (resp., {h(S)+ | S ∈ Sing(λ, ρ)}) forms a basis
of H(ν) (resp., H(ν+)). For each S, S′ ∈ Sing(λ, ρ), we have h(S) = h(S′) if and
only if S = S′ (resp., h(S)+ = h(S′)+ if and only if S′ = B̃1 B̃3 · · · B̃2m−1S). When
�(ρ) = n

2 , we have h(S)− = −h(S′)− if and only if S′ = B̃1 B̃3 · · · B̃2m−1S.
Now, it is convenient to set Sing′(λ, ρ) to be Sing(λ, ρ) if �(ρ) < n

2 , and to be
a complete set of representatives for Sing(λ, ρ)/∼ with respect to the equivalence
relation given by

S ∼ S′ if and only if S′ = B̃1 B̃3 · · · B̃2m−1S

if �(ρ) = n
2 . Then, from discussion above, we obtain

L(λ) =
⊕

ρ∈Parm

⊕

S∈Sing′(λ,ρ)

Ỹ h(S). (9)
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Furthermore, for each S ∈ Sing′(λ, ρ), the subspace Ỹ h(S) corresponds to an son-
submodule of V gln (λ) isomorphic to V son (ρ).

Lemma 3.2.2 Let S ∈ Sing(λ, ρ). Letm′ denote themaximal integer such that2m′ < n
and ρm′ �= 0. Then, we have

B̃1 B̃
2
2 B̃3 B̃

2
4 · · · B̃2m′−1 B̃

2
2m′h(S) = S.

Consequently, we have

B̃S = B̃h(S).

Proof By the definition of m′, we have

h(S) = (1 + B̃1)(1 + B̃3) · · · (1 + B̃2m′−1)S,

and hence,

B̃1 B̃
2
2 B̃3 B̃

2
4 · · · B̃2m′−1 B̃

2
2m′h(S) = B̃1 B̃

2
2 (1 + B̃1)B̃3

B̃2
4 (1 + B̃3) · · · B̃2m′−1 B̃

2
2m′(1 + B̃2m′−1)S.

Here, we used Proposition 2.3.10 (2). Therefore, it suffices to show that

B̃2i−1 B̃
2
2i (1 + B̃2i−1)S = S

for all i ∈ [1,m′].
Let i ∈ [1,m′]. Then, we have deg2i (S) = 0 and deg2i−1(S) �= 0. By Proposition

2.3.10 (1), we have B̃2i S = 0 and B̃2i−1S �= 0, and hence,

B̃2i−1 B̃
2
2i (1 + B̃2i−1)S = B̃2i−1 B̃

2
2i B̃2i−1S.

By Definition 2.3.1 (2), we must have

deg2i (B̃2i−1S) = 1,

and hence,

B̃2
2i B̃2i−1S = B̃2i−1S.

Therefore, we have

B̃2i−1 B̃
2
2i B̃2i−1S = B̃2

2i−1S = S,

as desired. This completes the proof. ��
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3.3 Connectedness and the character of SSTAIn (�)

In this subsection, we show that the AI-crystal SSTAI
n (ρ) is connected, and its character

coincides with ch V son (ρ) for each ρ ∈ Parm .
Let ρ ∈ Parm . Define Tρ ∈ SSTAI

n (ρ) by

Tρ(i, j) =
{
a2i−1 if j = 1,

2i if j > 1,

where a2i−1 ∈ {2i − 1, 2i} is such that

ρi − δa2i−1,2i−1 − δa2i+1,2i+1 ∈ Zev.

Here, we set a2�(ρ)+1 = 2�(ρ) + 2. Note that such a2i−1’s are uniquely determined.

Example 3.3.1 Let ρ ∈ Parm .

(1) If �(ρ) = 1, then

Tρ = a 2 2 · · · 2 , a :=
{
2 if ρ1 ∈ Zev,

1 if ρ1 ∈ Zodd.

(2) If �(ρ) = 2, then

Tρ = a 2 2 · · · 2 2 · · · 2
b 4 4 · · · 4 ,

b :=
{
4 if ρ2 ∈ Zev,

3 if ρ2 ∈ Zodd,
a :=

{
2 if ρ1 − δb,3 ∈ Zodd,

1 if ρ1 − δb,3 ∈ Zev.

Lemma 3.3.2 Let ρ ∈ Parm be such that �(ρ) = n
2 . Then, we have

K1(Tρ) = B̃1 B̃3 · · · B̃2m−1Tρ.

Proof ByRemark 2.5.2, K1(Tρ) is obtained from Tρ by applying K to the first column.
Since the (i, 1)th entry of Tρ is either 2i − 1 or 2i for each i ∈ [1,m], we have

K1(Tρ)(i, j) =
{
a′
2i−1 if j = 1,

2i if j > 1,

where a′
2i−1 ∈ {2i − 1, 2i} \ {a2i−1}. Now, the assertion is easily verified. ��

Lemma 3.3.3 Let ρ, σ ∈ Parm and S ∈ SSTAI
n (σ )∩Sing(σ, ρ). Then, we have σ = ρ,

and either S = Tρ or S = K1(Tρ).
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Proof Let us show by induction on l ∈ [1,m] that in S, the letters 2 l − 1 and 2 l can
appear only in the lth row. Let l ∈ [1,m]. By our induction hypothesis, it holds that
sh(S|[1,2(l−1)]) = (σ1, σ2, . . . , σl−1). In particular, the lth row or below consists of
letters in [2l − 1, n].

First, we show that the lth row consists of only 2 l − 1 and 2 l. Assume contrary
that k > 2l appears in the lth row. If k is odd, then it must hold that εk−1(S) >

0, and hence degk−1(S) > 0, which contradicts Definition 3.2.1 (2). On the other
hand, if k is even, then it must hold that εk−1((B̃k−2 B̃k−3)

degk−1(S)S) > 0 (note that
B̃k−2 and B̃k−3 do not change the entries other than k − 3, k − 2, k − 1), and hence,
degk−1((B̃k−2 B̃k−3)

degk−1(S)S) > 0, which contradicts Definition 3.2.1 (3). Thus, we
see that the lth row of S consists of only 2 l − 1 and 2 l.

Next, we show that

S|{2l−1,2l} = sl 2l 2l · · · 2l ,

where sl := S(l, 1) ∈ {2l − 1, 2l}. By the argument above, we have

S|{2l−1,2l} =
2l − 1 2l − 1 · · · · · · 2l − 1 2l 2l · · · 2l

2l 2l · · · 2l,

where the first row consists of σl boxes. By our induction hypothesis, for each l ′ < l,
we have sl ′ := S(l ′, 1) ∈ {2 l ′−1, 2 l ′}. Hence, the (l ′, 1)th entry of K1(S) is the unique
letter s′

l ′ in {2l ′ − 1, 2l ′} \ {sl ′ }. Now, suppose that sl+1 := S(l + 1, 1) �= 2l. Then, by
observation above, the (l, 1)th entry s′

l of K1(S) is the unique letter in {2 l−1, 2 l}\{sl}.
Since S is an AI-tableau, we have

s′
l ≤ S(l, 2) ≤ · · · ≤ S(l, ρl).

This, together with the semistadardness condition on the lth row

sl ≤ S(l, 2) ≤ · · · ≤ S(l, ρl),

implies that S(l, 2) ≥ 2l. Therefore, we must have

S|{2l−1,2l} = sl 2l 2l · · · 2l ,

as desired.
It remains to show that sl+1 �= 2 l. If sl+1 = 2 l, then it must hold that sl = 2l − 1,

and consequently,

s′
l > 2l.
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Since S is an AI-tableau and the lth row consists of 2l − 1 and 2l, this implies that
σl = 1. Therefore, the lth row and below of S is of the form

2l−1

2l

sl+2

...

s�(σ )

. (10)

This shows that deg2 l−1(S) = 0. Since ρl = deg2 l−1(S) and ρ is a partition, we obtain
ρ = (ρ1, ρ2, . . . , ρl−1). This implies that degi (S) = 0 for all i ∈ [2 l − 1, n − 1].
From (10), we see that deg2l(S) = 0 if and only if sl+2 = 2l + 1. Proceeding in this
way, we must have sl+k = 2 l − 1+ k for all k ∈ [1, n − 2 l + 1], which is impossible
because l + (n − 2 l + 1) = n − l + 1 > m ≥ �(σ ). Thus, our claim follows.

So far, we have obtained that

S(i, j) =
{
si if j = 1,

2i if j > 1

for some si ∈ {2i − 1, 2i}. From this, one can easily see that

deg2i−1(S) = σi

for all i ∈ [1,m]. On the other hand, since deg2i−1(S) = ρi , we obtain

σ = ρ.

In order to complete the proof, we need to determine sl for all l ∈ [1, �(ρ)]. First,
suppose that �(ρ) < n

2 . In this case, 2�(ρ) ∈ [1, n − 1], and hence, we must have

deg2�(ρ)(S) = 0.

This is equivalent to that

ρ�(ρ) − δs�(ρ),2�(ρ)−1 ∈ Zev.

Similarly, the constraint that deg2(�(ρ)−1)(S) = 0 is equivalent to that

ρ�(ρ)−1 − δs�(ρ)−1,2�(ρ)−3 − δs�(ρ),2�(ρ)−1 ∈ Zev.
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Proceeding in this way, we see that

ρl − δsl ,2l−1 − δsl+1,2l+1 ∈ Zev,

for all l ∈ [1, �(ρ)], where we set s�(ρ)+1 := 2�(ρ) + 2. This implies that

S = Tρ,

as desired.
Next, suppose that �(ρ) = n

2 . In a similar way to above, we see that

ρl − δsl ,2l−1 − δsl+1,2l+1 ∈ Zev,

for all l ∈ [1, �(ρ) − 1]. This implies that we have S = Tρ if ρm − δsm ,n−1 ∈ Zev, or
S = K1(Tρ) otherwise. Thus, the proof completes. ��
Proposition 3.3.4 Let λ ∈ Parn, ρ ∈ Parm, and S ∈ Sing(λ, ρ). Then, we have either
PAI(S) = Tρ or PAI(S) = K1(Tρ).

Proof Let σ ∈ Parm denote the shape of PAI(S). Then, we have

PAI(S) ∈ SSTAI
n (σ ) ∩ Sing(σ, ρ).

Then, the assertion follows from Lemma 3.3.3. ��
Lemma 3.3.5 Let λ ∈ Parn, ρ ∈ Parm, and S ∈ Sing(λ, ρ). Then, we have B̃S =
Ỹ h(S).

Proof Since we know B̃S = B̃h(S) ⊂ Ỹ h(S) (by Lemma 3.2.2) and h(S) ∈ B̃S, it
suffices to show that Ỹ j (B̃S) ⊂ B̃S for all j ∈ Ĩ . Furthermore, since Ỹ j ’s are defined
locally (see Subsection 3.2), it suffices to prove for the case when n = 3 and j = 2,
and when n = 4 and j = (2,±).

Let (n, j) ∈ {(3, 2), (4, (2,±))}. By Proposition 3.3.4 and Lemmas 2.6.1–2.6.3,
we see that

CAI(S) → SSTAI
n (ρ); T �→ PAI(T )

is a surjective morphism of AI-crystals. This implies that

dim B̃S ≥ |SSTAI
n (ρ)|

since we have B̃S = CCAI(S). On the other hand, since B̃S ⊂ Ỹ h(S), we have

dim B̃S ≤ dim Ỹ h(S) = dim V son (ρ) = |SSTAI
n (ρ)|.

The last equality follows from equations (6)–(8). Therefore, we obtain dim B̃S =
dim Ỹ h(S), and hence,

B̃S = Ỹ h(S).
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Since the right-hand side is closed under Ỹ j , so is the left-hand side. Thus, the proof
completes. ��
Theorem 3.3.6 Let ρ ∈ Parm. Then, the following hold.

(1) SSTAI
n (ρ) is connected.

(2) chAI SSTAI
n (ρ) = ch V son (ρ).

(3) Suppose that �(ρ) < n
2 . Then, we have chAI SST

AI
n (ρ) = chson V

son (νρ).
(4) Suppose that �(ρ) = n

2 . Then, {T + K1(T ) | T ∈ SSTAI
n (ρ)} is a connected

AI-crystal, and chAI SSTAI
n (ρ) = chson V

son (ν+
ρ ).

Proof Let us prove the first assertion. By equation (9) and Lemma 3.3.5, we see that

L(ρ) =
⊕

σ∈Parm

⊕

S∈Sing′(ρ,σ )

CCAI(S).

This implies that for each T ∈ SSTn(ρ), there exists a unique σ ∈ Parm and S ∈
Sing′(ρ, σ ) such that T ∈ CAI(S). In particular, since SSTAI

n (ρ) is closed under B̃i ’s,
each T ∈ SSTAI

n (ρ) is connected to an element of SSTAI
n (ρ) ∩ Sing′(ρ, σ ) for some

σ ∈ Parm . By Lemma 3.3.3, we see that

|SSTAI
n (ρ) ∩ Sing′(ρ, σ )| ≤ δρ,σ .

Therefore, each T ∈ SSTAI
n (ρ) is connected to the element of SSTAI

n (ρ)∩Sing′(ρ, ρ).
This implies that SSTAI

n (ρ) is connected.
Next, Let S ∈ SSTAI

n (ρ) ∩ Sing′(ρ, ρ). From Lemma 3.3.5 and the first assertion,
we have

Ỹ h(S) = B̃S = CSSTAI
n (ρ).

Then, the second assertion is clear from discussion after equation (9).
The third assertion is clear from the second assertion and the definitions.
Finally, assume that �(ρ) = n

2 . Then, that {T + K1(T ) | T ∈ SSTAI
n (ρ)} is a

connected AI-crystal follows from the facts that K1 is an automorphism of AI-crystal
on SSTAI

n (ρ), and that SSTAI
n (ρ) is connected. The assertion concerning characters

follows from the fact that

h(S) + h(K1(S)) = h(Tρ) + h(B̃1 B̃3 · · · B̃2m−1Tρ) = 2h(Tρ)+

is a highest weight vector of weight ν, where S ∈ SSTAI
n (ρ) ∩ Sing′(ρ, ρ) (see also

Lemma 3.3.2). Thus, the proof completes. ��
Remark 3.3.7 During the proof of Theorem 3.3.6, we obtained

SSTAI
n (ρ) ∩ Sing(ρ, σ ) =

⎧
⎪⎨

⎪⎩

∅ if σ �= ρ,

{Tρ} if σ = ρ and �(ρ) < n
2 ,

{Tρ, K1(Tρ)} if σ = ρ and �(ρ) = n
2 .
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4 Robinson–Schensted-type correspondence

In this section, we generalize the Robinson–Schensted correspondence to the setting
of AI-crystals. This tells us how various AI-crystals decompose into their connected
components.

4.1 Insertion scheme

Let λ ∈ Parn . Then, the map

SSTn(λ) ⊗ SSTn(1) →
⊔

μ∈Parn
λ�μ

SSTn(μ); T ⊗ l �→ (T ← l)

is an isomorphism of gl-crystals. The aim of this subsection is to provide an AI-crystal
analogue of this isomorphism, which will play a central role when generalizing the
Robinson–Schensted correspondence.

Let ρ ∈ Parm and consider the AI-crystal SSTAI
n (ρ)⊗SSTn(1). In order to analyze

its structure, let us recall the following fact, which is the special case of [5, Lemma 7].

Lemma 4.1.1 Let ν ∈ X+
son ,int

. For each k ∈ [1,m], set

ε2k−1 := (

k−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0) ∈ Xson ,int.

Then, we have

V son (ν) ⊗ V son (ε1) �
⊕

ξ

V son (ν + ξ),

where ξ runs through Xson ,int satisfying the following:

(1) V son (ε1)ξ �= 0.
(2) V son (ε1)ξ+(1+ν2i−1−ν2i+1)(ε2i−1−ε2i+1) = 0 for all i ∈ [1,m − 1].
(3) If n ∈ Zev, then V son (ε1)ξ+(1+ν2m−3+ν2m−1)(ε2m−3+ε2m−1) = 0.
(4) If n ∈ Zodd, then V son (ε1)ξ+(1+2ν2m−1)ε2m−1 = 0.

In terms of AI-crystals, this lemma can be rewritten as follows.

Lemma 4.1.2 Let ρ ∈ Parm.

(1) Suppose that n ∈ Zev and ρm �= 1. Then, we have

SSTAI
n (ρ) ⊗ SSTn(1) �

⊔

σ∈Parm
ρ�σ or σ�ρ

SSTAI
n (σ ).
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(2) Suppose that n ∈ Zev and ρm = 1. Then, we have

SSTAI
n (ρ) ⊗ SSTn(1) �

⊔

σ∈Parm\Parm−1
ρ�σ or σ�ρ

SSTAI
n (σ ) � SSTAI

n (ρ′)2,

where ρ′ := (ρ1, ρ2, . . . , ρm−1).
(3) Suppose that n ∈ Zodd and ρm = 0. Then, we have

SSTAI
n (ρ) ⊗ SSTn(1) �

⊔

σ∈Parm
ρ�σ or σ�ρ

SSTAI
n (σ ).

(4) Suppose that n ∈ Zodd and ρm �= 0. Then, we have

SSTAI
n (ρ) ⊗ SSTn(1) �

⊔

σ∈Parm
ρ=σ, ρ�σ, or σ�ρ

SSTAI
n (σ ).

Now, let us investigate the connected components of SSTAI
n (ρ) ⊗ SSTn(1). Let

T ∈ SSTAI
n (ρ) and l ∈ [1, n]. Let σ ∈ Parm denote the shape of PAI(T ← l). Then,

by Proposition 2.5.12 and Theorem 3.3.6 (1), the connected component containing
T ⊗ l is isomorphic to SSTAI

n (σ ). This observation, together with Lemma 4.1.2,
implies the following: Unless n ∈ Zev and σ = ρ′, we have

CAI(T ⊗ l ) = {T ′ ⊗ l ′ | sh(PAI(T ′ ← l ′)) = σ }.

Hence, let us consider the case when n ∈ Zev and σ = ρ′ (this can happen only when
ρm = 1). In this case, the set

{T ′ ⊗ l ′ | sh(PAI(T ′ ← l ′)) = ρ′}

consists of exactly two connected components, and both of them are isomorphic to
SSTAI

n (ρ′). The following lemma describes one of these connected components.

Lemma 4.1.3 Let n ∈ Zev and ρ ∈ Parm be such that ρm = 1. Set ρ′ :=
(ρ1, . . . , ρm−1), and ρ′′ := (ρ1, . . . , ρm, 1). Then, the set

{T ⊗ l ∈ SSTAI
n (ρ) ⊗ SSTn(1) | sh(PAI(T ← l)) = ρ′ and sh(T ← l) = ρ′′}

is a connected component of SSTAI
n (ρ) ⊗ SSTn(1) isomorphic to SSTAI

n (ρ′).

Proof By Lemma 4.1.2 (2), there are exactly two elements T1 ⊗ l1 , T2 ⊗ l2 ∈
SSTAI

n (ρ) ⊗ SSTn(1) such that PAI(Ti ← li ) = Tρ′ , i = 1, 2. Set σi := sh(Ti ← li ).
Since the operators B̃ j , j ∈ [1, n − 1] preserve semistandard tableaux, we have

sh(T ′ ← l ′) = σi
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for all T ′ ⊗ l ′ ∈ CAI(Ti ⊗ li ).
Now, we show that exactly one of σ1, σ2 is equal to ρ′′. To do so, it suffices to prove

that there is a unique tableau T ′′ ∈ SSTn(ρ
′′) such that PAI(T ′′) = Tρ′ . One can easily

verify that K (Tρ′) is such a tableau. To prove the uniqueness, let T ′′ be such a tableau.
Let C j , j ∈ [1, ρ1] denote the j th column of T ′′. Since |C1| = m + 1 > m, we have
|K1(T ′′)| ≤ |T ′′| − 2 = |ρ| − 1 = |ρ′| = |PAI(T ′′)|. Hence, by Lemma 2.2.2, we
have

PAI(T ′′) = K1(T
′′) = P(K (C1) ⊗ C2 ⊗ · · · ⊗ Cρ1).

Since PAI(T ′′) = Tρ′ , the length of the first column of PAI(T ′′) ism−1. On the other
hand, we have |K (C1)| = m − 1. Hence, it must hold that

P(K (C1) ⊗ C2 ⊗ · · · ⊗ Cρ1) = K (C1)C2 · · ·Cρ1 .

Therefore, we obtain

K (C1)C2 · · ·Cρ1 = Tρ′ .

This implies that T ′′ = C1C2 · · ·Cρ1 is obtained from Tρ′ by applying K to the first
column. In particular, T ′′ is uniquely determined. Thus, the proof completes. ��

Combining Lemmas 4.1.2 and 4.1.3, we obtain the following.

Proposition 4.1.4 Let ρ ∈ Parm.

(1) Suppose that n ∈ Zev and ρm �= 1. Then, the map

SSTAI
n (ρ) ⊗ SSTn(1) →

⊔

σ∈Parm
ρ�σ or σ�ρ

SSTAI
n (σ ); T ⊗ l �→ PAI(T ← l)

is an isomorphism of AI-crystals.
(2) Suppose that n ∈ Zev and ρm = 1. Then, the map

SSTAI
n (ρ) ⊗ SSTn(1) →

⊔

σ∈Parm\Parm−1
ρ�σ or σ�ρ

SSTAI
n (σ ) � (SSTAI

n (ρ′) × {+,−})

T ⊗ l �→

⎧
⎪⎨

⎪⎩

PAI(T ← l) if �(sh(PAI(T ← l))) = m,

(PAI(T ← l), +) if �(sh(PAI(T ← l))) < m and �(sh(T ← l)) > m,

(PAI(T ← l), −) if �(sh(PAI(T ← l))) < m and �(sh(T ← l)) = m

is an isomorphism of AI-crystals, where ρ′ := (ρ1, ρ2, . . . , ρm−1).
(3) Suppose that n ∈ Zodd and ρm = 0. Then, the map

SSTAI
n (ρ) ⊗ SSTn(1) →

⊔

σ∈Parm
ρ�σ or σ�ρ

SSTAI
n (σ ); T ⊗ l �→ PAI(T ← l)
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is an isomorphism of AI-crystals.
(4) Suppose that n ∈ Zodd and ρm �= 0. Then, the map

SSTAI
n (ρ) ⊗ SSTn(1) →

⊔

σ∈Parm
ρ=σ, ρ�σ, or σ�ρ

SSTAI
n (σ ); T ⊗ l �→ PAI(T ← l)

is an isomorphism of AI-crystals.

4.2 Robinson–Schensted-type correspondence

Given a word w = (w1, . . . , wd) ∈ W , define its PAI-symbol PAI(w) by

PAI(w) := PAI(P(w)).

For each k ∈ [0, d], set

PAI,k := PAI(w1, . . . , wk)

and

ρk := sh(PAI,k).

Also, define QAI,k to be the pair (QAI,k
1 , QAI,k

2 ) of a standard tableau QAI,k
1 ∈ STk(ρ

k)

and a set QAI,k
2 of subsets of ([1, k]\{QAI,k

1 (i, j) | (i, j) ∈ D(ρk)}) � {+,−} induc-
tively as follows (cf. [15, Section 8]). First, set QAI,0 := (∅,∅). Next, note that we
have either ρk = ρk−1, ρk−1 � ρk , or ρk � ρk−1. Suppose that ρk = ρk−1. Then, we
set

QAI,k
1 := QAI,k−1

1 , QAI,k
2 := QAI,k−1

2 � {{k}}.

Next, suppose that ρk−1 � ρk . Then, we set

QAI,k
1 (i, j) :=

{
QAI,k−1

1 (i, j) if (i, j) ∈ D(ρk−1),

k if (i, j) ∈ D(ρk) \ D(ρk−1),
QAI,k

2 := QAI,k−1
2 .

Finally, suppose that ρk � ρk−1. Then, we define QAI,k
1 to be the unique tableau of

shape ρk such that (QAI,k
1 ← l) = QAI,k−1

1 for some l ∈ [1, k − 1] (such QAI,k
1 and l

can be computed by the inverse of the insertion algorithm), and

QAI,k
2 :=

⎧
⎪⎨

⎪⎩

QAI,k−1
2 � {{l, k, +}} if �(ρk−1) = n

2 > �(ρk) and �(sh(PAI,k−1 ← wk) > m,

QAI,k−1
2 � {{l, k, −}} if �(ρk−1) = n

2 > �(ρk) and �(sh(PAI,k−1 ← wk) = m,

QAI,k−1
2 � {{l, k}} otherwise.
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Now, define the QAI-symbol QAI(w) = (QAI(w)1, QAI(w)2) and the AI-shape
shAI(w) of w to be (QAI,d

1 , QAI,d
2 ) and ρd , respectively.

Example 4.2.1

(1) Let n = 4 and w = (1, 1, 4, 2, 1, 1, 1). Then, (PAI(w), QAI(w)) is calculated
as follows: The rightmost tableaux of the first and second row are PAI(w) and
QAI(w)1, respectively, and the sets in the third row are the elements of QAI(w)2.

∅ 1 ∅ 4 2
4 3 1

3 3

∅ 1 ∅ 3 3
4 4 4

6 6

{1, 2} {3, 5,+} {4, 7,−}

(2) Let n = 5 and w = (1, 1, 4, 2, 1). Then, (PAI(w), QAI(w)) is calculated as
follows:

∅ 1 ∅ 4 2
4

3
5

∅ 1 ∅ 3 3
4

3
4

{1, 2} {5}

The QAI-symbols for various words are characterized by the notion of son-
oscillating tableaux, which we now define.

Definition 4.2.2 Let ρ ∈ Parm and d ≥ 0. An son-oscillating tableau of shape ρ

and length d is a sequence ρ = ((ρ0, s0), (ρ1, s1), . . . , (ρd , sd)) of pairs (ρk, sk) ∈
Parm × {0,+,−} satisfying the following:
(1) ρ0 = ∅, ρd = ρ, and either ρk = ρk−1, ρk−1 � ρk , or ρk � ρk−1.
(2) If ρk = ρk−1 for some k, then n ∈ Zodd and �(ρk) = m.
(3) If sk ∈ {+,−} for some k, then n ∈ Zev
(4) sk ∈ {+,−} if and only if �(ρk−1) = m, and �(ρk) = m − 1.

Let OTn(ρ) denote the set of son-oscillating tableaux of shape ρ, and set

OTn :=
⊔

ρ∈Parm
OTn(ρ).

Given an son-oscillating tableau ρ = ((ρ0, s0), (ρ1, s1), . . . , (ρd , sd)) of shape
ρ and length d, we associate a pair Q(ρ) = (Q1, Q2) of a standard tableau Q1 ∈
STd(ρ) and a set Q2 of subsets of ([1, d]\{Q1(i, j) | (i, j) ∈ D(ρ)}) � {+,−}
as follows. When d = 0, define Q(ρ) = (∅,∅). Now, assume that d > 0 and set
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ρ′ := ((ρ0, s0), (ρ1, s1), . . . , (ρd−1, sd−1)) and Q(ρ′) = (Q′
1, Q

′
2). Then, Q(ρ) is

defined as follows:

(1) If ρd = ρd−1, then Q1 = Q′
1 and Q2 = Q′

2 � {{d}}.
(2) If ρd−1 � ρd , then

Q1(i, j) =
{
Q′

1(i, j) if (i, j) ∈ D(ρd−1),

d if (i, j) ∈ D(ρd) \ D(ρd−1),

and Q2 = Q′
2.

(3) If ρd � ρd−1 and sd = 0, then Q′
1 = (Q1 ← l) for some uniquely determined

l ∈ [1, d − 1], and Q2 = Q′
2 � {{l, d}}.

(4) If ρd �ρd−1 and sd ∈ {+,−}, then Q′
1 = (Q1 ← l) for some uniquely determined

l ∈ [1, d − 1], and Q2 = Q′
2 � {{l, d, sd}}.

As before, the tableau Q′
1 and letter l in items (3) and (4) above can be computed by

the inverse of the insertion algorithm.

Example 4.2.3 Set ρ := (1), and

ρ := ((∅, 0), ((1), 0), (∅, 0), ((1), 0), ((1, 1), 0), ((1),+), ((1, 1), 0), ((1),−))

Then, we have ρ ∈ OT4(ρ), and Q(ρ) coincides with QAI(w) in Example 4.2.1 (1).

Lemma 4.2.4 The assignment ρ �→ Q(ρ) is injective.

Proof Let ρ, σ ∈ OTn be such that Q(ρ) = Q(σ ). Set

(Q1, Q2) := Q(ρ), ρ := sh(Q1).

First of all, we see that the shapes of ρ and σ coincide; both are ρ.
From the definition of Q(ρ), we see that the length of ρ is the maximal integer

appearing in Q(ρ). In other words, the length of ρ is determined by Q(ρ). Therefore,
ρ and σ have the same length, say d.

We prove that ρ = σ by induction on d; the case when d = 0 is clear. Assume that
d > 0, and set ρ′ = ((ρ0, s0), (ρ1, s1), . . . , (ρd−1, sd−1)). Then, we have

(Q(ρ′), sd ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((Q1, Q2 \ {{d}}), 0) if {d} ∈ Q2,

((Q1|[1,d−1], Q2), 0) if d ∈ Q1,

(((Q1 ← l), Q2 \ {{l, d}}), 0) if {l, d} ∈ Q2 for some l < d,

(((Q1 ← l), Q2 \ {{l, d,±}}),±) if {l, d,±} ∈ Q2 for some l < d.

This implies that Q(ρ′) and sd are determined by Q(ρ). By our induction hypothesis,
ρ′ is determined by Q(ρ′). Hence, ρ is determined by Q(ρ), which implies ρ = σ ,
as desired. This completes the proof. ��

In this way, we often identify ρ with Q(ρ). Now, the following is immediate from
the results obtained so far.
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Theorem 4.2.5 Let n ≥ 3. Then, the assignment

RSAI : W →
⊔

ρ∈Parm
SSTAI

n (ρ) × OTn(ρ); w �→ (PAI(w), QAI(w))

is an isomorphism of AI-crystals.

4.3 Branching rule

We have obtained two isomorphisms of AI-crystals:

RS : W →
⊔

λ∈Parn
SSTn(λ) × ST|λ|(λ),

and

RSAI : W →
⊔

ρ∈Parm
SSTAI

n (ρ) × OTn(ρ).

Let λ ∈ Parn , ρ ∈ Parm , (P, Q) ∈ SSTn(λ) × ST|λ|(λ), (P ′, Q′) ∈ SSTAI
n (ρ) ×

OTn(ρ) be such that

(P ′, Q′) = RSAI ◦ RS−1(P, Q).

Since SSTAI
n (ρ) is connected, for each P ′′ ∈ SSTAI

n (ρ), there exist i1, . . . , ir ∈ [1, n−
1] such that

P ′′ = B̃i1 · · · B̃ir P ′.

Therefore, we obtain

(P ′′, Q′) = B̃i1 · · · B̃ir (P ′, Q′) = RSAI ◦ RS−1(B̃i1 · · · B̃ir P, Q).

This implies that Q is independent of P ′ and uniquely determined by Q′. Let us say
Q is the Q-symbol of Q′, and write it as Q(Q′). Hence, there exists a map

Q :
⊔

ρ∈Parm
OTn(ρ) →

⊔

λ∈Parn
ST|λ|(λ); Q′ �→ Q(Q′).

Theorem 4.3.1 Let λ ∈ Parn. Then, the map

SSTn(λ) →
⊔

ρ∈Parm
SSTAI

n (ρ) × {Q′ ∈ OTn(ρ) | Q(Q′) = T (λ)};

T �→ (PAI(T ), QAI(CR(T )))
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is an isomorphism of AI-crystals, where T (λ) ∈ ST|λ|(λ) is given by

T (λ)(i, j) :=
j−1∑

k=1

dk + i,

and dk denotes the length of the kth column of D(λ).

Proof The assignment T �→ (PAI(T ), QAI(CR(T ))) factors

SSTn(λ)
CR−→ W RSAI−−→

⊔

ρ∈Parm
SSTAI

n (ρ) × OTn(ρ).

Hence, it suffices to show that

{QAI(CR(T )) | T ∈ SSTn(λ)} =
⊔

ρ∈Parm
{Q′ ∈ OTn(ρ) | Q(Q′) = T (λ)}

Let T ∈ SSTn(λ). Since Q(CR(T )) = T (λ), we see that

Q(QAI(CR(T ))) = T (λ)

for all T ∈ SSTn(λ). On the other hand, if Q′ ∈ OTn(ρ) is such that Q(Q′) = T (λ),
then there exist w ∈ W and P ∈ SSTAI

n (ρ) such that

PAI(w) = P, QAI(w) = Q′, and Q(w) = T (λ).

This shows that if we set T := P(w), then we have CR(T ) = w, and hence,

QAI(CR(T )) = QAI(w) = Q′.

This completes the proof. ��

Corollary 4.3.2 Let λ ∈ X+
gln ,≥0 and ν ∈ X+

son ,int
. Then, we have

V gln (λ) �
⊕

ν∈X+
son ,int

V son (ν)⊕[λ:ν],

where

[λ : ν] := �{Q′ ∈ OTn(ν1, ν3, . . . , ν2m−3, |ν2m−1|) | Q(Q′) = T (λ)}.
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Example 4.3.3 Let n = 3, λ = (2, 1). Then, the son-oscillating tableaux of length
|λ| = 3 are the following (we omit the second factors as they are all 0):

Q′
1 = (∅, (1), (2), (3)),

Q′
2 = (∅, (1), (2), (2)),

Q′
3 = (∅, (1), (2), (1)),

Q′
4 = (∅, (1), (1), (2)),

Q′
5 = (∅, (1), (1), (1)),

Q′
6 = (∅, (1), (1),∅),

Q′
7 = (∅, (1),∅, (1)).

We have

( 1 2 2 , Q′
1)

(RSAI)−1

−−−−−→ (1, 2, 2)
RS−→ ( 1 2 2 , 1 2 3 ),

( 1 2 , Q′
2)

(RSAI)−1

−−−−−→ (2, 3, 2)
RS−→ ( 2 2

3 , 1 2
3 ),

( 1 , Q′
3)

(RSAI)−1

−−−−−→ (2, 2, 1)
RS−→ ( 1 2

2 , 1 2
3 ),

( 1 2 , Q′
4)

(RSAI)−1

−−−−−→ (3, 2, 2)
RS−→ ( 2 2

3 , 1 3
2 ),

( 1 , Q′
5)

(RSAI)−1

−−−−−→ (2, 1, 2)
RS−→ ( 1 2

2 , 1 3
2 ),

(∅, Q′
6)

(RSAI)−1

−−−−−→ (3, 2, 1)
RS−→ (

1
2
3
,
1
2
3
),

( 1 , Q′
7)

(RSAI)−1

−−−−−→ (1, 1, 1)
RS−→ ( 1 1 1 , 1 2 3 ).

Therefore, we obtain

[λ; (3)] = 0, [λ; (2)] = 1, [λ; (1)] = 1, [λ; ∅] = 0.

Compare this result with the AI-crystal graph of SST(λ) in equation (3).

Corollary 4.3.2 gives a combinatorial cancellation-free branching rule from gln
to son ; the multiplicity [λ : μ] is equal to the number of son-oscillating tableaux
satisfying certain conditions. Jang and Kwon [4] proved that the multiplicity [λ : ν] is
equal to the number of Littlewood–Richardson tableaux satisfying certain conditions.
Their description of the multiplicities generalizes famous Littlewood’s branching rule
[11, 12]. It would be interesting to compare their multiplicity set with ours.

Jagenteufel [3] found an algorithm which gives a bijection from OTn(ρ) (with n
odd) to the set of pairs of a standardYoung tableau of shapeλ in alphabet [1, |λ|] and an
orthogonal Littlewood–Richardson tableau associated to λ,μ (in [3], son-oscillating
tableaux are called vacillating tableaux). This algorithm may be used to make the
assignment Q′ �→ Q(Q′) more explicit.
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