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Abstract
Let N and H be groups, and letG be an extension of H by N . In this article,we describe
the structure of the complex group ring of G in terms of data associated with N and
H . In particular, we present conditions on the building blocks N and H guaranteeing
that G satisfies the zero-divisor and idempotent conjectures. Moreover, for central
extensions involving amenable groups we present conditions on the building blocks
guaranteeing that the Kadison–Kaplansky conjecture holds for the group C∗-algebra
of G.
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1 Introduction

Group rings first appeared implicitly in 1854 in an article by Cayley [3] and explicitly
in 1897 in an article by Molien [22]. They are very interesting algebraic structures
whose importance became apparent after the work of e.g. R. Brauer, E. Noether,
G. Frobenius, H. Maschke and I. Schur in the beginning of the last century.

With a few exceptions, the first articles on group rings of infinite groups appeared
in the early 1950s. A key person in that line of research was I. Kaplansky, known for
his many deep contributions to ring theory and operator algebra. In his famous talk,
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given at a conference that was held on June 6–8, 1956 at Shelter Island, Rhode Island,
New York, he proposed twelve problems in the theory of rings. One of those problems
was the following (see e.g. [15, 16]) which nowadays is known as the zero-divisor
problem.

Problem 1 Let K be a field and let G be a torsion-free group. Is K [G] a domain?
Many of the problems in Kaplansky’s list have been solved, and it has been shown

that Problem 1 has an affirmative answer for several important classes of groups
(see e.g. [1, 4, 9, 17, 18]). However, for a general group G, the answer to the problem
remains unknown. The assertion that it has an affirmative answer is commonly referred
to as Kaplansky’s zero-divisor conjecture.

Although popularized by Kaplansky, Problem 1 and its corresponding conjecture
had in fact already been introduced by G. Higman in his 1940 thesis [12, p. 77] (see
also [28, p. 112]). In [12], Higman also introduced the so-called unit problem (see
Problem 2 below) and the corresponding unit conjecture.

Problem 2 Let K be a field and let G be a torsion-free group. Is every unit in K [G]
trivial, i.e. a scalar multiple of a group element?

The unit problem has been answered affirmatively for special classes of groups
(see e.g. [5, 26]), but in 2021 G. Gardam [11] gave an example of a group ring
K [P] possessing non-trivial units, where K is the field of two elements and P is
Passman’s fours group. Building on Gardam’s ideas, further counterexamples to the
unit conjecture in positive characteristic were provided by A. G.Murray [23]. Another
problem, which is closely related to the above problems, is the following.

Problem 3 Let K be a field and let G be a torsion-free group. Is every idempotent in
K [G] trivial, i.e. either 0 or 1?

This problem is known as the idempotent problem, and the corresponding conjecture
is called the idempotent conjecture. Using algebraic methods as well as analytical
methods, a lot of progress (see e.g. [2, 10] and also [13, 20, 21, 27]) has been made
on Problem 3. Nevertheless, for a general group G, the answer to Problem 3 remains
unknown. In the last two decades, however, Problem 3 has regained interest, mainly
due to its intimate connection with the Baum–Connes conjecture in operator algebras
(see e.g. [29]) via the so-called Kadison–Kaplansky conjecture for reduced group C∗-
algebras. Recall that the Kadison–Kaplansky conjecture asserts that the reduced group
C∗-algebra of a (discrete) torsion-free group has no non-trivial idempotents.

There is a mutual hierarchy between Problems 1, 2 and 3. Indeed, for fixed K
and G, it is easy to see that an affirmative answer to Problem 1 yields that Problem 3
has an affirmative answer. Furthermore, using a result of D. S. Passman’s (see [26,
Chap. 13, Lem. 1.2]), we conclude that an affirmative answer to Problem 2 yields an
affirmative answer to Problem 1. For a thorough account of the development on the
above problems (mainly) during the 1970s, we refer the reader to [26].

In this article we shall restrict our attention to complex group rings, i.e. the case
where K = C. Our aim is to contribute to a better understanding of Kaplansky’s
conjectures by studying complex group rings of group extensions. More concretely,
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let N and H be two groups. Furthermore, let G be an extension of H by N . Our main
objective is to investigate the structure of C[G] in terms of data associated with the
building blocks N and H . This article is organized as follows.

In Sect. 2 we record the most important preliminaries and notation. In particular,
we discuss crossed products and crossed systems.

In Sect. 3 we represent C[G] as a crossed product of the complex group ring C[N ]
and H , where the respective crossed system is associated with the factor system of the
underlying group extension (see Theorem 3.2). Although this might be well known to
experts (cf. [24, p. 4]), we have not found such a statement explicitly discussed in the
literature. Moreover, as an application, we show that if C[N ] is a domain and H is a
unique product group, then G satisfies Kaplansky’s complex zero-divisor conjecture
(see Theorem 3.4 and Corollary 3.6). We conclude the section with several examples
and remarks.

In Sect. 4 we consider central extensions, i.e., N is central in G, from an alternative
C∗-algebraic perspective. To this end, we employ a group-adapted version of the
Dauns–Hofmann Theorem (cf. [6, 14]) to represent the group C∗-algebra C∗(G) as
a C∗-algebra of global continuous sections of a C∗-algebraic bundle over the dual
group ̂N . In this way we are able to show, under some technical assumptions, that if
C∗(H) contains no non-trivial idempotent, then the same assertion holds for C∗(G)

(see Lemma 4.1 and Corollary 4.2).

2 Preliminaries and notation

Our study revolves around the structure of complex group rings of group extensions.
Consequently, we blend tools from algebraic representation theory and the theory of
group extensions. In this preliminary section,weprovide themost important definitions
and notation which are repeatedly used in this article. In general, given a group G, we
shall always write eG , or simply 1 or e, for its identity element.

Group extensions and factor systems

Let 1 → N → G
q→ H → 1 be a short exact sequence of groups. We first recall

a description of the extension G in terms of data associated with N and H . For this
purpose, let σ : H → G be a section of q, which is normalized in the sense that
σ(eH ) = eG . Then the map N × H → G, (n, h) �→ nσ(h) is a bijection and may be
turned into an isomorphism of groups by endowing N × H with the multiplication

(n, h)(n′, h′) := (nS(h)(n′)ω(h, h′), hh′), (1)

where S := CN ◦ σ : H → Aut(N ) with CN : G → Aut(N ), CN (g)(n) := gng−1

and

ω : H × H → N , (h, h′) �→ ω(h, h′) := σ(h)σ (h′)σ (hh′)−1.
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The pair (S, ω) is called a factor system for N and H and we write N ×(S,ω) H for
the set N × H endowed with the group multiplication defined in (1). We also recall
that the maps S and ω satisfy the relations

S(h)S(h′) = CN (ω(h, h′))S(hh′), (2)

ω(h, h′)ω(hh′, h′′) = S(h)(ω(h′, h′′))ω(h, h′h′′) (3)

for all h, h′, h′′ ∈ H . For a detailed backgroundongroup extensions and factor systems
we refer the reader to [19, Chap. IV].

Crossed products and crossed systems

Let H be a group and let R = ⊕

h∈H Rh be a unital H -graded ring, i.e., Rh Rh′ ⊆ Rhh′
for all h, h′ ∈ G. We write R× for the group of invertible elements of R and

R×
h :=

⋃

h∈H

(

R× ⋂

Rh

)

for its group of homogeneous units. If R× ⋂

Rh 	= ∅ for all h ∈ H , i.e., each Rh, h ∈
H , contains an invertible element, then R is called an (Re, H)-crossed product.

Given a unital ring A and a group H , an (A, H)-crossed system is a pair (S̄, ω̄)

consisting of two maps S̄ : H → Aut(A) and ω̄ : H × H → A× satisfying the
normalization conditions S̄(e) = idA, ω̄(h, e) = ω̄(e, h) = 1A, and

S̄(h)S̄(h′) = CA(ω̄(h, h′))S̄(hh′), (4)

ω̄(h, h′)ω̄(hh′, h′′) = S̄(h)(ω̄(h′, h′′))ω̄(h, h′h′′) (5)

for all h, h′, h′′ ∈ H , where CA : A× → Aut(A), CA(r)(s) := rsr−1 denotes the
canonical conjugation action. It is not hard to check that each crossed product gives
rise to a crossed system and vice versa. For details we refer the reader to [24].

Complex group rings

The complex group ring C[G] of a group G is the space of all functions f : G → C

with finite support endowed with the usual convolution product of functions which we
shall denote by �. Each element in C[G] can be uniquely written as a sum ∑

g∈G fgδg
with only finitely many non-zero coefficients fg ∈ C and the Dirac functions

δg : G → C, δg(h) =
{

1 if g = h

0 otherwise.
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Given elements f = ∑

g∈G fgδg and f ′ = ∑

g∈G f ′
gδg in C[G], we have

( f � f ′)(h) =
∑

g∈G
fg f

′
g−1h

for all h ∈ G. In particular, C[G] is unital with multiplicative identity δe and G-
graded w.r.t. the natural decomposition C[G] = ⊕

g∈G C · δg . Since each δg , g ∈ G,
is homogeneous and invertible,C[G] is, in fact, a (C,G)-crossed product. Also,C[G]
has a natural involution given by

∗ : C[G] → C[G], f =
∑

g∈G
fgδg �→ f ∗ :=

∑

g∈G
f̄gδg−1

and may be equipped with several appropriate norms. Interesting to us is the 1-norm
‖ · ‖1 : C[G] → [0,∞) defined by ‖ f ‖1 := ∑

g∈G | fg| turning C[G] into a normed
∗-algebra. The corresponding universal enveloping C∗-algebra is the full group C∗-
algebra C∗(G).

3 Representation via crossed products

Throughout this section, let 1 → N → G
q→ H → 1 be a short exact sequence of

discrete groups. Furthermore, let σ : H → G be a section of q and let (S, ω) be the
corresponding factor system for N and H .

We wish to give a description of the complex group ring C[G] in terms of data
associated with the groups N and H . In fact, since N is a normal subgroup of G, we
may also consider C[G] as an H -graded ring

C[G] =
⊕

h∈H
C[N ]h

with homogeneous componentsC[N ]h := C[N ]�δσ(h). In this representation ofC[G],
each element can be uniquely written as a sum

∑

h∈H fh�δσ(h) with only finitely
many non-zero coefficients fh ∈ C[N ]. Furthermore, each homogeneous component
contains an invertible element, and consequentlyC[G] is, in fact, a (C[N ], H)-crossed
product.

We now provide a (C[N ], H)-crossed system for the (C[N ], H)-crossed product
C[G] which is based on the factor system (S, ω). To this end, we first introduce the
map

σ̄ : H → C[G]×, σ̄ (h) := δσ(h), (6)

where C[G]× denotes the group of invertible elements of C[G]. Then we define

S̄ := CC[G] ◦ σ̄ : H → Aut(C[N ]), (7)
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where CC[G] : C[G]× → Aut(C[G]) denotes the canonical conjugation action, and

ω̄ : H × H → C[N ], ω̄(h, h′) := σ̄ (h)�σ̄ (h′)�σ̄ (hh′)−1 = δω(h,h′). (8)

Lemma 3.1 The pair (S̄, ω̄) is a (C[N ], H)-crossed system.

Proof It is easily seen that S̄(e) = idC[N ] and that ω̄(g, e) = ω̄(e, g) = δe for all
g ∈ G. Next, we establish (4). For this, let h, h′ ∈ H and let f ∈ C[N ]. Then a few
moments of thought show that

S̄(h)S̄(h′)( f ) = δσ(h)�δσ(h′)� f �δσ(h′)−1�δσ(h)−1

= δσ(h)σ (h′)� f �δσ(h′)−1σ(h)−1 = δω(h,h′)σ (hh′)� f �δσ(hh′)−1ω(h,h′)−1

= δω(h,h′)�δσ(hh′)� f �δσ(hh′)−1�δω(h,h′)−1 =CC[N ](ω̄(h, h′))S̄(hh′)( f ).

To verify (5), we choose h, h′, h′′ ∈ H . Then a short computation yields

S̄(h)(ω̄(h′, h′′))�ω̄(h, h′h′′) = δσ(h)�δω(h′,h′′)�δσ(h)−1�δω(h,h′h′′)

= δσ(h)ω(h′,h′′)σ (h)−1ω(h,h′h′′) = δS(h)(ω(h′,h′′))ω(h,h′h′′).

On the other hand, it is straightforwardly checked that

ω̄(h, h′)�ω̄(hh′, h′′) = δω(h,h′)�δω(hh′,h′′) = δω(h,h′)ω(hh′,h′′).

Consequently, (5) follows from the classical cocycle identity (3). 
�
Next, we write C[N ] ×(S̄,ω̄) H for the vector space

⊕

h∈H C[N ]dh with basis
(dh)h∈H endowed with the multiplication • given on homogeneous elements by

f dh • f ′dh′ := f �S̄(h)( f ′)�ω̄(h, h′)dhh′ , (9)

where f , f ′ ∈ C[N ] and h, h′ ∈ H . It follows from Lemma 3.1 that C[N ] ×(S̄,ω̄) H
is a well-defined associative algebra with multiplicative identity de. Moreover,
a few moments of thought show that C[N ] ×(S̄,ω̄) H carries the structure of a
(C[N ], H)-crossed product. A short computation involving the algebraic equations
from Lemma 3.1 now yields:

Theorem 3.2 Using the representation C[G] = ⊕

h∈H C[N ]h, the map

� : C[G] → C[N ] ×(S̄,ω̄) H , f =
∑

h∈H
fh�δσ(h) �→

∑

h∈H
fhdh,

is an isomorphism of (C[N ], H)-crossed products.

We have just seen that the factor system (S, ω) gives rise to a (C[N ], H)-crossed
product that is isomorphic to C[G]. Conversely, keeping in mind that N ⊆ C[N ]×
via n �→ δn we have the following result:
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Corollary 3.3 Suppose that (S̄, ω̄) is an abstract (C[N ], H)-crossed system. Then the
corresponding (C[N ], H)-crossed product C[N ] ×(S̄,ω̄) H is isomorphic to C[G] for
some extension G of H by N if S̄(H)(N ) ⊆ N and image(ω̄) ⊆ N. If this holds,
then the factor system (S, ω) for G is defined by S(h) := S̄(h)|N , h ∈ H, and the
corestriction of ω̄ to N.

We now proceed to investigate the structure of the crossed product C[N ]×(S̄,ω̄) H .
Recall that a group H is a unique product group if for any two non-empty finite subsets
A, B ⊆ H there exists at least one element h ∈ H which has a unique representation
of the form h = ab with a ∈ A and b ∈ B. In the next proof, given an element
f = ∑

h∈H fhdh ∈ C[N ] ×(S̄,ω̄) H , we write Supp( f ) := {h ∈ H : fh 	= 0} for the
corresponding support.

Theorem 3.4 Suppose that C[N ] is a domain and that H is a unique product group.
Then C[N ] ×(S̄,ω̄) H is a domain.

Proof Let f = ∑

h∈H fhdh and f ′ = ∑

h′∈H f ′
h′dh′ be two non-zero elements in

C[N ] ×(S̄,ω̄) H . Seeking a contradiction, we suppose that f • f ′ = 0. This means
that

0 =
∑

h∈A

fhdh •
∑

h′∈B
f ′
h′dh′ =

∑

h∈A,
h′∈B

fh�S̄(h)( f ′
h′)�ω̄(h, h′)dhh′ , (10)

where A := Supp( f ) and B := Supp( f ′). Using that H is a unique product group,
we find h ∈ AB, a ∈ A, and b ∈ B, such that h = ab but h /∈ (A \ {a})(B \ {b}).
By combining this with (10), we get fa�S̄(a)( f ′

b)�ω̄(a, b)dab = 0, or equivalently,
fa�S̄(a)( f ′

b)�ω̄(a, b) = 0. It follows that fa�S̄(a)( f ′
b) = 0, which is a contradiction

because C[N ] is a domain and fa, f ′
b are both non-zero. 
�

Remark 3.5 Given a domain D, a unique product group H , and an abstract (D, H)-
crossed system (S̄, ω̄), we point out that after suitable adjustments of the arguments
the result of the previous theorem extends to the (D, H)-crossed product D×(S̄,ω̄) H ,
that is, D ×(S̄,ω̄) H is also a domain.

Combining Theorem 3.2 with Theorem 3.4, we get the following result (cf. [26,
p. 589]):

Corollary 3.6 Suppose that N satisfies Kaplansky’s complex zero-divisor conjecture
and that H is a unique product group. Then G satisfies Kaplansky’s complex zero-
divisor conjecture and the complex idempotent conjecture.

We continue with a series of examples and remarks.

Example 3.7 The discrete Heisenberg group H3 is abstractly defined as the group
generated by elements a and b such that the commutator c = aba−1b−1 is central. It
can be realized as the multiplicative group of upper-triangular matrices

H3 :=
⎧

⎨

⎩

⎛

⎝

1 a c
0 1 b
0 0 1

⎞

⎠ : a, b, c ∈ Z

⎫

⎬

⎭

.
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Moreover, a short computation shows that H3 is isomorphic (as a group) to the
semidirect product Z

2
�S Z, where the semidirect product is defined by the group

homomorphism

S : Z → Aut(Z2), S(k)((m, n)) := (m, km + n).

Consequently, Theorem 3.2 implies that the complex group ring C[H3] is isomorphic
to C[Z2] ×S̄ Z. Since C[Z2] is a domain and Z is an orderable group, and hence
a unique product group, it follows from Corollary 3.6 that H3 satisfies Kaplansky’s
zero-divisor conjecture. In particular, C[H3] has no non-trivial idempotents.

Remark 3.8 There are two rather general situations in which we can conclude that
C[G] is a domain:

1. When G is a torsion-free solvable group (see [17, Theorem 1.4]).
2. When G is a unique product group (see e.g. Theorem 3.4 with N = {e}).
Example 3.9 Let P be Passman’s fours group [5, 11], which is a non-split extension
1 → Z

3 → P → Z/2Z × Z/2Z → 1. Note that P is torsion-free. It is easy to see
that P is a solvable group, and hence C[P] is a domain by Remark 3.8. Now, let us
consider the group G := P × F2 where F2 is the free group on two generators. First
of all, we notice that G is not a unique product group because P is not (cf. [11]).
Indeed, there are non-empty finite subsets A, B of P witnessing that P is not a unique
product group. The subsets A × {e} and B × {e} of P × F2 are witnessing that G is
not a unique product group. Secondly, solvable groups are amenable, and subgroups
of amenable groups are amenable. But G contains a copy of the non-amenable group
F2 as a subgroup. Hence, G cannot be solvable.

In light of Remark 3.8, we cannot immediately see thatC[G] is a domain. However,
using Corollary 3.6, we are able to conclude that C[G] is a domain.

Remark 3.10 We emphasize that it is not known whether every unit in C[P] is trivial
(cf. [11]). By Theorem 3.2, C[P] ∼= C[Z3] ×(S̄,ω̄) (Z/2Z × Z/2Z), meaning that we
may study the units of C[P] inside the crossed product on the right-hand side. Note
that every unit in C[Z3] is, as a matter of fact, trivial.

Remark 3.11 The purpose of this remark is to illustrate how to obtain families of
groups satisfying the conditions of Corollary 3.6.

1. Let N be a group satisfying Kaplansky’s complex zero-divisor conjecture and let
H be a unique product group. Also, let s : H → Out(N ) be a group homo-
morphism, where Out(N ) denotes the group of all outer automorphisms of N ,
and let Ext(H , N )s be the set of equivalence classes of extensions of H by N
inducing s. It is a classical fact that Ext(H , N )s is non-empty if and only if a
certain cohomology class associated with s vanishes in the third group cohomol-
ogy H3

gr(H , Z(N ))s , where Z(N ) stands for the center of N , and that in this case

Ext(H , N )s is parametrized by the second group cohomology H2
gr(H , Z(N ))s . By

Corollary 3.6, each of these extensions satisfies Kaplansky’s complex zero-divisor
conjecture.
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2. In the situation of Example 3.7, the set Ext(Z, Z
2)s consists of a single element,

where s := q ◦ S and q : Aut(Z2) → Out(Z2) denotes the canonical projection
map. Indeed, it is a well-known fact that Hn

gr(Z, Z
2)s = 0 for all n > 1.

3. It is also possible to realize H3 as a central group extension ofZ byZ
2 with respect

to the group 2-cocycle ω : Z
2 × Z

2 → Z defined by ω
(

(k, k′), (l, l ′)
) := k + l ′.

Moreover, the set Ext(Z2, Z) is parametrized by H2
gr(Z

2, Z) ∼= Z. Consequently,
we obtain an infinite family of groups satisfyingKaplansky’s complex zero-divisor
conjecture.

Remark 3.12 The map � from Theorem 3.2 may also be used to turn C[N ] ×(S̄,ω̄) H
into a ∗-algebra. The purpose of this remark is to demonstrate that if H is amenable,
then the full group C∗-algebra C∗(G) is isomorphic to a suitable C∗-completion of
C[N ] ×(S̄,ω̄) H . For this, we regard C[G] as a dense subset of C∗(G) and note that
the map σ̄ in (6) actually takes values in the unitary group U (C∗(G)). Moreover, we
get induced maps

S̄ : H → Aut(C∗(N )) and ω̄ : H × H → U (C∗(N ))

satisfying S̄(H)(C[N ]) ⊆ C[N ] and image(ω) ⊆ C[N ]. A straightforward compu-
tation now shows that the multiplication and the involution are continuous for the
�1-norm

∥

∥

∥

∥

∥

∑

h∈H
fhdh

∥

∥

∥

∥

∥

1

:=
∑

h∈H
‖ fh‖C∗(N ),

and we write C∗(C[N ] ×(S̄,ω̄) H) for the corresponding enveloping C∗-algebra.
Finally, if H is amenable, then [8, Prop. 4.2] implies that C∗(G) is isomorphic to
C∗(C[N ] ×(S̄,ω̄) H), because both algebras are topologically graded by H and gen-
erate isomorphic Fell bundles.

4 Representation via global sections

Let N and H be torsion-free and countable discrete groups with N Abelian. Further-
more, let G be a central extension of H by N . Our aim is to analyze the structure of
the group C∗-algebra C∗(G) in terms of data associated with N and H . For technical
reasons, we additionally assume that H is amenable. Then G is amenable, and hence
[25, Thm. 1.2] implies that C∗(G) is isomorphic to the C∗-algebra �(E) of global
continuous sections of a C∗-algebraic bundle q : E → ̂N , ̂N being the dual group
of N endowed with its natural topology turning it into a compact Hausdorff space.
Moreover, its fibre Eε := q−1({ε}) at the trivial character ε ∈ ̂N is ∗-isomorphic
to C∗(H). The proof of the next statement is very much inspired by the proof of [7,
Thm. 2.18].

Lemma 4.1 Let N and H be torsion-free and countable discrete groups with N
Abelian. Additionally, suppose that H is amenable and let G be a central exten-
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sion of H by N. If C∗(H) contains no non-trivial projections, then the same is true
for C∗(G).

Proof Let p be a projection in C∗(G). We write sp for the corresponding continuous
global section in �(E). By assumption, we either have sp(ε) = 0 ∈ Eε or sp(ε) =
1 ∈ Eε. For now, assume that sp(ε) = 0 ∈ Eε. Since N is torsion-free, its dual group
̂N is connected, and therefore the function

f p : ̂N → R, f p(χ) := ‖sp(χ)‖χ ,

where ‖ · ‖χ denotes the C∗-norm on Eχ := q−1({χ}), is a continuous {0, 1}-valued
function on a connected space with f p(ε) = 0. It follows that f p must be 0 everywhere
which in turn implies that sp ≡ 0. That is, we have p = 0. Analogously, the case
sp(ε) = 1 ∈ Eε leads to p = 1. 
�

Corollary 4.2 Let N and H be torsion-free and countable discrete groups with N
Abelian. Additionally, suppose that H is amenable and let G be a central extension of
H by N. If H satisfies the Kadison–Kaplansky conjecture, then so does the group G.

Remark 4.3 1. Since every idempotent in a C∗-algebra is similar to a projection, the
conclusion of Lemma 4.1 still holds in the more general context of idempotents.

2. We would like to point out that the conclusion of Lemma 4.1 can also be
reached using heavier machinery. In fact, since G is amenable, the surjectivity
of the assembly map in the Baum–Connes conjecture implies that G satisfies the
Kadison–Kaplansky conjecture (cf. [13, Cor. 9.2]).

Example 4.4 It is also possible to realize the group H3 from Example 3.7 as a central
group extension of Z by Z

2 with respect to the group 2-cocycle ω : Z
2 × Z

2 → Z

defined by ω
(

(k, k′), (l, l ′)
) := k + l ′. Applying Corollary 4.2, we can assert that H3

satisfies the Kadison–Kaplansky conjecture.
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