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Abstract
Recently Corteel and Welsh outlined a technique for finding new sum-product identi-
ties by using functional relations between generating functions for cylindric partitions
and a theorem of Borodin. Here, we extend this framework to include very general
product-sides coming from work of Han and Xiong. In doing so, we are led to con-
sider structures such as weighted cylindric partitions, symmetric cylindric partitions
and weighted skew double-shifted plane partitions. We prove some new identities
and obtain new proofs of known identities, including the Göllnitz–Gordon and Little
Göllnitz identities as well as some beautiful Schmidt-type identities of Andrews and
Paule.
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1 Introduction

Sum-product identities lie at the heart of the theory of integer partitions and q-series.
For example, the two Rogers–Ramanujan identities state that for ε ∈ {0, 1}, we have

∑

n≥0

qn
2+εn

(q; q)n
= 1

(q1+ε, q4−ε; q5)∞ , (1.1)

where throughout the articlewe use theq-Pochhammer notation, (a; q)n := ∏n
j=1(1−

aq j ) for n ≥ 1 with (a; q)0 := 1 and (q; q)−1
n = 0 for n ≤ −1. The Rogers–

Ramanujan identities lie deep enough within mathematics to have quite a variety of
proofs—combinatorial [10], so-called “motivated proofs” (via recurrences) [3], and
via affine Lie algebras [15], to name just a few. We refer the reader to Sills’ recent
book [19] for a thorough history. The Rogers–Ramanujan identities can be interpreted
in terms of integer partitions, and such identities in which a q-hypergeometric series
equals a product as simple as the right-hand side of (1.1) are rare. Thus, in addition
to discovering new identities, it is worthwhile to provide new connections to combi-
natorial structures beyond integer partitions.

Corteel and Welsh [8] recently showed how cylindric partitions can be used in the
discovery of new sum-product identities. (We give precise definitions of these objects
and some generalizations in Section 2.) Cylindric partition generating functions for
any profile were shown by Borodin [6] to equal infinite products, and “sum-sides”
were then found by Corteel and Welsh to satisfy q-difference equations, which they
showed occur naturally for cylindric partitions. This led to alternative proofs of all
four of Andrews–Schilling–Warnnar’s A2 Rogers–Ramanujan identities [4], as well
as a proof of a new fifth identity which was conjectured in [9]. One such identity
Corteel–Welsh proved in [8, Theorem 1.1] is as follows:

∑

n1,n2≥0

qn
2
1+n22−n1n2+n1+n2

(q; q)n1

[
2n1
n2

]

q
= 1

(q2, q3, q3, q4, q4, q5; q7)∞ . (1.2)

Here the Gaussian polynomials are defined as

[
n
m

]

q
=

⎧
⎨

⎩

(q; q)n

(q; q)m(q; q)n−m
, if n ≥ m ≥ 0,

0, otherwise.

Recent work of Corteel, Dousse and the second author [7], as well as Warnaar [21],
uses Corteel–Welsh’s machinery to prove and conjecture many other sum-product
identities.

In the present article, we extend the search for sum-product identities to certain
generalizations of cylindric partitions, recently proved to also have infinite product
generating functions by Han and Xiong [13]. Essentially, one can write any product
(qb1 , . . . , qbr ; qbr )−1∞ as a generating function for some weighted cylindric partitions
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(see Remark 2.11). By then extending Corteel and Welsh’s machinery to this more
general setting, we were able to prove the following identities.

Theorem 1.1 For z ∈ C and |q| < 1, we have

∑

n≥0

(−1)nq4n
2 (q2,−q4; q4)n

(q4; q4)2n
(
1 − q4n+1z

1 + q4n+2

)
z2n = (zq,−zq3; q4)∞.

We offer a combinatorial proof of a specialization of Theorem 1.1 in Sect. 4. Next,
we have the following family of four identities.

Theorem 1.2 For |q| < 1, we have

∑

n,m≥0

(−1)mq3(
n+1
2 )−3m(m+1) (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m
= (q4, q8; q12)∞

(q6; q12)∞ , (1.3)

∑

n,m≥0

(−1)m+1q3(
n−1
2 )+2n−3m(m+1)−1 (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m
(1 − q3n+1 + q3n−6m)

= (q; q6)∞(q10; q12)∞
(q5; q6)∞ , (1.4)

∑

n,m≥0

(−1)m+1q3(
n+1
2 )−3m(m+1)−1 (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m
(1 − q3n+1 + q3n−6m)

= (q2, q10; q12)∞
(q6; q12)∞ , (1.5)

∑

n,m≥0

(−1)m+1q3(
n+1
2 )−2n−3m(m+1)−1 (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m

× (1 + q3n−12m−3(1 + q1+6m)(q3n − q6m(1 + q3)) = (q2, q5, q11; q12)∞
(q; q6)∞ .

(1.6)

We further use ourmachinery to offer newproofs of theLittleGöllnitz andGöllnitz–
Gordon identities [2, Theorem 7.11], and [12].

Theorem 1.3 (Little Göllnitz and Göllnitz–Gordon Identities). We have

∑

n≥0

(−q; q2)n(
q2; q2)n

qn
2+2n = 1(

q3, q4, q5; q8)∞
, (1.7)

∑

n≥0

(−q; q2)n(
q2; q2)n

qn
2+n = 1(

q3; q4)∞ (q2; q8)∞ , (1.8)

∑

n≥0

(−q; q2)n(
q2; q2)n

qn
2 = 1(

q, q4, q7; q8)∞
, (1.9)
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∑

n≥0

(−q−1; q2)n(
q2; q2)n

qn
2+n = 1(

q; q4)∞
(
q6; q8)∞

. (1.10)

As a final application, we give refinements of the following Schmidt-type partition
identities appearing in 2021 paper of Andrews and Paule [5]. Identity (1.11) was first
noted in [18] by Schmidt, who himself subsequently gave a proof. In 2018, the first
two identities also independently appeared in work by the second author [20] in the
context of certain weighted partition identities. Interested readers are invited to look
into these works.

A partition λ of an integer n is a sequence of positive integers whose parts satisfy

λ1 ≥ λ2 ≥ · · · ≥ λ� and |λ| :=
�∑

j=1

λ j = n.

We call such λ a partition of size n.
Let P (resp. D) denote the set of partitions (resp. partitions with distinct parts—

when the inequalities between the parts are all strict). Also let ♦ denote the set of
partition diamonds, i.e., finite sequences of integers λ1, λ2, . . . , where

λ1 ≥ λ2
λ3

≥ λ4 ≥ λ5
λ6

≥ λ7 ≥ λ8
λ9

≥ λ10 ≥ λ11
λ12

≥ λ13 ≥ . . . .

Theorem 1.4 (Theorems 1.3, 6.3 of [20] and Theorem 4 of [5], respectively). We have

∑

λ∈D
qλ1+λ3+λ5+... = 1

(q; q)∞
, (1.11)

∑

λ∈P
qλ1+λ3+λ5+... = 1

(q; q)2∞
, (1.12)

∑

λ∈♦
qλ1+λ4+λ7+... = (−q; q)∞

(q; q)3∞
. (1.13)

We prove the following two-variable versions.

Theorem 1.5 We have

∑

λ∈D
zλ1qλ1+λ3+λ5+... =

∑

n≥0

z2nqn(n+1)

(zq; q)n(zq; q)n+1
, (1.14)

∑

λ∈D
zλ1qλ2+λ4+λ6+... = 1 +

∑

n≥1

z2n−1qn(n−1)

(z, zq; q)n
, (1.15)

∑

λ∈P
zλ1qλ1+λ3+λ5+... = 1

(zq; q)2∞
, (1.16)
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∑

λ∈P
zλ1qλ2+λ4+λ6+... = 1

(1 − z)(zq; q)2∞
, (1.17)

∑

λ∈♦
zλ1qλ1+λ4+λ7+... = (−zq; q)∞

(zq; q)3∞
. (1.18)

It is easy to observe that, as z �→ 1, (1.16) and (1.18) imply (1.12) and (1.13),
respectively.

Identities (1.14)–(1.18) have natural combinatorial interpretations; for example, the
right-hand side of (1.14) generates partitions into unrestricted parts where the power
of z counts the the largest hook length. (This is defined for a partition intom parts with
largest part λ1 as λ1+m−1.) To see this, note that z2nqn(n+1) generates an n×(n+1)
rectangle with hook length 2n, while (zq; q)−1

n and (zq; q)−1
n+1, respectively, generate

partitions to the right and underneath this rectangle.

Corollary 1.6 The number of partitions into distinct parts with largest part m and
n = λ1 + λ3 + λ5 + . . . equals the number of partitions of n into unrestricted parts
with largest hook length m.

Note that (1.11) follows from Corollary 1.6. Similarly, setting z �→ zq in (1.15),
one has the following combinatorial interpretation.

Corollary 1.7 For n ≥ 1, the number of partitions into distinct parts with largest part
m and n = λ1 + (λ2 + λ4 + λ6 + . . . ) equals the number of partitions of n + 1 into
unrestricted parts greater than 1 with largest hook length m + 1.

In Sect. 2, we define our objects of study—weighted cylindric partitions, symmetric
cylindric partitions, and skew double-shifted plane partitions—and state the product
generating functions for these that follow from Han and Xiong’s work in [13]. In
Sect. 3, we record our Corteel–Welsh-type recurrences for two variable generating
functions. In Sect. 4, we use these recurrences to prove Theorems 1.1, 1.2 and 1.3;
Theorem 1.2 is proved with the aid of Mathematica. In Sect. 5, we prove Theorem 1.5.
We conclude in Sect. 6 by mentioning a few open problems and avenues for further
work. Appendix A contains a short proof of the modularity of the products in Proposi-
tion 2.2. InAppendixB,webrieflymention the newcomputer algebra implementations
developed in connection to this work.

2 Definitions and product sides

Cylindric partitions were introduced by Gessel and Krattenthaler [11] as a type of
repeating grid pattern of positive integers that are weakly decreasing along rows and
columns; see Fig. 1. Here, we will define them using the diagonal integer partitions.
For two partitions λ and μ, we write λ 	 μ if

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ . . . . (2.1)
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Fig. 1 A cylindric partition of
width 8, profile
(−1, 1, −1, 1, 1,−1, 1, −1),
rank 4 and size 42. Here λ0 and
λh are highlighted. The purple
line indicates the profile, from
bottom-left to top-right

Definition 2.1 A cylindric partition of width h with profile δ = (δ1, . . . , δh) ∈ {±1}h
is an (h+1)-tuple of integer partitions (λ0, . . . , λh) such that λ0 = λh and λ j−1 	 λ j

(resp. λ j−1 
 λ j ) if δ j = −1 (resp. if δ j = 1). We define the size of λ as

|λ| :=
h−1∑

j=0

|λ j |.

In accordance with [21], we define the rank of a cylindric partition λ to be the number
of (−1)’s in the profile. Note that, in the notation of [21], the width is the sum of the
level and rank. We write CPδ for the set of cylindric partitions of profile δ, including
the “empty cylindric partition” of profile δ.

Graphically, a profile δ starts on the top left corner of the starting diagonal λ0 and
ends on the top left corner of the last diagonal λh .

Borodin proved that the generating function for cylindric partitions of any profile
is always an infinite product. We use the formulation in [13].

Proposition 2.2 ([6], Proposition on p. 8). Let δ = (δ1, . . . , δh) be a profile and define
the multiset

W3(δ) := {h} ∪ { j − i : 1 ≤ i < j ≤ h, δi > δ j }
∪{h − ( j − i) : 1 ≤ i < j ≤ h, δi < δ j }.

Then

CPδ(q) :=
∑

λ∈CPδ

q |λ| =
∏

k∈W3(δ)

1

(qk; qh)∞ . (2.2)

Remark 2.3 This product is always symmetric—that is, every k < h appears as many
times inW3(δ) as h− k. So, up to a rational power of q, CPδ(q) is a modular form. To
the best of our knowledge, a proof of this non-trivial fact was lacking in the literature,
so we provide one in Appendix A.

It also follows from the k ↔ (h − k) symmetry that W3(δ) = W3(−δ). Thus, it
would be interesting to see a size preserving bijection between the sets CPδ and CP−δ .
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Fig. 2 A symmetric cylindric
partition of width 6, profile
(−1, 1, 1,−1, −1, 1) and size
38. The green highlighted
partition indicates the line of
symmetry

To look for “sum-side” companions to the above products, Corteel and Welsh
introduced the two variable generating function, CPδ(z; q) := ∑

λ∈CPδ
zmax(λ)q |λ|,

wheremax(λ) denotes the size of the largest part among all partitions inλ. They proved
general systems of recurrences for these functions and found sum-generating functions
that solved all cases for width 7 and rank 3. The identity (1.2) in the introduction is
(q; q)∞CPδ(1; q) with δ = (−1,−1,−1, 1, 1, 1, 1). Identities for all rank 3, width
8 cases were subsequently proved by Corteel, Dousse and the second author in [7].
Warnaar [21] further conjectured identities for all rank 3, width h profiles with 3 � h.

To allow for products much more general than those in (2.2), we consider one
natural restriction and one generalization of cylindric partitions defined by Han and
Xiong in [13].

Definition 2.4 A symmetric cylindric partition λ is a cylindric partition of the form
(λh, . . . , λ1, λ0, λ1, . . . , λh) with profile δ = (−δh, . . . ,−δ1, δ1, . . . , δh). We define
the size as

|λ| := |λ0| + |λh | + 2
h−1∑

j=1

|λ j |.

LetSCPδ be the set of symmetric cylindric partitions of profile δ, including the “empty
partition.”

Remark 2.5 Han and Xiong defined the size of symmetric cylindric partitions instead
as |λ| := |λ0| + 2

∑h
j=1 |λ j | and stated their product formula for this notion of size.

But we will consider general weighted sizes below that include both of these.

Remark 2.6 When viewing a symmetric cylindric partition on the face of a cylinder,
one notices that there are two axes of symmetry, namely at λ0 and at λh . Thus, it is
easy to see that SCPδ(q) = SCP−rev(δ)(q), where rev(δ) is the reverse of δ, i.e., if
δ = (δ1, . . . , δh), then rev(δ) = (δh, . . . , δ0).

If the restriction λ0 = λh which creates a repeating pattern in a cylindric partition is
dropped, then the resulting structures were called skew double-shifted plane partitions
by Han and Xiong [13].
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Fig. 3 A DSPP of width 6,
profile (−1, −1, 1, −1,−1, 1)
and size 61

Definition 2.7 A skew double-shifted plane partition (DSPP) of width h with profile
δ = (δ1, . . . , δh) ∈ {±1}h is an (h + 1)-tuple of integer partitions (λ0, . . . , λh) such
that λ j−1 	 λ j (resp. λ j−1 
 λ j ) if δ j = −1 (resp. if δ j = 1). We define the size as

|λ| :=
h∑

j=0

|λ j |.

Let DSPPδ be the set of skew double-shifted plane partitions of profile δ, including
the “empty partition.”

Han and Xiong [13] proved a general lemma in the theory of symmetric functions
and used it to prove product formulas analogous to Borodin’s for both symmetric
cylindric partitions and DSPPs. It follows directly from their work that generating
functions are products even with a general weighted size. For a DSPP λ of width h
and a vector a = (a0, . . . , ah) ∈ R

h+1
≥0 , we define

|λ|a :=
h∑

j=0

a j |λ j |.

Similarly, for a cylindric partitionλ ofwidth h and a vector a = (a0, . . . , ah−1) ∈ R
h≥0,

we define

|λ|a :=
h−1∑

j=0

a j |λ j |.

Throughout, let Ak := ∑k−1
j=0 a j . We say that a is the standard weight when a =

(1, 1, . . . , 1).

Proposition 2.8 Let δ = (δ1, . . . , δh) be a profile of width h, and let a =
(a0, . . . , ah−1) ∈ R

h≥0. Define the set

W a
3 (δ) := {Ah} ∪ {A j − Ai : 1 ≤ i < j ≤ h, δi < δ j } ∪ {Ah − (A j − Ai ) : 1

≤ i < j ≤ h, δi > δ j }.
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If 0 /∈ W a
3 (δ), then

CPaδ (q) :=
∑

λ∈CPδ

q |λ|a =
∏

k∈W a
3 (δ)

1

(qk; q Ah )∞
. (2.3)

The proof of Proposition 2.8 directly follows from [13, Theorem 3.1] by setting
ui := qai . In the same spirit, we get the following.

Proposition 2.9 Let δ = (δ1, . . . , δh) be a profile of width h, and let a =
(a0, . . . , ah) ∈ R

h+1
≥0 . Define the sets

W a
1 (δ) :={Ah+1} ∪ {Ai : δi = −1} ∪ {Ah+1 − Ai : δi = 1},

W a
2 (δ) :={Ai + A j : 1 ≤ i < j ≤ h, δi = δ j = −1}

∪ {2Ah+1 − Ai − A j : 1 ≤ i < j ≤ h, δi = δ j = 1}
∪ {2Ah+1 − (A j − Ai ) : 1 ≤ i < j ≤ h, δi < δ j }
∪ {A j − Ai : 1 ≤ i < j ≤ h, δi > δ j }.

If 0 /∈ W a
1 (δ) ∪ W a

2 (δ), then

DSPPaδ (q) :=
∑

λ∈DSPPδ

q |λ|a =
∏

k∈W a
1 (δ)

�∈W a
2 (δ)

1

(qk; q Ah+1)∞(q�; q2Ah+1)∞
. (2.4)

Note that for the width 0 and 1 profiles, these generating functions with standard
weights equal the partition function

DSPP(1)
∅ (q) = DSPP(1,1)

(1) (q) = 1

(q; q)∞
.

This correspondence can easily be seen through the diagrams of the counted objects.

Remark 2.10 In contrast to the generating functions for cylindric partitions, neither of
the products (2.3) or (2.4) are symmetric.

Remark 2.11 We may now write any product of the following form as a weighted
cylindric partition generating function; precisely, for any real numbers 0 < b1 ≤
b2 ≤ · · · ≤ br+1, we have

CP(b1,b2−b1,...,br+1−br )
(−1,−1,...,−1,1) (q) = 1

(qb1 , qb2 , . . . , qbr , qbr+1; qbr+1)∞
.

For example, this approach provides a combinatorial interpretation for a specialization
of the reciprocal of the Ramanujan theta function [19, (1.59). p.37]

∞∑

n=−∞
a(n+1

2 )b(
n
2) = (−a,−b, ab; ab)∞,
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as a generating function for the number of weighted cylindric partitions with profile
(1, 1,−1). Precisely, let b2 > b1 > 0 then

CP(b1b2−b1,b1)
(−1,−1,1) (q) = 1

(qb1 , qb2 , qb1+b2 ; qb1+b2 )∞
=

( ∞∑

n=−∞
(−1)nqb1(

n+1
2 )+b2(

n
2)

)−1

.

The profile (−1,−1, . . . ,−1,−1, 1) of width h has rank h − 1 and does not lead
to interesting recurrences and sum-sides in general; however, there are often multiple
combinations of weights and profiles with higher rank that yield the same product.
In general, by picking different profiles and weights we can discover connections
between weighted counts of different classes of cylindric partitions. To demonstrate,
from Proposition 2.8, we can easily confirm that

CP(1,3,1)
(−1,−1,1)(q) = CP(1,3,1,5)

(−1,−1,1,1)(q) = CP(1,4,4,1,5)
(−1,1,−1,1,1)(q)

= CP(5,4,1,1,4)
(−1,1,−1,1,−1)(q) = (q2, q3; q5)

(q; q)∞
, (2.5)

CP(2,2,1)
(−1,1,1)(q) = CP(2,2,3,3)

(−1,1,−1,1)(q) = CP(2,3,3,2,5)
(−1,1,−1,1,1)(q)

= CP(5,3,2,2,3)
(−1,1,−1,1,−1)(q) = (q, q4; q5)

(q; q)∞
. (2.6)

Similar to finding weighted correspondences between cylindric partitions with
different profiles, we can also find weighted correspondences between skew double-
shifted plane partitions with different profiles. Furthermore, we can find weighted
relations between CPs and DSPPs.

For example, Propositions 2.8 and 2.9 are enough to see that

CP(1,0,1,0,0)
(−1,−1,−1,1,1)(q) = DSPP(0,1,0)

(1,−1)(q) = 1

(q; q)3∞(q; q2)∞ . (2.7)

To give an explicit example,we note that the coefficient of the q3 termof the q-series
of (2.7) is 36.We explicitly present these weighted CPs andDSPPs in Fig. 4, where the
yellow diagonals for the cylindric partitions highlight the same diagonal’s repetition
due to cylindricity (only one of the diagonals contribute to the total size) and the gray
diagonals are weighted with 0 (the numbers on these diagonals do not contribute to the
total size of the object). The total value in the boxes with the white backgrounds (each
counted with weight 1 in this case) makes the size of these objects. There are some
explicitly stated 0 parts. On top of that, every empty box in these diagrams can be
thought to have 0s inside and they add nothing to the total size. Finally, we compress
multiple objects with braces of a range of possible numbers to avoid repetition the
presentation.

As in [13], symmetric cylindric partitions can be viewed as weighted DSPPs—that
is, for δ = (δ1, . . . , δh) we have

SCP(−rev(δ),δ)(q) = DSPP(1,2,2,...,2,1)
δ (q). (2.8)
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Fig. 4 Total size 3 CPs and DSPPs counted with the weights of (2.7). The number under each diagram
represents the total number of distinct objects these diagrams represent

Consider those cylindric partitions with symmetric profile (−rev(δ), δ) which are
themselves not symmetric, i.e., the set CP(−rev(δ),δ)\SCP(−rev(δ),δ). A careful study
of the W -sets gives the following generating function with manifestly positive coeffi-
cients.

Corollary 2.12 Let δ = (δ1, . . . , δh) be a profile. Then with notation as in Proposi-
tion 2.9, we have

∑

λ∈CP(−rev(δ),δ)\SCP(−rev(δ),δ)

q |λ|

=
∏

k∈W (1,2,...,2,1)
1 (δ)

�1∈W (1,2,...,2,1)
2 (δ)

1

(qk; q2h)∞(q�1 ; q4h)∞

⎛

⎜⎝
∏

�2∈W (1,2,...,2,1)
2 (δ)

(
−q

�1
2 ; q2h

)

∞(
q

�2
2 ; q2h

)

∞

− 1

⎞

⎟⎠ .

Proof We first show that

W3(−rev(δ), δ) = W (1,2,...,2,1)
1 (δ) ∪ 1

2
W (1,2,...,2,1)

2 (δ) ∪ 1

2
W (1,2,...,2,1)

2 (δ) (2.9)
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by considering the contribution of each (δi , δ j ) for 1 ≤ i, j ≤ h. Note that for the
profile (1, 2, . . . , 2, 1), we have

Ai =
{
2i − 1 if i ≤ h

2h if i = h + 1.

Each δi = 1 gives a pair (−1, 1) as

(. . . ,−δi , . . .︸ ︷︷ ︸
−rev(δ)

. . . , δi , . . .︸ ︷︷ ︸
δ

)

and contributes 2h − (h + i − (h − i + 1)) = 2h − 2i + 1 = Ah+1 − Ai . Similarly,
each δi = −1 gives a pair (1,−1) and contributes 2i − 1 = Ai . Since Ah+1 = 2h ∈
W3(−rev(δ), δ), these contributions together make up the set W (1,2,...,2,1)

1 (δ).

Now, each (δi , δ j ) = (1, 1)with i �= j gives two pairs of the form (−1, 1), namely

(. . . ,−δi , . . .︸ ︷︷ ︸
−rev(δ)

. . . , δ j , . . .︸ ︷︷ ︸
δ

) and (. . . ,−δ j , . . .︸ ︷︷ ︸
−rev(δ)

. . . , δi , . . .︸ ︷︷ ︸
δ

).

These both contribute 2h − j − i + 1 = 1
2 (2Ah+1 − Ai − A j ). Similarly, each

(δi , δ j ) = (1, 1) with i �= j gives two pairs of the form (1,−1) which both contribute
j + i − 1 = 1

2 (A j + Ai ).

Next, each (δi , δ j ) = (1,−1) with i < j contributes j − i = 1
2 (A j − Ai ) as

( . . .︸︷︷︸
−rev(δ)

. . . , δi , . . . , δ j , . . .︸ ︷︷ ︸
δ

)

and also j − i = 1
2 (A j − Ai ) as

(. . . ,−δ j , . . . ,−δi , . . .︸ ︷︷ ︸
−rev(δ)

, . . .︸︷︷︸
δ

).

Similarly, each (δi , δ j ) = (−1, 1)with i < j makes two contributions of 2h−( j−i) =
1
2 (2Ah+1 − (A j − Ai )). This proves (2.9). Thus,

∑

λ∈CP (−rev(δ),δ)

q |λ| −
∑

λ∈SCP(−rev(δ),δ)

q |λ|

=
∑

λ∈CP (−rev(δ),δ)

q |λ| −
∑

λ∈DSPP(1,2,...,2,1)
δ

q |λ|

=
∏

k∈W3(−rev(δ),δ)

1

(qk; q2h)∞ −
∏

k∈W (1,2,...,2,1)
1 (δ)

�∈W (1,2,...,2,1)
2 (δ)

1

(qk; q2h)∞(q�; q4h)∞
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=
∏

k∈W (1,2,...,2,1)
1 (δ)

�1,�2∈ 1
2W

(1,2,...,2,1)
2 (δ)

1

(qk, q�1 , q�2; q2h)∞ −
∏

k∈W (1,2,...,2,1)
1 (δ)

�∈W (1,2,...,2,1)
2 (δ)

1

(qk; q2h)∞(q�; q4h)∞

=
∏

k∈W (1,2,...,2,1)
1 (δ)

�1,�2∈W (1,2,...,2,1)
2 (δ)

1
(
qk, q

�1
2 , q

�2
2 ; q2h

)

∞

−
∏

k∈W (1,2,...,2,1)
1 (δ)

�∈W (1,2,...,2,1)
2 (δ)

1

(qk; q2h)∞(q�; q4h)∞

=
∏

k∈W (1,2,...,2,1)
1 (δ)

�1∈W (1,2,...,2,1)
2 (δ)

1

(qk; q2h)∞(q�1; q4h)∞

⎛

⎜⎝
∏

�2∈W (1,2,...,2,1)
2 (δ)

(
−q

�1
2 ; q2h

)

∞(
q

�2
2 ; q2h

)

∞

− 1

⎞

⎟⎠ ,

as claimed. ��
In Sect. 3, we introduce and prove recurrences for two variable analogues of

CPδ(z; q) with weighted size,

CPaδ (z; q) :=
∑

λ∈CPδ

zmax(λ)q |λ|a , DSPPaδ (z; q) :=
∑

λ∈DSPPδ

zmax(λ)q |λ|a .

(2.10)

Theorem 1.1 follows from solving the symmetric cylindric cases of width 4 (or
equivalently, the DSPP cases of width 2 and weight (1, 2, 1)), Theorem 1.2 from the
symmetric cylindric cases of width 6 (or equivalently, the DSPP cases of width 3 and
weight (1, 2, 2, 1)), and Theorem 1.3 from the standard weight DSPP cases of width
3.

3 Systems of recurrences for cylindric partitions and DSPPs

To demonstrate Corteel–Welsh’s recurrence and our generalizations, consider the
following toy example: If lg(λ) denotes the largest part of the integer partition λ,
then one can prove the following recurrence for the bivariate generating function
P(z; q) := ∑

λ∈P zlg(λ)q |λ|,

P(z; q) =
∑

μ∈P
m≥0

zlg(μ)+mqm+|μ| = P(zq; q)

1 − zq
. (3.1)

The proof consists taking a partition λ on the left-hand side and removing lg(λ) to
create a new partitionμ; one then has lg(λ) = lg(μ)+m for somem ≥ 0. From (3.1),
it is easy to derive Euler’s product-sum identity ([2], Corollary 2.2)

P(z; q) =
∑

n≥0

znqn

(q; q)n
= 1

(zq; q)∞
.
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Fig. 5 A cylindric partition λ of width 8 with profile δ = (−1, 1, −1, 1,−1, 1, 1, 1) and max(λ) = 5.
Here, Iδ = {0, 2, 4}. Choosing the subset J = {0, 2} removes the green squares and gives the partition μ

with profile σJ (δ) = (1, −1, 1, 1, −1, 1, 1, −1) and max(μ) = 5

If we begin instead with a cylindric partition generated by CPδ(z; q) and remove
some largest parts in the “corners” where they occur, then the resulting cylindric
partition has a new profile. Since subsets of largest parts can be removed in multiple
ways, an inclusion–exclusion process leads to the following analogue of (3.1).

Proposition 3.1 ([8], Proposition 3.1, reformulated). Let δ = (δ1, . . . , δh) be a profile,
and for convenience define δ0 := δh. Define

Iδ := {0 ≤ j ≤ h − 1 : (δ j , δ j+1) = (1,−1)}.
For a subset∅ � J ⊆ Iδ , define a new profile σJ (δ) by swapping the signs of (δ j , δ j+1)

for j ∈ J . Then

CPδ(z; q) =
∑

∅�J⊆Iδ

(−1)|J |−1 CPσJ (δ)

(
zq |J |; q)

1 − zq |J | . (3.2)

Similarly, we have the following systems of recurrences for weighted cylindric
partitions and weighted DSPPs.

Proposition 3.2 Let δ = (δ1, . . . , δh) be a profile and let a ∈ R
h≥0. Then with the same

notation as in Proposition 3.1, we have

CPaδ (z; q) =
∑

∅�J⊆Iδ

(−1)|J |−1
CPaσJ (δ)

(
zq

∑
j∈J a j ; q

)

1 − zq
∑

j∈J a j
. (3.3)

Proof The proof is a simple adjustment of the proof of Proposition 3.1 in [8]. Observe
that

CPaσJ (δ)

(
zq

∑
j∈J a j ; q

)

1 − zq
∑

j∈J a j
=

∑

μ∈CPσJ (δ)

m≥0

zmax(μ)+mq(max(μ)+m)
∑

j∈J a j+|μ|a
.
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Given (μ,m) ∈ CPσJ (δ) × N0, we add the part max(μ) + m to each integer partition
μ j for j ∈ J in the “corners” as in Fig. 5. The result is a new cylindric partition
λ ∈ CPδ satisfying

max(λ) = max(μ) + m and |λ|a = (max(μ) + m)
∑

j∈J

a j + |μ|a.

Conversely, any λ ∈ CPδ arises in this way for some (μ,m) and ∅ � J ⊆ Iδ . In
general, such λ may arise for multiple sets J , so inclusion–exclusion yields (3.3). ��

For DSPPs, we have the following.

Proposition 3.3 Let δ = (δ1, . . . , δh) be a profile and let a ∈ R
h+1
≥0 . For convenience,

define δh+1 := −δh and δ0 := −δ1. Define

Îδ := {0 ≤ j ≤ h : (δ j , δ j+1) = (1,−1)}.

For a subset∅ � J ⊆ Iδ , define a new profile σ̂J (δ) by swapping the signs of (δ j , δ j+1)

for j ∈ J . Then

DSPPaδ (z; q) =
∑

∅�J⊆ Îδ

(−1)|J |−1
DSPPa

σ̂J (δ)

(
zq

∑
j∈J a j ; q

)

1 − zq
∑

j∈J a j
. (3.4)

Proof The proof proceeds as in Proposition 3.2, noting that the set Îδ and maps σ̂J

differ only with respect to the pairs (δ0, δ1) and (δh, δh+1) which determine the ends
of the profile. ��
Remark 3.4 For cylindric partitions, the maps σJ permute the entries of profiles, so the
rank—the number of (−1)’s—is preserved. Hence, there is a system of

(h
k

)
recurrences

(3.3) for width h, rank k profiles δ.

By contrast, for DSPPs the maps σJ act transitively on all profiles of width h. Thus,
in general there is a single system of 2h recurrences (3.4). However, for some weights,
like those corresponding to symmetric cylindric partitions, the number of equations
can be reduced through certain symmetries.

Following [8], our analysis will simplify if the denominators in (3.3) and (3.4) are
removed by defining

Gδ(z) := (zq; q)∞CPaδ (z; q).

(We will suppress the weight a and the second variable q in Gδ to save space when
they are clear from context.) Then (3.3) becomes

Gδ(z) =
∑

∅�J⊆Iδ

(−1)|J |−1(zq; q)∑
j∈J a j−1GσJ (δ)

(
zq

∑
j∈J a j

)
. (3.5)
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Likewise, with a j ≥ 1 for all j and

Hδ(z) := (zq; q)∞DSPPaδ (z; q),

(3.4) becomes

Hδ(z) =
∑

∅�J⊆Iδ

(−1)|J |−1(zq; q)∑
j∈J a j−1HσJ (δ)

(
zq

∑
j∈J a j

)
. (3.6)

4 Proofs of Theorems 1.1, 1.2, and 1.3

Although the presented results can be performed by hand, to avoid error-prone and
tedious calculations, we mainly use two symbolic computation implementations in
Mathematica to carry out our calculations: the package qFunctions by Ablinger
and the second author [1], and the package HolonomicFunctions by Koutchan
[14]. These implementations are distributed through the RISC (Research Institute for
Symbolic Computation, Johannes Kepler University, Linz) openly for researchers to
benefit from. These implementations and more can be downloaded through https://
risc.jku.at/software/.

Koutchan’sHolonomicFunctions [14] implementation is well established and
offers state-of-th-art technology in holonomic functions research (in our context, func-
tions that satisfy linear q-recurrence relations). In particular, this package includes
functionality that automatically uncouples a coupled system of recurrences and it also
has the creative telescoping algorithm to automatically produce, proof, and certify
recurrence relations for given closed hypergeometric formulas.

TheqFunctionspackage [1] byAblinger and the second author offersmany tools
to symbolically manipulate (such as by doing substitutions) linear functional relations
of q-holonomic functions and to symbolically create the q-difference relations that
Corteel–Welsh [8] originally presented. We include a short Appendix to list the new
functionality (that is soon to be added to the main qFunctions release) which
implements new functions related to this paper.

It might be possible to prove some of these identities using hypergeometric means
directly. However, we would like to present proofs solely through coupled system of
q-difference equations, which were introduced in Sect. 3. This is to emphasize the
technique of how one can go about reducing the coupled system and under fortunate
circumstances guess a sum representation of the generating functions for the cylindric
partitions and other objects. These proofs are in the spirit of [7, 8].

4.1 Proof of Theorem 1.1 and related results

Earlier we defined the symmetric cylindric partitions with regard to DSPPs (2.8). We
extract Theorems 1.1 and 1.2 through the study of the generating functions of the
number of symmetric cylindric partitions width 4 and 6, respectively.
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Lemma 4.1 For the profiles with width 4, we have

SCP(−1,−1,1,1)(z; q) = (−zq4, zq2; q4)∞
(zq; q)∞

,

SCP(1,−1,1,−1)(z; q) = (−zq3, zq; q4)∞
(zq; q)∞

,

SCP(−1,1,−1,1)(z; q) = (−zq, zq3; q4)∞
(zq; q)∞

.

Proof We get the following coupled system of q-difference equations when we apply
(3.6) to the width 2 profiles with a = (1, 2, 1):

H(1,1)(z) = H(1,−1)(zq), (4.1)

H(1,−1)(z) = (1 − zq)H(−1,1)(zq
2), (4.2)

H(−1,1)(z) = 2H(1,1)(zq) − (1 − zq)H(1,−1)(zq
2), (4.3)

where Hδ(z) := (zq; q)∞SCP(−rev(δ),δ)(z).
Recall that SCP(1,1,−1,−1)(z; q) = SCP(−1,−1,1,1)(z; q), hence, we do not need to

consider H(−1,−1)(z) as a separate entity.
We can uncouple these q-difference equations for the H(−1,1)(z) function by sub-

stituting (4.1) followed by substituting (4.2) in (4.3). This yields

H(−1,1)(z) = 2(1 − zq3)H(−1,1)(zq
4) − (1 + zq)(1 − zq3)H(−1,1)(zq

4)

= (1 + zq)(1 − zq3)H(−1,1)(zq
4). (4.4)

Iterating (4.4) shows that

H(−1,1)(z) = (−zq, zq3; q4)∞. (4.5)

Substituting (4.5) in (4.2) shows that H(1,−1)(z) = (−zq3, zq; q4)∞ and finally sub-
stituting this product in (4.1) proves that H(1,1)(z) = (−zq4, zq2; q4)∞. Writing the
definitions of Hδ(z)s in their respective product representations proves Lemma 4.1. ��

An alternate proof of Lemma 4.1, which will also lead to the proof of Theorem 1.1,
can be given through uncoupling the recurrence system. Let

Hδ(z; q) :=
∑

n≥0

hδ(n)zn .

Then the q-difference equation system that the Hδ(z) functions satisfy is equivalent
to the following coupled system of recurrences.

h(1,1)(n) = qnh(1,−1)(n),

h(1,−1)(n) = q2nh(−1,1)(n) − q2n−1h(−1,1)(n − 1),
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h(−1,1)(n) = 2qnh(1,1)(n) − q2nh(1,−1)(n) + q2n−1(n − 1).

The initial conditions hδ(0) = 1 and hδ(m) = 1 for all negative integer m define
these sequences uniquely. This system of recurrences can be uncoupled and we see
that these coefficients satisfy the second-order recurrences

(1 − q4n+8)h(1,1)(n + 2) = −q4n+6(1 − q2)h(1,1)(n + 1) − q4n+6h(1,1)(n),

(4.6)

(1 − q4n+8)h(1,−1)(n + 2) = −q4n+5(1 − q2)h(1,−1)(n + 1) − q4n+4h(1,−1)(n),

(4.7)

(1 − q4n+8)h(−1,1)(n + 2) = −q4n+5(1 − q2)h(−1,1)(n + 1) + q4n+4h(−1,1)(n).

(4.8)

We can switch from these uncoupled q-recurrence relations to the equivalent q-
difference equations. This yields another proof of Lemma 4.1 after confirming that the
q-difference equations one get from (4.6)–(4.8) are homogeneous two term relations
(one of which is (4.4)).

However, one can also look at the recurrences (4.6)–(4.8) and some initial conditions
to guess (and later prove) a closed formula for these sequences. In our cases, we have

h(1,1)(n) = (−1)�n/2�qn(n+1) (q
2; q4)�n/2�(−q4; q4)�n/2�

(q4; q4)n , (4.9)

h(1,−1)(n) = (−1)�n/2�qn2
(q2; q4)�n/2�(−q4; q4)�n/2�

(q4; q4)n , (4.10)

and

h(−1,1)(n) = (−1)�n/2�qn2
(q2; q4)�n/2�(−q4; q4)�n/2�

(q4; q4)n , (4.11)

where �·� and �·� are the classical ceiling and floor functions. The right-hand side
expressions satisfy the same initial conditions as the expressions on the left; they
vanish for every negative integer n, and when n = 0 they become 1. We can easily
show that the expressions (4.9)–(4.11) satisfy (4.6)–(4.8), respectively. For example,
letting n �→ 2n, in (4.9), looking at the difference of the two sides of (4.6) we see that
everything vanishes:

(1−q8n+8)(−1)n+1q(2n+2)(2n+3) (q
2; q4)n+1(−q4; q4)n+1

(q4; q4)2n+2

+ q8n+6(1 − q2)(−1)n+1q(2n+1)(2n+2) (q
2; q4)n+1(−q4; q4)n

(q4; q4)2n+1

+ q8n+6(−1)nq2n(2n+1) (q
2, −q4; q4)n
(q4; q4)2n

=(−1)n+1q(2n+1)(2n+2) (q
2; q4)n+1(−q4; q4)n

(q4; q4)2n+1
(q4n+4(1 + q4n+4) + q8n+6(1 − q2))
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+ q8n+6(−1)nq2n(2n+1) (q
2,−q4; q4)n
(q4; q4)2n

=q8n+6(1 + q4n+2)(−1)n+1q2n(2n+1) (q
2; q4)n+1(−q4; q4)n

(q4; q4)2n+1

+ q8n+6(−1)nq2n(2n+1) (q
2, −q4; q4)n
(q4; q4)2n = 0.

This proves that the right-side expression in (4.9) satisfies (4.6). By carrying the same
calculations for h(1,1)(2n + 1) and for the other two sequences we prove that (4.9)–
(4.11) satisfy (4.6)–(4.8), respectively. Lastly, we check the initial conditions, and that
finishes the proof the equalities in (4.9)–(4.11).

Rewriting H(−1,1)(z) using the formula for h(−1,1)(n) in (4.5) yields

H(−1,1)(z) =
∑

n≥0

h(−1,1)(n)zn =
∑

n≥0

(−1)�n/2�qn2
(q2; q4)�n/2�(−q4; q4)�n/2�

(q4; q4)n zn

= (−zq, zq3; q4)∞. (4.12)

Splitting the even and odd cases of the summand in (4.12) and regrouping the terms
provesTheorem1.1.Moreover, the analogous calculations for H(1,1)(z) and H(1,−1)(z)
also lead to Theorem 1.1.

It should be noted that one can give a shorter proof to Theorem 1.1without resorting
to the coupled system of symmetric cylindric partitions of width 4. For example, one
can use the q-binomial theorem to expand (zq; q4)∞ and (−zq3; q4)∞ separately,
multiply these series expansions, collect and compare the terms of zN of this expansion
with the zN term of the left-side sum in Theorem 1.1. Then one can find the recurrences
for these compared terms with q-Zeilberger algorithm and finish the proof. Another
alternative to recurrences after the comparison is to observe that these the convolution
sums one gets from the q-binomial theorems are equivalent to formulas (21) and (22)
in [16] (corresponding to even and odd exponents of z in the expansions).

Setting z = q followed by q2 �→ q in Theorem 1.1 gives the following corollary,
equivalent to Slater’s identity [17, eq. (9)] under the mapping q �→ −q.

Corollary 4.2

∑

n≥0

(−1)nq2n
2+n (q; q2)n+1(−q2; q2)n

(q2; q2)2n+1
= (q,−q2; q2)∞. (4.13)

The identity (4.13) can also be proven through combinatorial arguments. The right-
side product is the generating function for the number of partitions into distinct parts
with the extra weight −1 to the number of odd parts in the partition.

One can interpret the left-hand side summandas the generating functionof partitions
into 2n or 2n+ 1 distinct parts, where the partitions are counted with the extra weight
−1 to the number of odd parts. This interpretation can be seen starting from the front
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factor (−1)nq2n
2+n . The term

2n2 + n = 1 + 2 + 3 + · · · + (2n − 1) + 2n

is the generating function for partitions into exactly 2n consecutive parts. Furthermore,
half of these 2n parts are odd and the (−1)n reflects the weight on the number of odd
parts. We interpret the (−q2; q2)n as the generating function of Young diagrams with
columns even length ≤ 2n where each column length only appears once. Similarly
(q; q2)n+1 is the generating function of Young diagrams with columns odd length
≤ 2n + 1 where each column length only appears once, where in this case we also
have the extra weight−1 to the number of columns. Putting together these three terms,
we can see that

(−1)nq2n
2+n(q; q2)n+1(−q2; q2)n

is the generating function of partitions into 2n or 2n + 1 parts, where the smallest
part is at most 2 if there are 2n parts, it is exactly 1 if there are 2n + 1 parts, and
the difference between consecutive parts is at most 2. Moreover, each insertion of an
odd length column in the original Young diagram of the partition with size 2n2 + n
changes the number of odd parts by one, and each of these column also comes with
a −1 weight itself that accounts for this change. Hence, combining the −1 weights
we see that the exponent of −1 the number of odd parts in the outcome partition.
Finally, the term 1/(q2; q2)2n+1 is the generating function of Young diagrams with
even length ≤ 2n + 1 columns where each column appears even number of times.
With this final observation, we can now interpret the summand

(−1)nq2n
2+n (q; q2)n+1(−q2; q2)n

(q2; q2)2n+1

as the generating function for partitions into 2n or 2n + 1 distinct parts with an extra
alternating weight on the number of odd parts in the partitions. Summing over all
possible n we see that the left-hand side sum counts the same partitions as the right-
hand side product.

4.2 Proof of Theorem 1.2

Similar to the previous Sect. 4.1, we study the generating functions width 6 profiled
symmetric cylindric partitions. Applying the normalized weighted DSPP recurrence
(3.6) to the width 3 profiles with a = (1, 2, 2, 1) gives the coupled q-difference
equation system

Hα(z) = Hβ(zq), (4.14)

Hβ(z) = (1 − zq)Hγ (zq2), (4.15)

Hγ (z) = Hβ(zq) − (1 − zq)(1 − zq2)Hγ (zq3) + (1 − zq)Hσ (zq2), (4.16)
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Hσ (z) = Hα(zq) − (1 − zq)Hβ(zq2) + Hγ (zq), (4.17)

where

α := (1, 1, 1), β := (1, 1,−1), γ := (1,−1, 1), σ := (−1, 1, 1).

and

Hδ(z) := (zq; q)∞SCP(−rev(δ),δ)(z) :=
∑

n≥0

hδ(n)zn (4.18)

for a profile δ.
We can once again turn these q-difference equations to the equivalent q-recurrence

equations. Once these recurrences are uncoupled, we get that these sequences satisfy
the recurrences

(1 − q3n+9)(1 + q3n+5−q3n+6)hα(n + 3) = −q3n+7(1 − q3 − q3n+11

− q6n+16 + q6n+17)hα(n + 2) (4.19)

− q3n+9(1 + q3n+5 + q3n+7 + q3n+8 − q3n+9 + q6n+12

− q6n+14)hα(n + 1)

+ q6n+12(1 + q3n+8 − q3n+9)hα(n),

(1 − q3n+9)(1 + q3n+5−q3n+6)hβ(n + 3) = −q3n+6(1 − q3 − q3n+11

− q6n+16 + q6n+17)hβ(n + 2) (4.20)

− q3n+7(1 + q3n+5 + q3n+7 + q3n+8 − q3n+9

+ q6n+12 − q6n+14)hβ(n + 1)

+ q6n+9(1 + q3n+8 − q3n+9)hβ(n),

(1 − q3n+9)hγ (n + 3) = q6n+15hγ (n + 2)

− q3n+6(1 + q3n+4 + q3n+8)hγ (n + 1) + q6n+9hγ (n),

(4.21)

(1 − q3n+9)hσ (n + 3) = q6n+13hσ (n + 2)

− q3n+8(1 + q3n+2 + q3n+4)hσ (n + 1) + q6n+9hσ (n).

(4.22)

The initial conditions hδ(0) = 1 and hδ(m) = 0 for all negative m define these
sequences uniquely.

Looking at some initial values of the hγ (n) sequence, we can identify that

hγ (n) =
∑

m≥0

(−1)mq3(
n+1
2 )−3m(m+1) (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m
. (4.23)
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Using q-Zeilberger algorithm (or the creative telescoping algorithm), we can automat-
ically prove that the right-hand side of (4.23) satisfies (4.21). In the same way, using
the relations (4.14)–(4.17), we can prove

hβ(n) =
∑

m≥0

(−1)m+1q3(
n−1
2 )+2n−3m(m+1)−1 (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m

× (1 − q3n+1 + q3n−6m), (4.24)

hα(n) =
∑

m≥0

(−1)m+1q3(
n+1
2 )−3m(m+1)−1 (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m

× (1 − q3n+1 + q3n−6m), (4.25)

and

hσ (n) =
∑

m≥0

(−1)m+1q3(
n+1
2 )−2n−3m(m+1)−1 (−q,−q5; q6)m

(q6; q6)m(q3; q3)n−2m

× (1 − q3n+1 − q3n−2 − q3n−6m − q3n−6m−3 + q6n−6m−2 + q6n−12m−3)

(4.26)

in this order.
Notice that the formulas in (4.23)–(4.26) are the summands of the left-hand side

sums of Theorem 1.2. Combining the definition of each Hδ(z) (4.18), and Proposi-
tion 2.9 (for z = 1) for these profiles and weights finishes the proof of Theorem 1.2.

4.3 New proofs of Little Göllnitz and Göllnitz–Gordon Theorems

We use the system of recurrences for standard weight, width 3 DSPPs. For standard
weight, reversing the order of the integer partitions in a DSPP leads to the identity
DSPPδ(z; q) = DSPP−rev(δ)(z; q), thus we need only write the system of recurrences
using profiles

α := (1, 1, 1), β := (1, 1,−1), γ := (1,−1, 1), σ := (−1, 1, 1).

From equation (3.6), we have the system

Hα(z) = Hβ(zq),

Hβ(z) = Hγ (zq2),

Hγ (z) = Hβ(zq) + Hδ(zq) − (1 − zq)Hγ (zq2),

Hσ (z) = Hα(zq) + Hγ (zq) − (1 − zq)Hβ(zq2),

whence

Hσ (z) = Hγ (zq) + zqHγ (zq3),
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and

Hγ (z) = (1 + zq)Hγ (zq2) + zq2Hγ (zq4).

If we now write Hγ (z) = ∑
n≥0 hγ (n)zn,where the hn are rational functions in q and

hγ (0) = Hγ (0) = 1, then the above recurrence gives

hγ (n) = q2nhγ (n) + (q2n−1 + q4n−2)hγ (n − 1).

By iterating, we obtain

hγ (n) = (−q; q2)n
(q2; q2)n qn

2
,

therefore,

∑

n≥0

(−q; q2)n
(q2; q2)n qn

2 = H(1,−1,1)(1) = (q; q)∞DSPP(1,−1,1)(q)

= (q; q)∞
(q, q2, q3, q4; q4)∞(q, q4, q7; q8)∞ .

Upon cancelling common terms in the product, we obtain the third identity in The-
orem 1.3. The other identities can be proved using the expression for hγ (n) and the
relations above.

5 Applications to Schmidt-type identities: Proof of Theorem 1.5

In this section, we prove Theorem 1.5, beginning with identity (1.18). It is clear
from the definitions that diamond partitions can be thought of as weighted DSPPs. In
particular,

∑

λ∈♦
zλ1qλ1+λ4+λ7+... = DSPP(0,1,0)

(1,−1)(z; q).

Note that Proposition 2.9 then immediately implies (1.13), as

∑

λ∈♦
qλ1+λ4+λ7+... = 1

(q; q)3∞(q; q2)∞ = (−q; q)∞
(q; q)3∞

.

To prove our refinement, we apply the recurrences in Proposition 3.3 to obtain the
system,

(1 − z)DSPP(0,1,0)
(1,1) (z; q) = DSPP(0,1,0)

(1,−1)(z),
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(1 − z)DSPP(0,1,0)
(−1,−1)(z; q) = DSPP(0,1,0)

(1,−1)(z),

(1 − zq)DSPP(0,1,0)
(1,−1)(z; q) = DSPP(0,1,0)

(−1,1)(zq),

(1 − z)DSPP(0,1,0)
(−1,1)(z; q) = DSPP(0,1,0)

(1,1) (z) + DSPP(0,1,0)
(−1,−1)(z) − DSPP(0,1,0)

(1,−1)(z).

It is then easy to show that

DSPP(0,1,0)
(1,−1)(z; q) = 1 + zq

(1 − zq)3
DSPP(0,1,0)

(1,−1)(zq; q) = (−zq; q)∞
(zq; q)3∞

,

proving (1.18).
Identities (1.16) and (1.17) are proved similarly by showing that

∑

λ∈P
zλ1qλ1+λ3+... = CP(0,1)

(−1,1)(z; q), and
∑

λ∈P
zλ1qλ2+λ4+... = CP(0,1)

(1,−1)(z; q),

with the aid of the recurrence in Proposition 3.2.
For identities (1.14) and (1.15), we introduce cylindric partitions into distinct parts,

which are defined so that the inequalities along rows and columns in a cylindric
partition are strict. Define the generating function DCPaδ (z; q) analogously. Then

∑

λ∈D
zλ1qλ1+λ3+... = DCP(0,1)

(−1,1)(z; q),
∑

λ∈D
zλ1qλ2+λ4+... = DCP(0,1)

(1,−1)(z; q).

In this case, the recurrence is slightly different from Proposition 3.2 but is proved as
in [8].

Proposition 5.1 With notation as in Proposition 3.2, we have

DCPaδ (z; q) = 1 +
∑

∅�J⊆Iδ

(−1)|J |−1zq
∑

j∈J a j
DCPaσJ (δ)

(
zq

∑
j∈J a j ; q

)

1 − zq
∑

j∈J a j
.

Proof Note that

zq
∑

j∈J a j
DCPaσJ (δ)

(
zq

∑
j∈J a j ; q

)

1 − zq
∑

j∈J a j
=

∑

μ∈DCPσJ (δ)

m≥1

zmax(μ)+mq(max(μ)+m)
∑

j∈J a j+|μ|a
.

The proof then proceeds as in Proposition 3.2, namely by constructing λ ∈ DCPδ

from (μ,m) ∈ DCPσJ (δ) × N. Here, we must have m ≥ 1 to maintain strict inequali-
ties along diagonals. Additionally, the empty cylindric partition in DCPδ is the only
cylindric partition that does not arise in this way. Thus, the term 1 is present on the
right-hand side of Proposition 5.1. ��
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Note that the q-difference equations above are inhomogeneous, in contrast to those
for cylindric partitions and DSPPs.

Thus, we have the system

DCP(0,1)
(−1,1)(z; q) = 1 + z

1 − z
DCP(0,1)

(1,−1)(z; q)

DCP(0,1)
(1,−1)(z; q) = 1 + zq

1 − zq
DCP(0,1)

(−1,1)(zq; q),

which implies

DCP(0,1)
(1,−1)(z; q) = 1 + zq

1 − zq
+ z2q2

(1 − zq)2
DCP(0,1)

(1,−1)(zq; q)

= 1

1 − zq
+ z2q2

(1 − zq)2
DCP(0,1)

(1,−1)(zq; q),

which one may iterate to get

DCP(0,1)
(1,−1)(z; q) =

∑

n≥0

z2nqn(n+1)

(zq; q)n(zq; q)n+1
, (5.1)

which gives (1.14). Identity (1.15) can also be derived in a similar fashion by studying
DCP(0,1)

(−1,1)(z; q).

6 Conclusion and outlook

Corteel and Welsh [8] developed the idea of using coupled systems of q-difference
equations for cylindric partitions to prove sum-product identities. This paper expands
their original idea in multiple ways. We apply Corteel and Welsh’s argument to sym-
metric cylindric partitions and skew double-shifted plane partitions. The introduction
of non-trivial weights then allows for a bigger search space. We do not have a clear
vision of which profile families (those having the same width and same rank) or which
group of weights would yield an essentially solvable q-difference equation system.

New combinatorial questions arise from the correspondences noted inRemark 2.11.
Can we define equivalence classes of cylindric partitions (such as for the ones in (2.5)
and (2.6)) or DSPPs? Are there direct bijections between these sets of objects? Can
finite versions of these sum-product identities be proved?

In the alternate proof of Corollary 4.2, we showed that when z = q both sides of the
identity in the Theorem 1.1 can be interpreted as a generating function for a weighted
count of partitions into distinct parts. It would be interesting to see partition theoretic
interpretations of Theorem 1.1 for other specializations of z.

We should also note that Lemma 4.1 and our other experiments suggest that the
generating functions in many cases actually yield bivariate products in q and z rather
than the univariate products coming from Propositions 2.2, 2.8 and 2.9. Similarly,
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in Sect. 5 we discussed cylindric partitions into distinct parts and observed through
Theorem 1.4 that for some width 2, rank 1 profiles the univariate generating functions
(when z = 1) turn into infinite products. It is worth investigating whether we get
bivariate products in other cases as well.

The authors plan to return to some of these questions in follow-up work, guided
with the help of the new symbolic computation implementations tailor-made for this
purpose.
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Appendix A: Symmetry of CPı(q)

We prove that the multiset W3(δ) in Proposition 2.2 contains every k < h as many
times as it contains h − k. We say that W3(δ) is k-balanced if the above property is
true for k.

We begin by showing thatW3(δ) is 1-balanced. It is easy to see thatW3(−δ) contains
h− k exactly as many times asW3(δ) contains k, soW3(−δ) is k-balanced if and only
if W3(δ) is. Hence, we may assume without loss of generality that δ1 = 1. Thus, the
multiplicity of 1 in W3(δ) is

#{(δ j , δ j+1) = (1,−1)},

and the multiplicity of h − 1 in W3(δ) is

#{(δ j , δ j+1) = (−1, 1)} + 1δh=−1.

If the number of sign changes in the sequence δ is even, then δh = 1 and the two
multiplicities above are equal. If the number of sign changes is odd, then δh = −1
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and furthermore

#{(δ j , δ j+1) = (1,−1)} = 1 + #{(δ j , δ j+1) = (−1, 1)},

as required. Thus, W3(δ) is 1-balanced for all profiles δ.
Now let 1 < k < h and consider, for j ∈ {1, . . . k}, the following profiles


 j := (δ j , δ j+k, δ j+2k, . . . , δ j+q j k, δi j ),

where each q j satisfies j + q j k ≤ h < j + (q j + 1)k and i j = j + (q j + 1)k − h ∈
{1, . . . , k}. Since we know that each 
 j is 1-balanced, it follows that

# {(δa, δa+k) = (1,−1) : a ≡ j (mod k), a = 1, . . . h − k} + 1(δ j+q j k ,δi j )=(1,−1)

+ 1(δ j ,δi j )=(−1,1)

= # {(δa, δa+k) = (−1, 1) : a ≡ j (mod k), a = 1, . . . h − k} + 1(δ j+q j k ,δi j )=(−1,1)

+ 1(δ j ,δi j )=(1,−1).

Summing both sides over j , we have

# {(δa, δa+k) = (1,−1) : a = 1, . . . h − k} +
k∑

j=1

(
1(δ j+q j k ,δi j )=(1,−1) + 1(δ j ,δi j )=(−1,1)

)

= # {(δa, δa+k) = (−1, 1) : a = 1, . . . h − k} +
k∑

j=1

(
1(δ j+q j k ,δi j )=(−1,1) + 1(δ j ,δi j )=(1,−1)

)
.

Since i j ≡ j − h (mod k), the map j �→ i j is a permutation of {1, . . . , k}, so
k∑

j=1

1(δ j ,δi j )=(−1,1) =
k∑

j=1

1(δ j ,δi j )=(1,−1).

Hence,

# {(δa, δa+k) = (1,−1) : a = 1, . . . h − k} +
k∑

j=1

1(δ j+q j k ,δi j )=(1,−1)

= # {(δa, δa+k) = (−1, 1) : a = 1, . . . h − k} +
k∑

j=1

1(δ j+q j k ,δi j )=(−1,1).

Since j + q j k − i j = h − k and again {i j }kj=1 = {1, . . . , k}, this implies that

# {(δa, δa+k) = (1,−1) : a = 1, . . . h − k} + # {(δa, δh−k+a) = (−1, 1) : a = 1, . . . , k}
= # {(δa, δa+k) = (−1, 1) : a = 1, . . . h − k} +
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# {(δa, δh−k+a) = (1,−1) : a = 1, . . . , k} ,

so δ is k-balanced.

Appendix B

The second author is updating and adding new functionality to the qFunctions
package as a part of the Austrian Science Fund (FWF) sponsored project P-34501N
“Partition identities using the weighted word approach” he is running. The most up
to date released version of this package as well as the up to date information can
be found on the author’s website https://akuncu.com/qfunctions/ and on the RISC
website https://risc.jku.at/software/.

One big difference between earlier work and this paper appears in the descrip-
tion of the profiles for cylindric partitions. This paper follows the profile defi-
nitions of Han and Xiong [13], however, in [7, 8, 21] the profiles for cylindric
partitions are given in an equivalent but different representation. One can call
SwitchCPProfileRepresentation and provide a profile either in the form
used in [8] or in [13] to get its equivalent representation. This transformation is simple
and, when needed, it is now automatically detected and done by the qFunctions
package.

The original q-difference relations (3.2) Corteel and Welsh noted for cylin-
dric partitions [8] is implemented in qFunctions. The functionality to find
all the q-difference relations in a coupled system through (3.3)–(3.4) is also
added to the package and it is tested meticulously during the development of this
work. These functions are called WeightedCPFunctionalEquationSystem,
WeightedDSPPFunctionalEquationSystem, and WeightedDCP
FunctionalEquationSystem similar to the original CylindricFunc
tionalEquationCreator with one additional input of the weights at the end.
These functions and other related functionalities will be added to the next release of
the package. It should be noted that these functionality is not necessary for the proofs
of this paper. The implementation is being done solely for assisting future users with
problems involving larger coupled systems of equations.

On top of the automated q-difference equation system setting functions. The second
author also implemented experimental tools where one can choose a product as in the
right-hand side of (2.3) or (2.4) and try any profile against this product to find weights
ai ’s which would give the product as the generating function of the selected object.
These are done by setting up the linear systems induced by the Wa

i sets presented
in Propositions 2.8 and 2.9 against the selected residue classes and modulus. These
functionalities are called FitCPWeights and FitDSPPWeights.
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