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Abstract
The sets of the absolute points of (possibly degenerate) polarities of a projective space
are well known. The sets of the absolute points of (possibly degenerate) correlations,
different from polarities, of PG(2, qn), have been completely determined by B.C.
Kestenband in 11 papers from 1990 to 2014, for non-degenerate correlations and
by D’haeseleer and Durante (Electron J Combin 27(2):2–32, 2020) for degenerate
correlations. The sets of the absolute points of degenerate correlations, different from
degenerate polarities, of a projective space PG(3, qn) have been classified in (Donati
and Durante in J Algebr Comb 54:109–133, 2021). In this paper, we consider the
four dimensional case and completely determine the sets of the absolute points of
degenerate correlations, different from degenerate polarities, of a projective space
PG(4, qn). As an application, we show that some of these sets are related to the
Kantor’s ovoid and to the Tits’ ovoid of Q(4, qn) and hence also to the Tits’ ovoid of
PG(3, qn).
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1 Introduction and preliminary results

1.1 Sesquilinear forms and correlations

Let V and W be two F-vector spaces, where F is a field. A map f : V −→ W is
called semilinear or σ -linear if there exists an automorphism σ of F such that
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f (v + v′) = f (v) + f (v′) and f (av) = aσ f (v)

for all vectors v ∈ V and all scalars a ∈ F. If σ is the identity map, then f is a usual
linear map.Let V be an F-vector space with finite dimension d. A map

〈 , 〉 : (v, v′) ∈ V × V −→ 〈v, v′〉 ∈ F

is a sesquilinear form or a semibilinear form on V if it is a linear map on the first
argument, and it is a σ -linear map on the second argument, that is:

〈v + v′, v′′〉 = 〈v, v′′〉 + 〈v′, v′′〉,
〈v, v′ + v′′〉 = 〈v, v′〉 + 〈v, v′′〉,

〈av, v′〉 = a〈v, v′〉, 〈v, av′〉 = aσ 〈v, v′〉,

for all v, v′, v′′ ∈ V , a ∈ F and σ an automorphism of F. If σ is the identity map, then
〈 , 〉 is a usual bilinear form. If B = (e1, e2, . . . , ed+1) is an ordered basis of V , then
for x, y ∈ V we have 〈x, y〉 = Xt AY σ , where A = (〈ei , e j 〉) is the associated matrix
to the sesquilinear form with respect to the ordered basis B; X and Y are the columns
of the coordinates of x, y w.r.t. B. The term sesqui comes from the Latin, and it means
one and a half. For every subspace S of V , put

ST : = {y ∈ V : 〈x, y〉 = 0 ∀x ∈ S},
S⊥ : = {y ∈ V : 〈y, x〉 = 0 ∀x ∈ S}.

Both ST and S⊥ are subspaces of V . The subspaces V T and V⊥ are called the right and
the left radical of 〈 , 〉 andwill be also denoted by Radr (V ) and Radl(V ), respectively.

Proposition 1.1 The right and the left radical of a sesquilinear form of a vector space
V has the same dimension.

A non-degenerate sesquilinear form 〈 , 〉 has V⊥ = V T = {0}.
Definition 1.2 A σ -sesquilinear form is reflexive if ∀ u, v ∈ V :

〈u, v〉 = 0 ⇐⇒ 〈v, u〉 = 0.

Definition 1.3 Let V be an F-vector space of dimension greater than two. A bijection
g : PG(V ) −→ PG(V ) is a collineation if g, together with g−1, maps k-dimensional
subspaces into k-dimensional subspaces. If V has dimension two, then a collineation
is a map 〈v〉 ∈ PG(V ) −→ 〈 f (v)〉 ∈ PG(V ), induced by a bijective semilinear map
f : V −→ V .

Theorem 1.4 (Fundamental Theorem) Let V be an F-vector space. Every collineation
of PG(V ) is induced by a bijective semilinear map f : V −→ V .

In the sequel if S is a vector subspace of V , we will denote with the same symbol S
the associated projective subspace of PG(V ). If v is a nonzero vector of V , we denote
by 〈v〉 a point of PG(V ).
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Definition 1.5 Let f : V −→ V be a semilinear map, with Ker f �= {0}. The map

〈v〉 ∈ PG(V ) \ Ker f −→ 〈 f (v)〉 ∈ PG(V ),

will be called a degenerate collineation of PG(V ).

Definition 1.6 A (degenerate) correlation or (degenerate) duality of PG(d,F) is a
(degenerate) collineation between PG(d,F) and its dual space PG(d,F)∗.

Remark 1.7 A correlation of PG(d,F) can be seen as a bijective map of PG(d,F)

that maps k-dimensional subspaces into (d − 1− k)-dimensional subspaces reversing
inclusion and preserving incidence.

A correlation of PG(d,F) applied twice gives a collineation of PG(d,F).

Theorem 1.8 Any (possibly degenerate) correlation of PG(d,F), d > 1, is induced
by a σ -sesquilinear form of the underlying vector space Fd+1. Conversely, every σ -
sesquilinear form ofFd+1 induces two (possibly degenerate) correlations of PG(d,F).
The two correlations coincide if and only if the form 〈 , 〉 is reflexive.
Remark 1.9 A (possibly degenerate) correlation induced by a σ -sesquilinear formwill
be also called a σ -correlation. Sometimes a (degenerate) correlation whose associated
form is bilinear is called linear.

Definition 1.10 A (degenerate) polarity is a (degenerate) correlation whose square is
the identity.

If ⊥ is a (possibly degenerate) polarity, then for every pair of points P and R the
following holds:

P ∈ R⊥ ⇐⇒ R ∈ P⊥.

Proposition 1.11 A (degenerate) correlation is a (degenerate) polarity if and only if
the induced sesquilinear form is reflexive.

The non-degenerate, reflexive σ -sesquilinear forms of a (d+1)-dimensional F-vector
space V have been classified (for a proof see, e.g., Theorem 3.6 in [1] or Theorem 6.3
and Proposition 6.4 in [2]).

In this paper, we will focus on degenerate non-reflexive σ -sesquilinear form of a
five dimensional vector space over a finite field Fqn .

2 The �-quadrics of PG(d,qn)

Let V be an F-vector space. If V is equipped with a sesquilinear form 〈 , 〉 we may
consider in PG(V ) the set � of absolute points of the associated correlation that is the
points X such that X ∈ X⊥ (or equivalently X ∈ XT ). If A is the associated matrix to
the σ -sesquilinear form 〈 , 〉 w.r.t. an ordered basis of V , then the set � has equation
Xt AXσ = 0.
The definition of σ -quadrics of PG(d, qn) has been first given in [10] (see also [4, 9]).
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Definition 2.1 A σ -quadric of (d, qn) is the set of the absolute points of a (possibly
degenerate) σ -correlation, σ �= 1, of PG(d, qn). A σ -quadric of PG(2, qn) will be
called a σ -conic.

Proposition 2.2 Let � : Xt AXσ = 0 be a σ -quadric of PG(d, qn). Every subspace S
intersects � either in a σ -quadric of S, or it is contained in �.

Proof Let S be an h-dimensional subspace of PG(d, qn). We may assume, w.l.o.g.
that S : xh+2 = 0, . . . , xd+1 = 0. Let A′ be the submatrix of A obtained by deleting
the last d − h rows and columns of A. If A′ = 0, then S ⊂ �. If A′ �= 0, then S ∩ �

is a σ -quadric of S. ��
Regarding subspaces contained in σ -quadrics, in [9] the following has been proved.

Proposition 2.3 If Sh is an h-dimensional subspace of PG(d, qn) contained in a σ -

quadric � with equation Xt AXσ = 0, then h ≤
⌊
d − rank(A)

2

⌋
. Moreover, there

exists a σ -quadric with equation Xt AXσ = 0, containing a subspace with dimension⌊
d − rank(A)

2

⌋
.

We recall that σ -quadrics have been completely classified in PG(d, qn) for d ∈
{1, 2} (see [4]) and partially classified for d = 3 (see [9]). Here we will deal with the
four dimensional case. As in [9], we will divide the σ -quadrics of PG(4, qn) according
to the rank of the associated matrix. We start with the rank 4 case.
For what follows, we can assume σ �= 1. Let V = F

5
qn , let 〈 , 〉 be a degenerate σ -

sesquilinear formwith associated (degenerate) correlations⊥, T and let� : Xt AXσ =
0 be the associated σ -quadric. We will denote by L = V⊥ and R = V T , the left and
right radicals of 〈 , 〉, respectively, seen as subspaces of PG(4, qn) that will be called
the vertices of �.

Proposition 2.4 [9, Proposition 2.3]Let� : Xt AXσ = 0 be aσ -quadric ofPG(d, qn).

• For every point Y ∈ � \ R, the hyperplane Y T is the union of lines through Y
either contained or 1-secant or 2-secant to �.

• For every point Y ∈ � \ L, the hyperplane Y⊥ is the union of lines through Y
either contained or 1-secant or 2-secant to �.

Corollary 2.5 [9, Corollary 2.4] Let � : Xt AXσ = 0 be a σ -quadric of PG(d, qn) and
let L = V⊥, R = V T .

• For every point Y ∈ L, the set Y T ∩ � is the union of lines through Y .
• For every point Y ∈ R, the set Y⊥ ∩ � is the union of lines through Y .

Remark 2.6 Let � : Xt AXσ = 0 be a σ -quadric of PG(d, qn), n ≥ 2, and let L = V⊥
and R = V T be its vertices. For every pointY ∈ L , the hyperplaneY T does not contain
(q + 1)-secant lines through Y to �, and for every point Y ∈ R, the hyperplane Y⊥
does not contain (q + 1)-secant lines through Y to �. Indeed, let Y ∈ L and let Z be
a point of Y T . The line Y Z has equation X = λY + μZ , (λ, μ) ∈ PG(1, qn); hence,
Y T ∩ � is determined by the solutions in (λ, μ) of the following equation:

Y t AY σ λσ+1 + Y t AZσ λμσ + Zt AY σ λσ μ + Zt AZσ μσ+1 = 0. (1)
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In the previous equation, it is Y t AY σ = Y t AZσ = 0, since Y ∈ L and Zt AY σ = 0,
since Z ∈ Y T . Hence, Eq. (1) becomes Zt AZσ μ = 0 and two cases occur:

• If Zt AZσ = 0, then the line Y Z is contained in �.
• If Zt AZσ �= 0, then the line Y Z intersects � exactly at the point Y .

If Y ∈ R, the result follows in a similar way.

3 �-Quadrics of rank 4 in PG(4,qn)

Let � : Xt AXσ = 0 be a σ -quadric of PG(4, qn) associated with a σ -sesquilinear
form 〈 , 〉. In this section, we assume that rk(A) = 4. Therefore, the radicals V⊥ and
V� are one-dimensional vector subspaces of V , so they are points of PG(4, qn). We
distinguish several cases:

1) V⊥ �= V�. We may assume w.l.o.g. that the point R = (1, 0, 0, 0, 0) is the right
radical and the point L = (0, 0, 0, 0, 1) is the left radical. It follows that

A =

⎛
⎜⎜⎜⎜⎝

0 a12 a13 a14 a15
0 a22 a23 a24 a25
0 a32 a33 a34 a35
0 a42 a43 a44 a45
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

and � : (a12x1 + a22x2 + a32x3 + a43x4)xσ
2 + (a13x1 + a23x2 + a33x3 +

a43x4)xσ
3 +(a14x1 + a24x2 + a34x3 + a44x4)xσ

4 + (a15x1 + a25x2 + a35x3 +
a45x4)xσ

5 = 0. The degenerate collineation

� : Y ∈ PG(4, qn) \ {R} �→ Xt AY σ = 0 ∈ PG(4, qn)∗

associated with the sesquilinear form maps points into hyperplanes through the
point L . Points that are on a common line through R are mapped into the same
hyperplanes through L . Therefore, � induces a collineation � : SR −→ S∗

L . Let

SR = {lα,β,γ,δ : (α, β, γ, δ) ∈ PG(3, qn)},

where

lα,β,γ,δ :

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = λ

x2 = μα

x3 = μβ

x4 = μγ

x5 = μδ

, (λ, μ) ∈ PG(1, qn)

and

S∗
L = {
α′,β ′,γ ′,δ′ : (α′, β ′, γ ′, δ′) ∈ PG(3, qn)},
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where


α′,β ′,γ ′,δ′ : α′x1 + β ′x2 + γ ′x3 + δ′x4 = 0.

The collineation � is given by �(lα,β,γ,δ) = 
α′,β ′,γ ′,δ′ , with

(α′, β ′, γ ′, δ′)t = A′[(α, β, γ, δ)t
]σ

,

where A′ is the matrix obtained by A by deleting the last row and the first col-
umn. Note that |A′| �= 0 since rk(A) = 3. It is easy to see that � is the set
of points of intersection of corresponding elements under the collineation �. If
Y = (y1, y2, y3, y4, y5) is a point of � \ {R}, then the tangent hyperplane to �

at the point Y is the hyperplane 
Y = Y� with equation Xt AY σ = 0. It follows
that for every point Y of � \ {R} the hyperplane 
Y contains the point L . The
tangent hyperplane 
L = L� to � at the point L is the hyperplane with equation
Xt ALσ = 0, that is:


L : a15x1 + a25x2 + a35x3 + a45x4 = 0.

We again distinguish some cases.

i) First assume that 
L contains the line RL . It follows that, w.l.o.g., we may
put 
L : x4 = 0. Hence, a15 = a25 = a35 = 0 and we can put a45 =
1, obtaining � : (a12x1 + a22x2 + a32x3 + a42x4)xσ

2 + (a13x1 + a23x2 +
a33x3 + a43x4)xσ

3 +(a14x1 + a24x2 + a34x3 + a44x4)xσ
4 + x4xσ

5 = 0. With
this assumption, the collineation � maps the line RL into the hyperplane 
L .
Consider now the star SR,
L of lines through R in 
L . We distinguish two
cases.
i.1) Suppose that � maps the lines of SR,
L into the hyperplanes through the

line RL. In this case, we can assume that � maps the line x3 = x4 =
x5 = 0 into the hyperplane x2 = 0, the line x2 = x4 = x5 = 0 into the
hyperplane x3 = 0 and the line x2 = x3 = x5 = 0 into the hyperplane
x1 = 0 obtaining

� : ax1xσ
4 + bxσ+1

2 − cxσ+1
3 + x4x

σ
5 = 0.

We can assume that � contains the points (0, 1, 0, 1,−1) and (1, 0, 0, 1,
−1) obtaining a = b = 1. By Corollary 2.5, we know that R⊥ ∩ � is
the union of lines through R. Since R⊥ has equation x4 = 0, then a line
lα,β,γ,δ through R is contained in � if, and only if, ασ+1 − cβσ+1 = 0.
Hence, the number of lines through R contained in �, different from the
line RL , depends on the cardinality of the set {lx,1,0,y ∈ SR : xσ+1 = c},
and this is given by qn|{x ∈ Fqn : xσ+1 = c}|. Moreover, the number
of lines through L contained in �, different from the line RL , is equal
to qn|{x ∈ Fqn : xσ+1 = c}|. Indeed, let SL = {tα,β,γ,δ : (α, β, γ, δ) ∈
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PG(3, qn)} be the set of lines through L , where

tα,β,γ,δ :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = λα

x2 = λβ

x3 = λγ

x4 = λδ

x5 = μ

, (λ, μ) ∈ PG(1, qn).

By Corollary 2.5, 
L ∩ � is the union of lines through L . Then a line

tα,β,γ,δ is contained in � if, and only if, βσ+1 − cγ σ+1 = 0. This yields
that the number of lines through L contained in �, different from the line
RL , depends on the cardinality of the set {tx,y,1,0 ∈ SL : yσ+1 = c}. The
number of solutions of the equation xσ+1 = c is either 0, 1, 2 or q + 1
depending upon q even or odd and n even or odd. We distinguish several
cases:

– If q is even and n is even, then there are either 0 or 1 or q + 1 solutions giving
either 0 or qn or (q + 1)qn lines through R (and hence through L) contained in �.

– If q is even and n is odd, then there is a unique solution of the equation giving qn

lines through R (and through L) contained in �.
– If q is odd and n is even, then there are either 0 or q + 1 solutions of the equation
giving either 0 or (q + 1)qn lines through R (and through L) contained in �.

– If q is odd and n is odd, then there are either 0 or 2 solutions of the equation giving
either 0 or 2qn lines through R (and through L) contained in �.

In these cases, we will call the set � either an elli ptic or a qn-parabolic or a 2qn-
hyperbolic or a (q + 1)qn-hyperbolic σ -quadric with collinear vertex points
R and L according to the number of lines through R (different from the line RL)
contained in � is either 0 or qn or 2qn or (q + 1)qn . Now, let l a line through R. If
l /∈ SR,
L then �(l) �⊃ RL and so l ∩ �(l) is a point. If l ∈ SR,
L then l ∩ �(l)
is either the point R or the line l. Recalling that � contains the line RL , we get
|�| = q3n + qn · qn|{x ∈ Fqn : xσ+1 = c}| + qn + 1. If q is even and n is even, put
d = (qn − 1, qm + 1).

Theorem 3.1 Let � be a degenerate elliptic σ -quadric of PG(4, qn) with collinear
vertex points R and L. Then, � has canonical equation � : x1xσ

4 + xσ+1
2 − cxσ+1

3 +
x4xσ

5 = 0, with c a nonsquare if q is odd and c(qn−1)/d �= 1 if q is even and n is even.
Moreover, |�| = q3n + qn + 1 and � contains only the line RL.

Theorem 3.2 Let � be a degenerate qn-parabolic σ -quadric of PG(4, qn) with
collinear vertex points R and L. Then, q is even and � has canonical equation
� : x1xσ

4 + xσ+1
2 − cxσ+1

3 + x4xσ
5 = 0, where the equation xσ+1 = c has a unique

solution. Moreover, |�| = q3n + q2n + qn + 1 and � contains qn lines through R and
qn lines through L (beside RL).
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Theorem 3.3 Let � be a degenerate 2qn-hyperbolic σ -quadric of PG(4, qn) with
collinear vertex points R and L. Then q and n are odd and � has canonical equation
� : x1xσ

4 + xσ+1
2 − cxσ+1

3 + x4xσ
5 = 0, where xσ+1 = c has exactly two solutions.

Moreover, |�| = q3n + 2q2n + qn + 1 and � contains 2qn lines through R and 2qn

lines through L (beside RL).

Theorem 3.4 Let � be a degenerate (q + 1)qn-hyperbolic σ -quadric of PG(4, qn)
with collinear vertex points R and L. Then, n is even and � has canonical equation
� : x1xσ

4 + xσ+1
2 − cxσ+1

3 + x4xσ
5 = 0, xσ+1 = c has exactly q + 1 solutions.

Moreover, |�| = q3n + (q + 1)q2n + qn + 1 and � contains (q + 1)qn lines through
R and (q + 1)qn lines through L (beside RL).

i.2) Now, suppose that� does not map the lines of SR,
L into the hyperplanes through
the line RL . In this case, there exists a hyperplane
 containing RL such that the lines
of the starSR,
 aremapped, under�, into the hyperplanes through RL . Hence, there is
another line through R (together with RL) contained in�. In this case, wemay assume
that 
 : x3 = 0 and � maps the line x3 = x4 = x5 = 0 into the hyperplane x2 = 0,
the line x2 = x4 = x5 = 0 into the hyperplane x1 = 0, and the line x2 = x3 = x5 = 0
into the hyperplane x3 = 0. Hence,

� : −axσ+1
2 + bx1x

σ
3 + cx3x

σ
4 + x4x

σ
5 = 0.

Assuming that � contains the points (0, 1, 0, 1, 1), (0, 0,−1, 1, 1), (−1, 0, 1, 1, 0),
we get a = b = c = 1. Since R⊥ has equation x3 = 0; then, a line lα,β,γ,δ through
R is contained in � if, and only if, ασ+1 = γ δσ . Observe that if α = 0, then either
γ = 0, which gives the line RL , or δ = 0, which gives the line l0,0,1,0. So, the number
of lines through R contained in �, different from the lines RL and l0,0,1,0, depends
on the cardinality of the set {l1,0,x,y ∈ SR : xyσ = 1}. A pair (x, y) is a solution of

xyσ = 1 if, and only if, y = x−σ−1
. Hence, there are qn − 1 solutions of the equation

giving qn − 1 lines through R contained in �. We will call the set � a non-degenerate
parabolic σ -quadric with collinear vertex points R and L . The following holds:

Theorem 3.5 Let � be a non-degenerate parabolic σ -quadric of PG(4, qn) with
collinear vertex points R and L. Then, � has canonical equation � : −xσ+1

2 +
x1xσ

3 + x3xσ
4 + x4xσ

5 = 0. Moreover, |�| = q3n + q2n + qn + 1 and � contains qn

lines through R and qn lines through L (beside RL).

ii) Next, assume that
L does not contain the line RL (or equivalently� does not map
the line RL into a hyperplane through the line RL). W.l.o.g. we may put 
L : x1 = 0.
In this case, there is a hyperplane through R (not containing L), say 
R , such that the
star of lines through R in
R ismapped, under�, into the hyperplanes through RL .We
may assume that 
R : x5 = 0. Hence, � maps the lines lα,β,γ,0 into the hyperplanes

0,β ′,γ ′,δ′ so wemay assume that�maps the line l1,0,0,0 into the hyperplanes
0,1,0,0,
the line l0,1,0,0 into the hyperplanes 
0,0,1,0, and the line l0,0,1,0 into the hyperplanes

0,0,0,1. Hence, the points of � satisfy the equation

� : axσ+1
2 + bxσ+1

3 + cxσ+1
4 + x1x

σ
5 = 0.
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Assuming, w.l.o.g., that the point (−1, 1, 0, 0, 1) belongs to � we obtain a = 1. Since
R⊥ has equation x5 = 0, then a line lα,β,γ,δ through R is contained in � if, and only
if, ασ+1 + bβσ+1 + cγ σ+1 = 0. Hence, the numbers of lines through R contained
in � depend on the number of points of the Kestenband σ -conic of PG(2, qn) (see
[11–21]) given by the equation xσ+1 + byσ+1 + czσ+1 = 0. We distinguish several
cases:

– If q is odd and n is odd, then there are qn + 1 points giving qn + 1 lines through
R (and through L) contained in �.

– If q is even and n is odd, then there are qn + 1 points giving qn + 1 lines through
R (and through L) contained in �.

– If n is even, then there are either qn+1+(−q)n/2+1(q−1) or qn+1+(−q)n/2(q−
1) or qn + 1 − 2(−q)n/2 points giving either qn + 1 + (−q)n/2+1(q − 1) or
qn + 1+ (−q)n/2(q − 1) or qn + 1− 2(−q)n/2 lines through R (and through L)

contained in �.

In these cases, we will call the set � either of type 1 or of type 2 or of type 3 or
of type 4 with vertex points R and L according to the number of lines through R
contained in� is either qn+1 or qn+1+(−q)n/2+1(q−1) or qn+1+(−q)n/2(q−1)
or qn + 1 − 2(−q)n/2. Now, let l a line through R. If l is not contained in 
R , then
�(l) �⊃ RL and so l ∩ �(l) is a point. If l is contained in 
R , then l ∩ �(l) is
either the point R or the line l. Recalling that � does not contain the line RL , we get
|�| = q3n + qn|{(x, y, z) ∈ (2, qn) : xσ+1 + byσ+1 + czσ+1 = 0}| + 1.

Theorem 3.6 Let � be a non-degenerate σ -quadric of type 1 of PG(4, qn) with vertex
points R and L. Then, q is odd and n is either odd or even and � has canonical
equation � : xσ+1

2 + xσ+1
3 + xσ+1

4 + x1xσ
5 = 0, where the Kestenband σ -conic of

PG(2, qn) given by the equation xσ+1+yσ+1+zσ+1 = 0 has qn+1 points. Moreover,
|�| = q3n + q2n + qn + 1 and � contains exactly qn + 1 lines through R and exactly
qn + 1 lines through L.

Theorem 3.7 Let � be a non-degenerate σ -quadric of type 2 of PG(4, qn) with vertex
points R and L. Then, n is even and � has canonical equation � : xσ+1

2 + xσ+1
3 +

xσ+1
4 + x1xσ

5 = 0, where the Kestenband σ -conic of PG(2, qn) given by the equation
xσ+1+yσ+1+zσ+1 = 0 has qn+1+(−q)n/2+1(q−1) points.Moreover, |�| = q3n+
q2n +qn +qn(−q)n/2+1(q−1)+1 and� contains exactly qn +1+(−q)n/2+1(q−1)
lines through R and exactly qn + 1 + (−q)n/2+1(q − 1) lines through L.

Theorem 3.8 Let � be a non-degenerate σ -quadric of type 3 of PG(4, qn) with vertex
points R and L. Then, n is even and � has canonical equation � : xσ+1

2 + xσ+1
3 +

cxσ+1
4 + x1xσ

5 = 0, where the Kestenband σ -conic of PG(2, qn) given by the equation
xσ+1 + yσ+1 + czσ+1 = 0 has qn + 1 + (−q)n/2(q − 1) points, with c /∈ {xq+1 :
x ∈ Fqn }. Moreover, |�| = q3n + q2n + qn + qn(−q)n/2(q − 1) + 1 and � contains
exactly qn +1+ (−q)n/2(q−1) lines through R and exactly qn +1+ (−q)n/2(q−1)
lines through L.

Theorem 3.9 Let � be a non-degenerate σ -quadric of type 4 of PG(4, qn) with vertex
points R and L. Then, n is even and � has canonical equation � : xσ+1

2 + bxσ+1
3 +
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cxσ+1
4 + x1xσ

5 = 0, where the Kestenband σ -conic of PG(2, qn) given by the equation
xσ+1 + byσ+1 + czσ+1 = 0 has qn + 1 − 2(−q)n/2 points, with b, c, b/c /∈ {xq+1 :
x ∈ Fqn }. Moreover, |�| = q3n + q2n + qn − 2qn(−q)n/2 + 1 and � contains exactly
qn + 1 − 2(−q)n/2 lines through R and exactly qn + 1 − 2(−q)n/2 lines through L.

2) V⊥ = V�. We may assume w.l.o.g. that the point R = L = (1, 0, 0, 0, 0) is
both the left radical and the right radicals. It follows that, in this case, � is a cone with
vertex the point R projecting a σ -quadric of rank 4 in a hyperplane not through R.
Indeed, since the matrix A has rank four with first column and last row equal to 0, by
choosing a hyperplane not through the point R, e.g., 
 : x1 = 0, we get that the set
� ∩ 
 is a σ -quadric of the hyperplane 
 with associated matrix of rank 4.

Proposition 3.10 Let � : Xt AXσ = 0 be a σ -quadric of PG(4, qn), with rk(A) = 4.
The set � is one of the following:

• a degenerate either elliptic or qn-parabolic or 2qn-hyperbolic or (q + 1)qn-
hyperbolic σ -quadric with two collinear vertex points;

• a non-degenerate parabolic σ -quadric with two collinear vertex points;
• a non-degenerate σ -quadric either of type 1 or of type 2 or of type 3 or of type 4
with two vertex points;

• a cone with vertex a point V projecting a σ -quadric of rank 4 in a hyperplane 
,
with V /∈ 
.

4 �-Quadrics of rank 3 in PG(4,qn)

In this section, a σ -quadric � of PG(4, qn) will have equation Xt AXσ = 0 with
rk(A) = 3. Hence, dimV⊥ = dimV� = 2 so right and left radicals in PG(4, qn) are
two lines r and l. We distinguish three cases:

1) r ∩ l = ∅. We may assume w.l.o.g. that r : x3 = x4 = x5 = 0 and l : x1 = x2 =
x3 = 0. Then:

� : (a13x1 + a23x2 + a33x3)x
σ
3 + (a14x1 + a24x2 + a34x3)x

σ
4

+(a15x1 + a25x2 + a35x3)x
σ
5 = 0.

Let

Pr = {πa,b,c : (a, b, c) ∈ PG(2, qn)},

where

πa,b,c =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = λ

x2 = μ

x3 = γ a

x4 = γ b

x5 = γ c

, (λ, μ, γ ) ∈ PG(2, qn)
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and

Sl = {
a,b,c : (a, b, c) ∈ PG(2, qn)}, where 
a,b,c : ax1 + bx2 + cx3 = 0.

The σ -quadric � is the set of points of PG(4, qn) of intersection of corresponding
elements under a collineation � : Pr −→ Sl . Let 
rl be the hyperplane spanned
by the lines r and l, it follows that:


rl : x3 = 0.

Let π the plane through r s.t. 
rl = �(π). We distinguish two cases.

a) First assume that 
rl contains the plane π .
W.l.o.g., we may put π : x3 = x4 = 0. Then, �(π0,0,1) = 
0,0,1. We may
assume that�maps the planeπ1,0,0 into the hyperplane
1,0,0, the planeπ0,1,0
into the hyperplane 
0,1,0 and the plane π1,1,1 into the hyperplane 
1,1,1, and
hence, a canonical equation of � in this case is given by

� : x1xσ
3 + x2x

σ
4 + x3x

σ
5 = 0.

The set � is the union of the plane π and q2n + qn lines. Let P be a point of
the plane πa,b,c ∈ Pr , then P = (λ, μ, γ a, γ b, γ c). Observe that P belongs
to l if, and only if, λ = μ = a = 0 and γ �= 0. It follows that the plane πa,b,c

is skew with l if, and only if, a �= 0. Therefore, � contains qn lines which are
transversal with r and l, and q2n which are incident with r and skew with l.
Hence, � has q3n + 2q2n + qn + 1 points. We will call this set a degenerate
hyperbolic σ -quadric with skew vertex lines r and l.

b) Now assume that 
rl does not contain the plane π .
It follows that, w.l.o.g., we may put π : x4 = x5 = 0. Then, �(π1,0,0) =

0,0,1. We may assume that � maps the plane π0,1,0 into the hyperplane

0,1,0, the plane π0,0,1 into the hyperplane 
1,0,0 and the plane π1,1,1 into the
hyperplane 
1,1,1, and hence, a canonical equation of � in this case is given
by

� : xσ+1
3 + x2x

σ
4 + x1x

σ
5 = 0.

The set � is the union of q2n + qn + 1 lines whose qn + 1 lines are transversal
with r and l, and q2n lines are incident with r and skew with l. Observing that
π ∩ 
rl = r , it follows that � has q3n + q2n + qn + 1 points. We will call this
set a non-degenerate parabolic σ -quadric with skew vertex lines r and l.
2) r ∩ l = {V } is a point. We may assume w.l.o.g. that r : x3 = x4 = x5 = 0

and l : x2 = x3 = x4 = 0. In this case, the σ -quadric � is a cone
with vertex the point V . Since the matrix A has rank three with first two
columns and first and last rows equal to 0, by choosing a hyperplane not
through the point V , e.g., 
 : x1 = 0, we get that the set � ∩ 
 is a
σ -quadric of the hyperplane 
 with associated matrix of rank three and
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two (collinear or not) vertex points given by R = r ∩ 
 and L = l ∩ 
.
It follows that � is a cone with vertex the point V projecting a σ -quadric
of rank 3 in a hyperplane not through V with two (collinear or not) vertex
points.

3) r = l. We may assume w.l.o.g. that r = l : x3 = x4 = x5 = 0. It follows
that, in this case, � is a cone with vertex the line r . Since the matrix A
has rank three with first two columns and first two rows equal to 0, by
choosing a plane not through the line r , e.g., π : x1 = x2 = 0, we get
that the set � ∩ π is a σ -conic of the plane π with associated matrix of
rank three. Hence, it is a Kestenband σ -conic of π . It follows that � is a
cone with vertex the line r projecting a Kestenband σ -conic in a plane not
through r . In particular, if n = 2 and σ 2 = 1, then � is a Hermitian cone
with vertex the line r .

Proposition 4.1 Let � : Xt AXσ = 0 be a σ -quadric of PG(4, qn), with rk(A) = 3.
The set � is one of the following:

• a degenerate hyperbolic σ -quadric with skew vertex lines r and l;
• a non-degenerate parabolic σ -quadric with skew vertex lines r and l;
• a cone with vertex a point V projecting a σ -quadric of rank 3 in a hyperplane 


with two (collinear or not) vertex points, with V /∈ 
;
• a cone with vertex a line v projecting a Kestenband σ -conic of a plane π not
through v.

5 �-Quadrics of rank 2 in PG(4,qn)

In this section, a σ -quadric � of PG(4, qn) will have equation Xt AXσ = 0 with
rk(A) = 2. Hence, dimV⊥ = dimV� = 3 so right and left radicals in PG(4, qn) are
two planes πR and πL . We distinguish three cases:

1) πR ∩ πL = {V } is a point. We may assume w.l.o.g. that πR : x4 = x5 = 0 and
πL : x1 = x2 = 0. It follows that, in this case, � is a cone with vertex the point
V . Since the matrix A has rank two with first three columns and last three rows
equal to 0, by choosing a hyperplane not through the point V , e.g., 
 : x3 = 0,
we get that the set � ∩ 
 is σ -quadric of the hyperplane 
 with associated matrix
of rank 2 and vertices the lines

r : x3 = x4 = x5 = 0 and l : x1 = x2 = x3 = 0.

Hence, it is a σ -quadric of pseudoregulus type of 
 with skew vertex lines r and
l (see [7, 9]). It follows that � is a cone with vertex the point V projecting a σ -
quadric of pseudoregulus type in a hyperplane not through V with skew vertex
lines.

2) πR ∩ πL = t is a line. We may assume w.l.o.g. that πR : x4 = x5 = 0, πL : x3 =
x4 = 0. In this case, the σ -quadric � is a cone with vertex the line t projecting
a (degenerate or not) Cm

F -set (see [5, 6, 8]) in a plane not through t . Indeed, let π
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a plane not through the line t and let A = πR ∩ π , B = πL ∩ π . It follows that
� ∩ π is a set of points of π generated by a collineation between the pencils of
lines of π with center the points A and B induced by the collineation between the
pencils of hyperplanes PπR and PπL that is associated with �.

3) πR = πL . We may assume w.l.o.g. that πR = πL : x4 = x5 = 0. In this case,
the σ -quadric is a cone with vertex the plane πR over a σ -quadric of a line skew
with πR . That is, � is either just the plane πR or a hyperplane through πR or a pair
of distinct hyperplanes through πR or q + 1 hyperplanes through πR forming an
Fq -subpencil of hyperplanes through πR .

Proposition 5.1 Let � : Xt AXσ = 0 be a σ -quadric of PG(4, qn), with rk(A) = 2.
The set � is one of the following:

• a cone with vertex a point V projecting a σ -quadric of pseudoregulus type in a
hyperplane 
 with skew vertex lines, with V /∈ 
;

• a cone with vertex a line v projecting a (possibly degenerate) Cm
F -set of a plane

π , with v ∩ π = ∅;
• a cone with vertex a plane π projecting a σ -quadric of a line v, with v ∩ π = ∅
(hence either just the plane π or one, two or q + 1 hyperplanes through π ).

6 �-Quadrics of rank 1 in PG(4,qn)

In this section, a σ -quadric � of PG(4, qn) will have equation Xt AXσ = 0 with
rk(A) = 1. Hence, dimV⊥ = dimV� = 4 so left and right radicals in PG(4, qn) are
hyperplanes. We distinguish two cases:

• V⊥ �= V�.Wemay assume that
R : x5 = 0 is the right radical and
L : x1 = 0 is
the left radical. Hence,� : x1xσ

5 = 0 that is the union of two different hyperplanes.
• V⊥ = V�. We may assume that 
R = 
L : x5 = 0 is both the left and the right
radical. Hence, � : xσ+1

5 = 0 that is a hyperplane of PG(4, qn).

7 �-Quadrics of PG(4,q) and ovoids ofQ(4,q)

In this final section, wewill show, as an application of σ -quadrics of PG(4, q), that two
of the known ovoids of Q(4, q) can be obtained as intersection of a suitable σ -quadric
with Q(4, q).
An ovoid of Q(4, q) is a set of q2 + 1 points no two collinear on the quadric. Let
Q(4, q) : x1x5+ x2x4+ x23 = 0. Any ovoid of Q(4, q) can be written in the following
way:

O( f ) = {(0, 0, 0, 0, 1)} ∪ {(1, x, y, f (x, y),−y2 − x f (x, y)) : x, y ∈ Fq}

for some function f (x, y). They are rare objects and, beside the classical example
given by an elliptic quadric, only three classes are known for q odd, one class for
q even and a sporadic example for q = 35. They have been studied since the end
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of the 1980s also because of their connections with many other important and well
studied objects such as semifield flocks of a three-dimensional quadratic cone, ovoids
of PG(3, q), eggs of finite projective spaces, translation generalized quadrangles, rank
2 commutative semifields, etc. Here we present the two classes of ovoids related to
σ -quadrics of PG(4, q). Let n be a non-square of Fq , q = ph , q odd and h > 1, and
let σ �= 1 be an automorphism of Fq , then the set O( f1) with f1(x, y) = −nxσ is an
ovoid of Q(4, q) and it is called Kantor ovoid. If q = 22h+1 and σ = 2h+1, then
O( f2) with f2(x, y) = xσ+1 + yσ is an ovoid of Q(4, q), and it is called T its ovoid.
The following holds:

Proposition 7.1 Let n be a non-square of Fq , q = ph, q odd and h > 1, and let σ �= 1
be an automorphism of Fq . The σ -quadric � of rank 2 of (4, q) given by the equation
x4xσ

1 + nx1xσ
2 = 0 meets the quadric Q(4, q) : x1x5 + x2x4 + x23 = 0 in the union

of a Kantor ovoid and a quadratic cone contained in a hyperplane of PG(4, q).

Proof Start observing that � = {x1 = 0} ∪ {(1, x, y,−nxσ , z) : x, y, z ∈ Fq}.
First let P = (1, x, y,−nxσ , z) be a point in � \ {x1 = 0}. It follows that P belongs
to Q(4, q) if, and only if, z = −y2 + nxσ+1.

Now observe that the intersection {x1 = 0} ∩ Q(4, q) is given by

{
x1 = 0

x2x4 + x23 = 0,

that is a quadratic cone of the hyperplane x1 = 0.

Proposition 7.2 Let q = 22h+1 and let σ = 2h+1. The σ -quadric � of rank 3 of
PG(4, q) given by the equation x4xσ

1 + xσ+1
2 + x1xσ

3 = 0 meets the quadric Q(4, q) :
x1x5 + x2x4 + x23 = 0 in the union of a Tits ovoid and the line x1 = x2 = x3 = 0.

Proof Start observing that

� = {x1 = x2 = x3 = 0} ∪ {(1, x, y, xσ+1 + yσ , z) : x, y, z ∈ Fq}.

First let P = (1, x, y, xσ+1 + yσ , z) be a point in � \ {x1 = x2 = x3 = 0}. It follows
that P belongs to Q(4, q) if, and only if, z = y2 + xσ+2 + xyσ . Now observe that the
quadric Q(4, q) contains the lines {x1 = x2 = x3 = 0}. ��
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