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Abstract
In the present paper, we study conic-line arrangements having nodes, tacnodes, and
ordinary triple points as singularities. We provide combinatorial constraints on such
arrangements, and we give the complete classification of free arrangements in this
class.
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1 Introduction

In the present paper, we study a class of conic-line arrangements in the complex
projective plane P2

C
, with special attention to the free arrangements in this class. The

theory of free line arrangements is rather rich, andwe havemany results which provide
(at least) a partial characterization of the freeness. In that subject, the ultimate goal
is to understand whether Terao’s Conjecture is true in its whole generality. On the
other hand, line arrangements show up naturally in algebraic geometry. For example,
Hirzebruch’s inequality appreciated very much in combinatorics is motivated bymany
extreme problems in algebraic geometry and it is obtained with its methods. Based on
that, it seems to be quite natural to extend this setup to higher degree curves. From
our perspective, it seems very natural to start working on arrangement consisting of
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rational curves in the plane. Here, we study arrangements of smooth conics and lines
in the plane. The first main motivation is that conic-line arrangements admit non-
ordinary singularities, so we can study arrangements having, for instance, tacnodes as
singularities.

In general, singularities of such arrangements are in general not quasi-homogeneous
which makes their study quite complicated. By [14, Example 4.1], we know that
Terao’s conjecture does not hold in general for such arrangements. Let us recall the
following counterexample from the aforementioned paper.

Example 1.1 Consider the following conic-line arrangement

CL1 : xy · (y2 + xz) · (y2 + x2 + 2xz) = 0.

The intersection point P = (0 : 0 : 1) has multiplicity 4, and it is quasi-homogeneous
(although it is not ordinary). One can show that CL1 is free with the exponents (2, 3).
If we perturb a bit line y = 0, taking, for instance, x − 13y = 0, we obtain a new
conic-line arrangement

CL2 : x · (x − 13y) · (y2 + xz) · (y2 + x2 + 2xz) = 0.

In this new arrangement, the intersection point P = (0 : 0 : 1) has multiplicity 4,
but it is no longer quasi-homogeneous, and CL2 is not free. In fact, the arrangement
CL2 is nearly free, as defined in [6]. Note that in many papers on arrangements of
plane curves the hypothesis that all the singularities are quasi-homogeneous plays a
key role, see, for instance, [4] and [15].

In the present paper, we focus on conic-line arrangements in the plane such that their
singularities are nodes, tacnodes, and ordinary triple points. This assumption is
mostly related to our main scope, to verify Terao’s Conjecture for as large as pos-
sible class of conic-line arrangements. One of our results, Proposition 4.7, tells us
that if C is a free reduced plane curve of degree m having only nodes, tacnodes, and
ordinary triple points, then m ≤ 9. Based on that combinatorial restriction, we can
perform a detailed search in order to find conic-line arrangements with nodes, tacn-
odes, and ordinary triple points that are free. Our main result, Corollary 5.10, tells us
that the so-called Numerical Terao’s Conjecture holds for our class of conic-line
arrangements. As it was mentioned at the beginning of this section, curve arrange-
ments attract researchers working both in algebraic geometry and combinatorics. Due
to these reasons, we provide combinatorial constraints on the weak combinatorics of
conic-line arrangements with nodes, tacnodes, and ordinary triple points. We deliver a
Hirzebruch-type inequality for such arrangements, see Theorem 2.1, and this theorem
is in the spirit of results presented in [13]. Then, using the properties of spectra of
singularities as in the seminal paper by Varchenko [17], we provide bounds on the
number of tacnodes and ordinary triple points, see Theorem 3.1.
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2 Hirzebruch-type inequality for conic-line arrangements

We start with presenting our setup. Let CL = {�1, . . . , �d , C1, . . . , Ck} ⊂ P
2
C
be an

arrangement consisting of d lines and k smooth conics. We assume that our conic-line
arrangements have n2 nodes, t tacnodes, and n3 ordinary triple points. We have the
following combinatorial count

4

(
k

2

)
+ 2kd +

(
d

2

)
= n2 + 2t + 3n3. (2.1)

Proof Observe that the left-hand side is the number of pairwise intersections of curves
contained in CL. The right-hand side, according to Bézout’s theorem, is based on the
intersection indices. If p is a node, then the intersection index of curves meeting at
that point is equal to 1. If p is a tacnode, then the intersection index of curves meeting
at that point is equal to 2. Finally, if p is an ordinary triple points, that the intersection
index of curves meeting at that point is equal to 3. This completes our justification. ��
The first result of the present paper is the following Hirzebruch-type inequality.

Theorem 2.1 Let CL = {�1, . . . , �d , C1, . . . , Ck} ⊂ P
2
C

be an arrangement of d lines
and k smooth conics and such that 2k + d ≥ 12. Assume that CL has only n2 nodes,
t tacnodes, and n3 ordinary triple points. Then,

20k + n2 + 3

4
n3 ≥ d + 4t . (2.2)

We will prove the above theorem using Langer’s variation on the Miyaoka–Yau
inequality [10] which involves the local orbifold Euler numbers eorb of singular points.
We recall basics on them in a concise way. Let (P2

C
, αC) be an effective and log canon-

ical pair, where C is a boundary divisor having only nodes, tacnodes, and ordinary
triple points as singularities. Then,

• if q is a node, then the local orbifold Euler number is equal to eorb(p,P2
C
, αC) =

(1 − α)2 provided that 0 ≤ α ≤ 1,
• if q is a tacnode, then eorb(q,P2

C
, αC) = (1 − 2α) provided that 0 ≤ α ≤ 1

4

• if q is an ordinary triple point, then eorb(q,P2
C
, αC) ≤

(
1 − 3α

2

)2

provided that

0 ≤ α ≤ 2
3

Here, we are ready to present our proof of Theorem 2.1.

Proof Let C :=�1 +· · ·+�d +C1 +· · ·+Ck be a divisor associated with CL and such
that m = degC = d + 2k ≥ 12—we will see in a moment why the last assumption
is crucial. First of all, we need to choose α in such a way that K

P
2
C

+ αC is effective
and log canonical. In order to obtain the effectivity of the pair, one needs to satisfy
the condition that −3 + α(2k + d) ≥ 0 which implies α ≥ 3/(2k + d). On the other
hand, our pair is log canonical if α ≤ min{1, 2/3, 1/4}, so α ≤ 1/4. Due to these two

123



406 Journal of Algebraic Combinatorics (2022) 56:403–424

reasons, we get α ∈
[
3/(2k +d), 1/4

]
, and this condition is non-empty provided that

2k + d ≥ 12. From now on, we take α = 1
4 and then apply the following inequality

∑
p∈Sing(C)

3

(
α(μp − 1) + 1 − eorb(p,P2

C
, αC)

)
≤ (3α − α2)m2 − 3αm, (2.3)

where μp is the Milnor number of a singular point p ∈ Sing(C). This gives us

3n2

(
1

4
(1 − 1) + 1 − (1 − 1/4)2

)
+ 3t

(
1

4
(3 − 1) + 1 − (1 − 1/2)

)

+3n3

(
1

4
(4 − 1) + 1 − (1 − 3/8)2

)

≤
∑

p∈Sing(C)

3

(
α(μp − 1) + 1 − eorb(p,P2

C
, αC)

)
.

After some simple manipulations, we obtain

21

16
n2 + 3t + 261

4
n3 ≤ 11

16
m2 − 3

4
m.

Using (2.1), we have m2 = 2n2 + 4t + 6n3 + 4k + d, and this implies

11m2 − 12m = 22n2 + 44t + 66n3 + 44k + 11d − 24k − 12d

= 22n2 + 44t + 66n3 + 20k − d.

Combining the above computations together, we get

21n2 + 48t + 261

4
n3 ≤ 22n2 + 44t + 66n3 + 20k − d,

which completes the proof. ��

3 Spectra of singularities and constraints on conic-line arrangements

Let F• : H = F0 ⊃ . . . ⊃ F p ⊃ F p+1 ⊃ . . . be the Hodge filtration on the (reduced)
vanishing cohomology H = Hn(X∞) of an isolated singularity f , where X∞ denotes
the canonical Milnor fiber. The filtration F• is invariant with respect to the action of
the semisimple part of the monodromy Ts . Hence, Ts acts on Gr

p
F H = F p/F p+1 and

Gr p
F H = ⊕

λ(Gr
p
F )λ, where (Gr p

F )λ = Gr p
F Hλ is the eigensubspace corresponding

to λ. Denote by

μp = dimGr p
F , μ

p
λ = dim(Gr p

F )λ.
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Then,
∑

p μp = μ is the Milnor number,
∑

λ μ
p
λ = μp, and

∑
p μ

p
λ = μλ is the

multiplicity of an eigenvalue λ, where μλ = dimHλ. Now to each eigenvalue λ, one
defines

α = −(1/2πι)log(λ),

where ι2 = −1. Since λ is a root of the unity, α is a rational number defined modulo
an integer. We normalize α according to the level p of λ with respect to F• by the
condition

α = − 1

2πι
log λ, n − p − 1 < α ≤ n − p,

where this λ comes from the action of Ts onGr
p
F H . In this way, one obtains an element

of the group Z
Q of the form

Sp( f ) = (α1) + · · · + (αμ) =
∑
α

nα · (α),

with nα = μ
p
λ , which is called the spectrum of the singularity. The numbers α

are called spectral numbers, and the coefficients nα are the spectral multiplicities.
Let us recall some basic properties of spectral numbers for isolated singularities of
hypersurfaces.

(1) α j ∈ (0, n) if n = dim X .
(2) The spectrum is an invariant of a singularity.
(3) Symmetry: αi = αμ−i .
(4) Thom–Sebastiani Principle: If f ∈ C{x0, . . . xm} and g ∈ C{y0, . . . , yn} are two

series in separate sets of variables, the expression

f ⊕ g = f (x0, . . . xm) + g(y0, . . . , yn) ∈ C{x0, . . . xm, y0, . . . , yn}

is called the Thom–Sebastiani sum of f and g. Then,

Sp( f ⊕ g) = {α + β : α ∈ Sp( f ), β ∈ Sp(g)}.

(5) Sp(xm) = { 1
m , 2

m , . . . , m−1
m }.

Using the formulae above, we can compute spectral numbers for nodes (A1), tacnodes
(A3), and ordinary triple points (D4).

(A1): This singular point can be locally described by x2 + y2 = 0, so Sp(x2) = { 12 },
Sp(y2) = { 12 }, and then Sp(A1) = 1 · 1.

(A3): This singular point can be locally described by y2 + x4 = 0, so Sp(y2) = { 12 },
Sp(x4) = { 14 , 1

2 ,
3
4 }, and we obtain Sp(A3) = 1 · 3

4 + 1 · 1 + 1 · 5
4 .

(D4): This singular point can be locally described by x3 + y3 = 0, so Sp(x3) =
Sp(y3) = { 13 , 2

3 }, and Sp(D4) = 1 · 2
3 + 2 · 1 + 1 · 4

3 .
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Now, we present the main result of this section.

Theorem 3.1 Let CL = {�1, . . . , �d , C1, . . . , Ck} ⊂ P
2
C

be an arrangement of d ≥ 0
lines and k ≥ 0 smooth conics. Assume that CL has only n2 nodes, t tacnodes,
and n3 ordinary triple points. Let C = �1 + · · · + �d + C1 + · · · + Ck and write
m := degC = d + 2k as m = 3m′ + ε with ε ∈ {1, 2, 3}. Then, one has

t + n3 ≤
(

m − 1

2

)
+ k − m′(5m′ − 3)

2

and

n3 ≤ (m′ + 1)(2m′ + 1).

Proof We are going to use the theory of spectra of singularities. Recall that if (X , 0) is
the union ofm lines passing through the origin ofC2, then the corresponding spectrum
is

Sp(X , 0) =
m−1∑
j=1

j · j + 1

m
+

m−1∑
j=2

(m − j) · m + j − 1

m
.

We apply the semicontinuity property of the spectrum in the form presented by Steen-
brink in [16] (see also [9, Theorem 8.9.8]) for the semicontinuity domain B = ( 13 ,

4
3 ].

If L is a generic line in P
2
C
, then the trace of the arrangement CL on the complement

C
2 = P

2
C

\ L can be identified with a deformation Xs of a singularity of type (X , 0)
introduced above. Therefore, we get the following equation

degB

∑
y

Sp(Xs, y) = n2 + 3t + 4n3, (3.1)

where the above sum is over singular points y ∈ Xs , and degB
∑

y Sp(Xs, y) denotes
the sum of all spectral multiplicities for spectral numbers that are contained in domain
B.

On the other hand, the total degree of the spectrum Sp(X , 0) is equal to the Milnor
number μ(X , 0) = (m − 1)2. To get the degree for the restriction of the spectrum
Sp(X , 0) to the interval B = ( 13 ,

4
3 ], we have to subtract the sum S1 of themultiplicities

of the spectral numbers α such that α ≤ 1
3 , and the sum S2 of the multiplicities of the

spectral numbers α > 4
3 . By the symmetry property of the spectrum, the last case can

be replaced by α < 2
3 .

The first sum S1 is at least equal to

S1 = 1 + 2 + . . . + (m′ − 1) = m′(m′ − 1)

2
.
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The second sum S2 is at least equal to

S2 = 1 + 2 + . . . + (2m′ − 1) = m′(2m′ − 1).

It follows that

degB Sp(X , 0) ≤ (m − 1)2 − S1 − S2 = (m − 1)2 − m′(5m′ − 3)

2
. (3.2)

Therefore, the semicontinuity theorem implies that

n2 + 3t + 4n3 ≤ (m − 1)2 − m′(5m′ − 3)

2
. (3.3)

Observe that the combinatorial count (2.1) can be rewritten as

n2 + 2t + 3n3 =
(

m

2

)
− k. (3.4)

By the above, we can conclude that

t + n3 ≤ (m − 1)2 −
(

m

2

)
+ k − m′(5m′ − 3)

2
=

=
(

m − 1

2

)
+ k − m′(5m′ − 3)

2
.

For the second inequality, we choose the semicontinuity domain B = (− 1
3 ,

2
3 ], and

for this choice of B, we have

degB

∑
y

Sp(Xs, y) = n3, (3.5)

where the sum is taken over all the singular points y ∈ Xs . On the other hand, we have

degB Sp(X , 0) ≤ 1 + 2 + . . . + (2m′ + 1) = (m′ + 1)(2m′ + 1). (3.6)

This completes the proof. ��
Example 3.2 These bounds are rather good, at least in some cases. In order to see
this for the bound involving t + n3, consider Fig. 2 where we present a conic-line
arrangement with d = 3 and k = 2 having t = 5 and n3 = 3. In this case m = 7,
hence m′ = 2 and the first inequality in Theorem 3.1 is

8 = t + n3 ≤ 10.

Next, consider the dual Hesse arrangement given by

(x3 − y3)(y3 − z3)(x3 − z3) = 0,
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which has n3 = 12 triple points. In this case,m = 9,m′ = 2, and the second inequality
in Theorem 3.1 gives us

12 = n3 ≤ 15.

Remark 3.3 Since m′ = (m − ε)/3 and k ≤ m/2, it follows that we have

t + n3 ≤ 1

18

(
4m2 + m(10ε − 9) − 5ε2 − 9ε + 18

)
≈ 2

9
m2 + O(m).

4 Combinatorial constraints on the freeness of reduced curves

We begin with a general introduction to the subject. Let C be a reduced curve P2
C
of

degree m given by f ∈ S:=C[x, y, z]. We denote by J f the Jacobian ideal generated
by the partials derivatives ∂x f , ∂y f , ∂z f . Moreover, we denote by r :=mdr( f ) the
minimal degree of a relation among the partial derivatives, i.e., the minimal degree r
of a triple (a, b, c) ∈ S3

r such that

a · ∂x f + b · ∂y f + c · ∂z f = 0.

We denote by m = 〈x, y, z〉 the irrelevant ideal. Consider the graded S-module
N ( f ) = I f /J f , where I f is the saturation of J f with respect to m = 〈x, y, z〉.

Definition 4.1 We say that a reduced plane curve C is free if N ( f ) = 0.

Let us recall that for a reduced curve C : f = 0 we define the Arnold exponent αC

which is the minimum of the Arnold exponents of the singular points p in C . Using
the modern language, the Arnold exponents of singular points are nothing else than
the log canonical thresholds of singularities.

Definition 4.2 Let C : f = 0 be a reduced curve in C
2 which is singular at 0 ∈ C

2.
Denote by φ : Y → C

2 the standard minimal resolution of singularities, i.e., the
smallest resolution that has simple normal crossings (which exists and it is unique).
Wewrite then KY = φ∗KC2 +∑

i ai Ei and φ∗C = φ−1∗ C +∑
i bi Ei , where=means

the linear equivalence. Then, the log canonical threshold of C in C2 is defined as

c0( f ) = mini

{
ai + 1

bi

}
.

Using this local (analytical) description, the Arnold exponent αC of C is then the
minimum over all log canonical thresholds of singular points. In order to compute the
actual values of the log canonical thresholds, we can us the following result—see, for
instance, [2, Theorem 4.1].

Theorem 4.3 Let C be a reduced curve in C
2 which has degree m. Then, c0( f ) ≥ 2

m ,
and the equality holds if and only if C is a union of m lines passing through 0.
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Remark 4.4 If p = (0, 0) ∈ C
2 is an ordinary singularity of multiplicity r determined

by C : f = 0, then c0( f ) = 2
r .

Now, we need to compute the log canonical threshold for tacnodes. Since tacnodes
are quasi-homogeneous singularities, then we can use the following pattern (cf. [4,
Formula 2.1]).

Recall that the germ (C, p) is weighted homogeneous of type (w1, w2; 1) with
0 < w j ≤ 1/2 if there are local analytic coordinates y1, y2 centered at p = (0, 0) and
a polynomial g(y1, y2) = ∑

u,v cu,v yu
1 yv

2 with cu,v ∈ C, where the sum is taken over
all pairs (u, v) ∈ N

2 with uw1 + vw2 = 1. In this case, we have

c0(g) = w1 + w2.

Remark 4.5 Let g = y2 + x4, so g defines a tacnode at p = (0, 0). Then, w1 =
1
2 , w2 = 1

4 , and hence, we have c0(g) = 3
4

In order to show our main result for this section, recall the following [4, Theorem 2.1].

Theorem 4.6 (Dimca-Sernesi) Let C : f = 0 be a reduced curve of degree m in P
2
C

having only quasi-homogeneous singularities. Then,

mdr( f ) ≥ αC · m − 2.

Since nodes, tacnodes, and ordinary triple points are quasi-homogeneous singularities,
then we can prove the following result.

Proposition 4.7 Let C : f = 0 be a reduced curve of degree m in P
2
C

having only
nodes, tacnodes, and ordinary triple points as singularities. Then,

mdr( f ) ≥ 2

3
m − 2.

In particular, if C is free, then m ≤ 9.

Proof Since C has nodes, tacnodes, and ordinary triple points as singularities, then

αC = min

{
1,

3

4
,
2

3

}
= 2

3
,

so by the above result we have

mdr( f ) ≥ 2

3
m − 2.

If C is a free curve, then

2

3
m − 2 ≤ mdr( f ) ≤ m − 1

2
,

which gives m ≤ 9. ��
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Remark 4.8 If we restrict our attention to reduced free curves with nodes and tacnodes,
then analogous computations as above give m ≤ 5, and this bound is sharp according
to what we shall see in Example 4.14. In fact, we can show that for every m ∈ {3, 4, 5}
there exists a conic-line arrangement having nodes and tacnodes with k ≥ 1 that is
free.

Remark 4.9 Observe that Proposition 4.7 is sharp in the class of reduced free curves—
the dual Hesse arrangement of 9 lines and 12 triple points considered in Example 3.2
is free.

Let CL = {�1, . . . , �d , C1, . . . , Ck} ⊂ P
2
C
be a free arrangement of d ≥ 1 lines and

k ≥ 1 conics. We are going to use the following homological characterization of
the freeness, see, for instance, [6], which can be checked on specific examples using
Singular [3], or other computer algebra software.

Theorem 4.10 Let C ⊂ P
2
C

be a reduced curve of degree m, and let f = 0 be its
defining equation. Then, C is free if and only if the minimal free resolution of the
Milnor algebra M( f ) = S/J f has the following form:

0 → S(−d1 − (m − 1)) ⊕ S(−d2 − (m − 1)) → S3(−m + 1) → S → M( f ) → 0

with d1 + d2 = m − 1. In particular, if d1 ≤ d2, then mdr( f ) = d1 ≤ m−1
2 .

We will need additionally the following lemma, see, for instance, [4, Lemma 4.4].

Lemma 4.11 If C is a free plane curve of degree m, then the exponents (d1, d2) are
positive integers satisfying the following system of equations:

d1 + d2 = m − 1, d1d2 = (m − 1)2 − τ(C),

where τ(C) denotes the total Tjurina number.

If now CL is a conic-line arrangement having degree m = 2k + d with n2 nodes, t
tacnodes, and n3 ordinary triple points, then the above lemma can be rewritten as

d1 + d1 = m − 1, d2
1 + d2

2 + d1d2 = n2 + 3t + 4n3, d1 ≤ d2. (4.1)

So our problem reduces to possible geometrical realizations of some positive integer
solutions to (4.1).

Example 4.12 Let m = 3, so we have one conic and one line. An easy inspection tells
us that d1 = d2 = 1, n2 = n3 = 0, and t = 1 satisfies (4.1). Let us consider

CL3 : (x − z) · (x2 + y2 − z2) = 0.

Observe that CL3 is exactly a line tangent to a conic. We can compute the minimal
free resolution of the Milnor algebra M( f ) = S/J f which has the following form:

0 → S2(−3) → S3(−2) → S → M( f ) → 0,

so CL3 is free with the exponents (1, 1).
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Example 4.13 Consider now the case with m = 4, and note that there are many solu-
tions to (4.1). Take d1 = 1 and d2 = 2, then we can find the following Diophantine
solution, namely t = 2 and n2 = 1. Consider

CL4 : (x2 − z2) · (x2 + y2 − z2) = 0,

hence two lines are tangent to the same conic. Then, the minimal free resolution of
the Milnor algebra M( f ) = S/J f has the following form:

0 → S(−5) ⊕ S(−4) → S3(−3) → S → M( f ) → 0,

so CL3 is indeed free with the exponents (1, 2).

Example 4.14 Consider now the case with m = 5. One positive integer solution to
(4.1) is d1 = d2 = 2 and n2 = t = 3, n3 = 0. Consider the following conic-line
arrangement

CL5 : (y − z) · (x2 − z2) · (x2 + y2 − z2) = 0.

The minimal free resolution of the Milnor algebra M( f ) = S/J f has the following
form:

0 → S2(−6) → S3(−4) → S → M( f ) → 0,

so CL5 is free.
Another positive integer solution to (4.1) is d1 = d2 = 2 and n2 = t = 0, n3 = 3.

Consider now the second case and the following arrangement

CL′
5 : y · (x + y − 4z) · (x − y + 4z) · (x2 + y2 − 16z2) = 0.

Observe that CL′
5 has n2 = t = 0 and n3 = 3. The minimal free resolution of the

Milnor algebra M( f ) = S/J f has the same form as above, namely

0 → S2(−6) → S3(−4) → S → M( f ) → 0,

so CL′
5 is free.

5 Classification of free conic-line arrangements with nodes, tacnodes,
and triple points

After the above warm-up, we are ready to present the first classification result. It gives
a complete characterization of free arrangements having d ∈ {1, 2, 3} lines and k ≥ 1
smooth conics. We start with a general discussion about free conic-line arrangements
with nodes, tacnodes, and ordinary triple points.
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Fig. 1 Free conic-line arrangements with m = 5 and k = 1

If CL is free with the exponents (d1, d2), then we must have

d1 + d2 = 2k + d − 1

and

d1d2 = (2k + d − 1)2 − n2−3t−4n3 = (2k + d − 1)2 − (n2 + 2t + 3n3)−t − n3.

Using the combinatorial count (2.1), we obtain

d1d2 = 2k2 − 2k + 1 + 2kd + d2 − 3d

2
− t − n3. (5.1)

If we multiply equation (5.1) by 2 and add it to (2.1), then we obtain

2d1d2 = 2k2 + 2k(d − 1) + (d − 1)(d − 4)

2
+ n2 + n3.

Since d1d2 ≤ (2k + d − 1)2/4, we get

n2 + n3 ≤ 3

2
(d − 1). (5.2)

Using once again (2.1), we obtain

t ≥ k2 − k + kd + (d − 1)(d − 3)

4
− n3. (5.3)

If k ≥ 2, two conicsC1 andC2 from the arrangement CL can be in one of the following
3 situations:

(1) |C1 ∩ C2| = 4, and then, all the intersection points are nodes.
(2) |C1 ∩ C2| = 3, and then, one intersection point produces a tacnode in CL, and the

other two intersection points will give nodes.
(3) |C1 ∩ C2| = 2, and then, two intersection points produce two tacnodes in CL.
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Letm j with j ∈ {2, 3, 4}be the number of pairs of conics inCL such that |C1∩C2| = j .
Then, the number of tacnodes coming from the contact of 2 conics is

t ′ = 2m2 + m3. (5.4)

We also have, by counting pairs of conics in two different ways,

m2 + m3 + m4 =
(

k

2

)
(5.5)

and
2m3 + 4m4 ≤ n2 + n3. (5.6)

The last inequality follows from the fact that the nodes coming from C1 ∩C2 will give
either nodes or triple points in CL. To evaluate the number of tacnodes created by a
line in CL, we need the following.

Lemma 5.1 Let C1 and C2 be two smooth conics in CL such that |C1∩C2| = 2. Then,
any line L in CL is tangent to at most one of the conics C1 and C2.

Proof Since the pair of conics C1 and C2 gives rise to two tacnodes, then up to a linear
change of coordinates one can take

C1 : x2 + y2 − z2 = 0 and C2 : x2 + y2 − r2z2 = 0

where r ∈ C, r �= 0,±1—please consult [12, Proposition 3]. It follows that the dual
C∨
1 is given by x2 + y2 − z2 = 0, while the dual C∨

2 is given by x2 + y2 − 1
r2

z2 = 0.
A common tangent for C1 and C2 corresponds to a point in the intersection C∨

1 ∩ C∨
2 ,

and hence, it is given by equation T± : x ± y = 0. However, both these lines pass
through one of the two tacnodes situated at (1 : ±1 : 0). Hence, L cannot be tangent
to two conics, since the curve C has only nodes, ordinary triple points, and tacnodes
as singularities. ��
Theorem 5.2 Let CL be an arrangement of 0 ≤ d ≤ 3 lines and k ≥ 1 smooth conics
with n2 nodes, t tacnodes, and n3 ordinary triple points. Assume that CL is free, then
the following pairs are admissible:

(d, k) ∈ {(1, 1), (2, 1), (3, 1), (3, 2)}.

Proof We need to consider some cases.
Case d = 0. Then, (5.2) implies n2 + n3 < 0, which is clearly impossible.
Case d = 1. Then, n2 + n3 ≤ 0, and hence, n2 = n3 = 0. Using the combinatorial

count (2.1), we get t = k2. The case k = 1 is clearly possible, i.e., a conic plus a
tangent line forms a free curve, see Example 4.12. We show now that the case k > 1
is impossible. Using (5.5), we see that m3 = m4 = 0, and hence, any two conics in
CL meet in two points, as in Lemma 5.1.

There are
(k
2

)
pairs of conics, and hence, the number of tacnodes obtained as inter-

section of two conics is t ′ = k2 − k. Recall also that by [7] one has k ∈ {2, 3, 4}. The
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only possibility to have t = k2 tacnodes is that the unique line, call it L , is tangent to
all the conics simultaneously. In the light of Lemma 5.1, L cannot be tangent to each
conic in CL. This completes the proof in this case.

Case d = 2. The case k = 1 is possible, see Example 4.13. We show that the cases
k ≥ 2 are impossible. One has n2 + n3 ≤ 1, and using (5.3), we get

t ≥ k2 − k + (2k − 1

4
− n3).

When k ≥ 2, one has 2k − 1
4 − n3 > 2, and hence,

t ≥ k2 − k + 3.

Combining the condition n2 + n3 ≤ 1 and inequality (5.6), we get m3 = m4 = 0. It
means, in particular, that m2 = (k

2

)
, t ′ = k2 − k, and k ∈ {2, 3}. An easy inspection,

performed along the lines of Lemma 5.1, shows that a line can add at most one tacnode,
and in this case, one must have

t ≤ k2 − k + 2,

hence we have a contradiction.
Case d = 3. Observe that by Proposition 4.7 we have k ∈ {1, 2, 3}. The case k = 1

is possible, see Example 4.14. We show now that k = 3 is impossible. In this case,
one has n2 + n3 ≤ 3, and using formula (5.3), we get

t ≥ k2 − k + (3k − n3). (5.7)

Then, (5.6) and n2 + n3 ≤ 3 lead us to m3 ≤ 1 and m4 = 0. If m3 = 0, then we use
Lemma 5.1 to get a contradiction since 3k − n3 ≥ 6 > d = 3. Assume that m3 = 1,
so let’s say that |C1 ∩ C2| = 3. The maximal number of tacnodes coming from the
contact of 3 lines and conics in such an arrangement is 5. Indeed, two lines can be
tangent to both C1 and C2, giving 4 tacnodes, and the third line can be tangent to at
most one conic in CL. It follows that

t ≤ 2m2 + m3 + 5 = k(k − 1) + 4.

Since k = 3, one has 9 − n3 ≥ 6 > 4, and this contradiction proves the claim.
Consider the remaining case k = 2. First, we assume that m3 = 0. In order to

have 2d − n3 ≤ d, we must have n3 = 3 and hence n2 = 0. However, any line, say
L1, is tangent to one of the two conics, say to C1, and it is secant to the other, so
L ∩ C2 = {p, q}. The point p cannot be a node, so one of the remaining lines, say L2,
passes through p and is tangent to C1, and the other line, say L3, is passing through
q and is again tangent to C1. The third triple point should be

r = C2 ∩ L2 ∩ L3.
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Fig. 2 The unique free
arrangement of 2 conics and 3
lines with t = 5 and n3 = 3

This configuration is geometrically realizable, and we can take, for instance,

CL7 : (x2 + y2 − z2) · (x2 + y2 − 4z2) · (x − z)

(
y +

√
3

3
x + 2

√
3

3
z

)
·
(

y −
√
3

3
x − 2

√
3

3
z

)
= 0.

Moreover, it is unique up to a projective transformation. Indeed, we use again [12,
Proposition 3] which implies that one may assume that the two conics C1 and C2 are
concentric circles,C1 with radius r1 = 1, andC2 with radius r2 ∈ C, r2 �= 0,±1. Then,
we note that a triangle in which the center of the inscribed circle coincides with the
center of the circumscribed circle is necessarily equilateral. This implies that r2 = 2,
and the corresponding equation is given above, where the vertices of the equilateral

triangle in the affine plane z = 1 are (1, 0) and (− 1
2 ,±

√
3
2 ). Using Singular, we

can compute the minimal free resolution of the Milnor algebra of CL7, and it has the
following form

0 → S2(−9) → S3(−6) → S → M( f ) → 0,

so CL7 is free.
Finally, we consider the case k = 2 and m3 = 1, i.e., the two conics are tangent in

one point. In order to satisfy (5.7), we have to use the 3 lines to create many tacnodes
and many triple points, in fact we need t + n3 ≥ 8 of such singular points. We can use
the first two lines to get two tangents to both conics, hence 4 new tacnodes. The third
line can create either 2 triple points and 2 double points, one triple point and 4 nodes,
or a tacnode and 4 nodes. Neither possibility satisfies t + n3 ≥ 8, and this completes
the proof. ��

Now, we are going to discuss non-freeness for conic-line arrangements with d ∈
{4, 5, 6, 7}—please bear in mind that the upper bound on the number of lines follows
from Proposition 4.7.

Proposition 5.3 Let CL be an arrangement of d = 4 lines and k ≥ 1 smooth conics
having only nodes, tacnodes, and ordinary triple points as singularities. Then, CL is
never free.
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Proof If we assume that C is free, then formula (5.2) implies that

n2 + n3 ≤ 4 (5.8)

and by (5.3) we obtain

t ≥ k2 − k + 4k + 3

4
− n3. (5.9)

Using (5.6), it follows that
2m3 + 4m4 ≤ 4. (5.10)

In particular, we have m3 + m4 ≤ 2. Consider the graph �(C) associated with the
conics in C, whose vertices are these conics, and two vertices Ci and C j are connected
by an edge (resp. by a double edge) if and only if |Ci ∩C j | = 3 (resp. |Ci ∩C j | = 4)—
please consult [12] for more details. It follows that this graph has at most two edges.
To get the maximum number of tacnodes, Lemma 5.1 implies that the 4 lines have to
be tangent lines to the conics connected by an edge to other conic. There are either
3 conics in a chain connected by edges, or two pairs of conics, each pair connected
by an edge. A simple analysis show that the maximum number of tacnodes created in
this way is 8. Hence, the number of tacnodes satisfies

t ≤ t ′ + 8 = k2 − k − m3 − 2m4 + 8 ≤ k2 − k + 8. (5.11)

Combining this with inequality (5.9), we get

4k − 3 ≤ 4k + 1 − n3 ≤ 8,

which implies k ≤ 2.
Case: k = 2.
If m2 = 1, then any line is tangent to at most one conic, by Lemma 5.1, hence we

have t ≤ 6 and (5.9) yields a contradiction.
If m3 = 1, the inequality (5.9) implies t + n3 ≥ 11. We can use 2 lines, say L1

and L2 to create 4 new tacnodes (5 in total) and a new node (3 in total). The third
line L3 can produce 2 triple points if it passes through the 2 nodes in the intersection
C1∩C2, but it will create 2 new nodes as the intersections with L1 and L2. This stands
in contradiction with (5.8). If L3 passes through the node L1 ∩ L2, then it will be
secant to both C1 and C2, thus creating 4 new nodes; again it stands in contradiction
with (5.8). Finally, if L3 is tangent to one of the conics, it would be secant for the
other, creating 4 new nodes, 2 on that second conic and 2 on L1 ∩ L2, a contradiction
with respect to (5.8).

If m4 = 1, C1 ∩ C2 gives rise to 4 nodes. As soon as we add 2 lines, a new node
will be created (and some old nodes transformed in triple points), but in any case we
get a contradiction with (5.8).

Hence, the case k = 2 is impossible.
Case: k = 1.
Since k = 1, we clearly have t ≤ 4. The only possibility to have (5.9) satisfied is

that n3 ≥ 1. If we look on the (sub)arrangement A of the 4 lines in CL, we have 2
cases to discuss.
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Case 1 A has 3 concurrent lines
Let L1, L2 and L3 be the lines meeting at a point p, and L4 is a secant line, meeting

L j at q j for j = 1, 2, 3.
If n3 = 1, we get from (5.9) that t ≥ 4, which is impossible. Indeed, only two lines

among L1, L2 and L3 can be tangent to the conic, so we get t ≤ 3.
If n3 = 2, the second triple point is at the intersection of a secant line to the conic

passing through p, say L2, the conic and the line L4. In this case, we get from (5.9)
that t ≥ 3, which is impossible, since L2 and L4 cannot be tangent to the conic.

If n3 = 3, the new triple point is at the intersection of a new secant line to the conic
passing through p, say L1, the conic and the line L4. In this case, we get from (5.9)
that t ≥ 2, which is impossible, since L1, L2 and L4 cannot be tangent to the conic.

Finally, if n3 = 4, then the 3 triple points distinct from p are all situated on the
conic and on the line L4, which is impossible.

Case 2 A is a nodal arrangement
It follows that now all the triple points are on the conic. More precisely, the conic

passes through n3 nodes of the line arrangement A. Hence, CL has n3 triple points
and at least 6 − n3 double points. It follows that n2 + n3 ≥ 6, a contradiction with
(5.8). ��
Proposition 5.4 Let CL be an arrangement of d = 5 lines and k ≥ 1 smooth conics
having only nodes, tacnodes, and ordinary triple points. Then, CL is never free.

Proof If we assume that CL is free, using Proposition 4.7, we get m = 2k + 5 ≤ 9,
and hence, k ≤ 2. Then, formula (5.2) implies that

n2 + n3 ≤ 6 (5.12)

and by (5.3) we get
t ≥ k2 − k + 5k + 2 − n3. (5.13)

Case k = 2.
Ifm2 = 1, then any line is tangent to at most one conic, which follows from Lemma

5.1, so we have t ≤ 7 and (5.13) yields a contradiction.
If m3 = 1, the inequality (5.13) implies t + n3 ≥ 14. We can use 2 lines, say L1

and L2, to create 4 new tacnodes (5 in total) and a new node (3 in total). The third
line L3 can produce 2 triple points if it passes through the 2 nodes in the intersection
C1 ∩C2, but will create 2 new nodes as intersections with L1 and L2. It means that the
remaining 2 lines should not create any new node or triple point, which is impossible.
If L3 passes through the node L1 ∩ L2, then it will be secant to both C1 and C2, thus
creating 4 new nodes, a contradiction with (5.8). Finally, if L3 is tangent to one of the
conics, it would be secant for the other, creating 4 new nodes, 2 on that second conic
and 2 on L1 ∩ L2. This contradicts (5.8).

If m4 = 1, C1 ∩ C2 gives rise to 4 nodes. As soon as we add 3 lines, at least 3 new
nodes will be created (and some old nodes transformed in triple points), but in any
case we get a contradiction with (5.8).

Hence, the case k = 2 is impossible.
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Case k = 1.
The above shows that the only possibility to have (5.12) and (5.13) satisfied is that

k = 1 and n3 ≥ 2. If we look on the (sub)arrangement A of the 5 lines in CL, there
are 3 cases to discuss.

Case 1 A has 2 triple points
If we denote by p1 and p2 the two triple points, then the line determined by these

points must be in A. We denote this line by L . The other 2 lines passing through p1
(p2, respectively) are denoted by L1 and L ′

1 (L2 and L ′
2, respectively). There are 4

nodes in the arrangementA, the intersections L1∩ L2, L1∩ L ′
2, L ′

1∩ L2, and L ′
1∩ L ′

2.
If n3 = 2, we get from (5.13) that t ≥ 5, which is impossible since L , L1 and L ′

1
cannot be all tangent to the conic.

If n3 = 3, the new triple point q1 is at the intersection of two secant lines with the
conic. In this case, we get from (5.9) that t ≥ 4, which is impossible, since the 2 lines
meeting at q1 cannot be tangent to the conic.

If n3 = 4, then there are 2 triple points q1 and q2 situated on the conic, coming
from the intersection of at least 3 lines fromAwith the conic. In this case, we get from
(5.9) that t ≥ 3, which is impossible since the lines passing through q1 or q2 cannot
be tangent to the conic.

If n3 = 5, then there are 3 triple points q1, q2, and q3 situated on the conic, coming
from the intersection of at least 4 lines from A with the conic. In this case, we get
from (5.9) that t ≥ 2, which is impossible since the lines passing through q1, q2, or
q3 cannot be tangent to the conic.

Finally, if n3 = 6, then n2 = 0, the conic, call it Q, passes through all the 4 nodes of
A and it is tangent to the line L . The conics passing through the 4 nodes form a pencil
of conics, determined by the degenerate conics Q1 and Q2, where Q1 (resp. Q2) is the
union L1∪ L ′

1 (resp. L2∪ L ′
2). Note that these two degenerate conics Q1 and Q2 meet

the line L in one point, namely Q1 ∩ L = p1 and Q2 ∩ L = p2. The conic Q is in this
pencil αQ1 + βQ2, and meets the line L in one point as well. This is a contradiction,
since in a pencil only two members can meet a given line in a single point. To check
this claim, we assume that L is given by x = 0. Then, the condition that αQ1 + βQ2
meets line L in one point is a quadratic form in y, z, with coefficients being linear
forms in α, β, such that it has zero discriminant, which yields the vanishing of the
quadratic form in α, β.

Case 2 A has a triple point
It follows that A has 7 nodes. To create n3 triple points in CL, the conic passes

through n3 − 1 nodes of the line arrangement A. Hence, CL has n3 triple points and
at least 7 − (n3 − 1) double points. It follows that n2 + n3 ≥ 8, a contradiction with
respect to (5.12).

Case 3 A is a nodal arrangement
It follows that now A has 10 nodes. To create n3 triple points in CL, the conic

passes through n3 nodes of the line arrangement A. Hence, CL has n3 triple points
and at least 10 − n3 double points. It follows that n2 + n3 ≥ 10, a contradiction with
(5.12). ��
Proposition 5.5 Let CL be an arrangement of d = 6 lines and k ≥ 1 smooth conics
having only nodes, tacnodes, and ordinary triple points. Then, CL is never free.
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Proof If we assume that CL is free, then using Proposition 4.7 we get m = 2k +6 ≤ 9,
and hence k = 1. Then, the formula (5.2) implies that

n2 + n3 ≤ 7 (5.14)

and by (5.3) we have
t ≥ 10 − n3. (5.15)

Since t ≤ 6, the only possibility to have (5.14) and (5.15) being satisfied is n3 ≥ 4.
Consider the (sub)arrangementA of 6 lines in CL. Then,A has only double and triple
points, and let us denote by n′

2 and n′
3 their respective numbers. It is known that

n′
2 + 3n′

3 =
(
6

2

)
= 15. (5.16)

The conic inCL has to pass through n3−n′
3 nodes ofA, and hence, n2 ≥ n′

2−(n3−n′
3).

It follows that

n2 + n3 ≥ n′
2 + n′

3 = 15 − 2n′
3.

It is well known that the maximal number of triple points n′
3 in this case is 4, and the

arrangement is projectively equivalent to

A0 : (x2 − y2)(x2 − z2)(y2 − z2) = 0.

Combining this fact with inequality in (5.14), it follows that we are exactly in this case,
that is n′

2 = 3 and n′
3 = 4. Moreover, the intersection between the conic and the lines

in A should not add any new point to the set of seven multiple points of A. Note that
each line contains exactly one double point. This would imply that the conic is tangent
to the 6 lines (in new points given rise to tacnodes), but this is clearly impossible as
we have seen above. (3 concurrent lines cannot all be tangent to the same conic.) ��
Proposition 5.6 Let CL be an arrangement of d = 7 lines and k ≥ 1 smooth conics
having only nodes, tacnodes, and ordinary triple points as singularities. Then, CL
cannot free.

Proof If we assume that CL is free, then using Proposition 4.7 we get m = 2k +7 ≤ 9,
and hence k = 1. Then, the formula (5.2) implies that

n2 + n3 ≤ 9 (5.17)

and the formula (5.3) gives
t ≥ 13 − n3. (5.18)

Since t ≤ 7, the only possibility to have (5.17) and (5.18) being satisfied is n3 ≥ 6.
Consider the (sub)arrangementA of 7 lines in CL. Then,A has only double and triple
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points, and let us denote by n′
2 and n′

3 their respective numbers. By the combinatorial
count, we have

n′
2 + 3n′

3 =
(
7

2

)
= 21. (5.19)

The conic inCL has to pass through n3−n′
3 nodes ofA, and hence, n2 ≥ n′

2−(n3−n′
3).

It follows that

n2 + n3 ≥ n′
2 + n′

3 = 21 − 2n′
3.

Hence, n′
3 ≥ 6. Using the classification of line arrangements with mdr( f ) ≤ 2

presented in [1], it follows that our arrangementA satisfies mdr( f ) ≥ 3. A calculation
of the total Tjurina number, under the assumption that n′

3 ≥ 6, shows us that n′
3 = 6,

n′
2 = 3, mdr( f ) = 3, and the arrangement A has to be free. It follows that the

arrangement A is projectively equivalent to

A0 : xyz(x + y)(x + z)(y − z)(x + y + z) = 0,

see [1, Theorem 2.6], where this arrangement occurs as IIIc. Moreover, exactly as in
the previous proof, the intersections between the conic and the lines in A should not
add any new point to the set of seven multiple points of A. Note that 4 of the 7 lines,
denoted here by L2, L3, L4, and L5, where L j means the line given by the j-th factor
in the equation ofA, contain each 3 triple points, while the remaining 3 lines, L1, L6
and L7, contain each 2 triple points and 2 double points. This implies that the conic is
tangent to 4 lines L2, L3, L4, and L5 (in new points given rise to tacnodes) and passes
through the remaining 3 double points, located at

(0 : 1 : 1), (0 : −1 : 1) and (−2 : 1 : 1).

A direct computation shows that such a conic does not exist. ��
In conclusion, we can state the following complete classification result.

Theorem 5.7 Let CL be an arrangement of d ≥ 1 lines and k ≥ 1 smooth conics
having only nodes, tacnodes, and ordinary triple points as singularities. Then, CL is
free if and only if one of the following cases occur: In each case, we list the numbers
n2, t , and n3 of nodes, tacnodes, and ordinary triple points, respectively.

(1) d = k = 1, and CL consists of a smooth conic and a tangent line. In this case,
n2 = n3 = 0, t = 1.

(2) d = 2, k = 1, and CL consists of a smooth conic and two tangent lines. In this
case, n2 = 1, n3 = 0, t = 2.

(3) d = 3, k = 1, and either CL is a smooth conic inscribed in a triangle, or CL
is a smooth conic circumscribed in a triangle. In the first case, we have n2 = 3,
n3 = 0, t = 3, and in the second case, we have n2 = t = 0, n3 = 3.

(4) d = 3, k = 2, and CL consists of a triangle 
, a smooth conic inscribed in 
, and
another smooth conic circumscribed in 
. In this case, n2 = 0, n3 = 3, t = 5.
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In particular, a free conic-line arrangement having only nodes, tacnodes, and ordinary
triple points is determined up to a projective equivalence by the numerical data n2,
n3, and t.

Beforewe formulate the final corollary for this section,we need the following notations
inspired by [11].

Definition 5.8 We say that two conic-line arrangements in P
2
C
with nodes, tacnodes,

and ordinary triple points have the same weak combinatorics if these arrangements
have the same list of invariants (m; n2, t, n3)withm being degree of the arrangements.

Conjecture 5.9 (Numerical Terao’s Conjecture) Let CL1, CL2 ⊂ P
2
C
be two conic-

line arrangements with nodes, tacnodes, and ordinary triple points. Assume that CL1
is free and CL1, CL2 have the same weak combinatorics, then CL2 is also free.

Corollary 5.10 Numerical Terao’s Conjecture holds for conic-line arrangements with
nodes, tacnodes, and ordinary triple points.

Proof Note that the equation (3.4) implies that the list of invariants (m; n2, t, n3)

determines the number k of conics and the number d = m − 2k of lines in the
arrangements CL1 and CL2. Then, Theorem 5.7 implies that k = 1 or k = 2. In each
case, using the fact that k and d are very small, it is easy to see that up to a projective
transformation, the possibilities for CL2 are exactly those listed in Theorem 5.7, and
hence, the arrangement CL2 is free as well. ��
Remark 5.11 Numerical Terao’s Conjecture can be formulated, in principle, for all
reduced singular plane curves. As it was shown in [11], Numerical Terao’s Conjecture
fails for some (triangular) line arrangements. On the other hand, it holds for line
arrangements having only points of multiplicity ≤ 3. Indeed, Proposition 4.7 shows
that such a free line arrangement A : f = 0 has to satisfy m = deg f ≤ 9. Then,
Theorem 4.10 implies that either d1 = mdr( f ) ≤ 3 or d1 = mdr( f ) = 4 and d = 9.
Note that if A′ : f ′ = 0 has the same weak combinatorics as A : f = 0, then
τ(A) = τ(A′), which implies that r ′ = mdr( f ′) ≤ mdr( f ) using the maximality of
the Tjurina number for free reduced curves, see [8]. In the first case, one concludes
using the complete classification of line arrangements with mdr( f ) ≤ 3, see [1]. In
the second case, we use again the maximality of the Tjurina number of free curves
according to [8] and we conclude that τ(A) = τ(A′) = 48, n2 = 0 and n3 = 12. The
only line arrangement with these invariants is the line arrangement in Example 3.2,
which is indeed free with the exponents (4, 4).
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