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Abstract
Two matrices H1 and H2 with entries from a multiplicative group G are said to be
monomially equivalent, denoted by H1 ∼= H2, if one of the matrices can be obtained
from the other via a sequence of row and column permutations and, respectively, left-
and right-multiplication of rows and columns with elements from G. One may further
define matrices to be Hadamard equivalent if H1 ∼= φ(H2) for some φ ∈ Aut(G).
For many classes of Hadamard and related matrices, it is straightforward to show that
these are closed under Hadamard equivalence. It is here shown that also the set of
Butson-type Hadamard matrices is closed under Hadamard equivalence.

Keywords Butson-type Hadamard matrix · Complex matrix · Hadamard
equivalence · Monomial equivalence

1 Introduction

The concept of equivalence—or isomorphism, depending on the setting—is central
in the study of mathematical structures. Equivalence is essentially about dealing with
ambient symmetries and leads to a partitioning of structures into equivalence classes.
For example, the aim of a classification of structures is to find a transversal of the
equivalence classes. The equivalence mappings from a structure onto itself give the
symmetries of the structure (and form a group under composition).

The definition of equivalence depends on the studied structures, whose main prop-
erties should be respected. For some structures, there is one obvious definition, but
for others the situation may be more involved. In any case, it is generally desirable to
have definitions that lead to as large equivalence classes as possible.

Hadamard and related matrices are considered in this paper; for more information
about such structures, [2,4,7] can be consulted. See also [8,9,11–14] for specific classi-
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fication studies. Two types of equivalence are commonly considered forHadamard and
related matrices: monomial equivalence and Hadamard equivalence. It is not obvious
whether the set of Butson-type Hadamard matrices is closed under Hadamard equiv-
alence. We shall show in this paper that this is indeed the case.

Equivalence ofHadamard and relatedmatrices is considered in Sect. 2, and themain
proof regarding Hadamard equivalence of Butson-type matrices is given in Sect. 3.
Throughout the paper, the group operation is identified with multiplication.

2 Equivalence of Hadamardmatrices

A (real) Hadamard matrix of order n is an n × n matrix H = (hi, j ) with entries
from the group ({−1, 1}, ·) such that for any distinct 1 ≤ a, b ≤ n, the multiset
{ha,kh

−1
b,k : 1 ≤ k ≤ n} contains −1 and 1 equally often (n/2 times each). (Here,

h = h−1 for both elements of the group, but the definition is given in the particular
form for the sake of a later generalization.) It is a classical result that a necessary
condition for a Hadamard matrix of order n to exist is that n = 1, 2 or n is divisible by
4. It is further conjectured that this is also a sufficient condition; proving this conjecture
is the main open question in the theory of Hadamard and related matrices.

A generalized Hadamard matrix of order mλ and index λ is an mλ × mλ matrix
H = (hi, j ) with entries from a group G of order m such that for any distinct 1 ≤
a, b ≤ mλ, the multiset

{ha,kh
−1
b,k : 1 ≤ k ≤ mλ} (1)

contains each element of G equally often (λ times each). A comparison with the
definition of real Hadamard matrices given earlier shows that real Hadamard matrices
are generalized Hadamard matrices of order n and index n/2.

To consider equivalence of Hadamard and relatedmatrices, we define themonomial
group Gn as the matrix group that is the subgroup of GLn(ZG) whose elements are
the matrices in which each row and column contains exactly one element of G. We
further let the group Gn × Gn act on an n × n matrix M by (X ,Y ) · M = XMYT.

Definition 1 Two n × n matrices with entries from a group G, H1 and H2, are said
to be monomially equivalent, denoted by H1 ∼= H2, if H1 = XH2Y T for some
(X ,Y ) ∈ Gn × Gn .

In other words, two matrices are monomially equivalent if one can be obtained
from the other using row and column permutations and, respectively, left- and
right-multiplication of rows and columns with elements from G. Such left- and
right-multiplications permute the values in entries of individual rows and columns,
respectively, and those permutions are called local equivalence operations in [5, Sect.
4.4.1]. If the group G is nonabelian, we get two different sets of permutations, but if
the group G is abelian, the order of multiplication does not matter, and we get only
one.

The set of generalized Hadamard matrices is closed under monomial equivalence;
see [6, Theorem 1.16] for a proof.
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In addition to local equivalence operations, one may also consider global equiva-
lence operations [5, Sect. 4.4.3], which are permutations of the elements of the group
(in all entries) under which a given class of matrices is closed. The term ’global
equivalence operations’ is used in [5] only for those permutations that are not local
equivalence operations, but the author of the current paper finds it more natural to let
the local equivalence operations form a subset of the global equivalence operations.
As shown in [5, Theorem 4.4.10], for many classes of Hadamard and related matrices
and with an abelian group G, the global equivalence operations are generated by the
local equivalence operations and the group automorphisms, Aut(G).

We write f (H) for the matrix obtained by applying the function f to each entry of
H .

Definition 2 Two n×nmatrices with entries from a groupG, H1 and H2, are said to be
Hadamard equivalent if H1 ∼= φ(H2) for someφ ∈ Aut(G), that is, H1 = φ(XH2Y T)

where (X ,Y ) ∈ Gn × Gn .

Definition 2 is [7, Definition 4.12]. For some matrix classes, it is easy to show that
they are closed under the mapping φ(H). For example, for generalized Hadamard
matrices, the elements of (1) become

φ(ha,k)φ(hb,k)
−1 = φ(ha,k)φ(h−1

b,k) = φ(ha,kh
−1
b,k), (2)

and because φ is a bijection, the multiset remains unchanged. In the real case,
|Aut(G)| = 1, and monomial and Hadamard equivalence coincide. Hence, there is no
conflict between our definitions and the fact that both terms—and just equivalence—
have been used for real Hadamard matrices in the literature.

Another generalization of realHadamardmatrices are complexHadamardmatrices.
A complex Hadamard matrix of order n is an n × n matrix H = (hi, j ) with entries
that are unit complex numbers, that is, lie on the unit circle in the complex plane, such
that

HH∗ = nIn, (3)

where H∗ denotes the conjugate transpose of H , In is the n × n identity matrix, and
operations are carried out in the fieldC. This is the same as saying that for any distinct
1 ≤ a, b ≤ n,

n∑

k=1

ha,kh
−1
b,k = 0, (4)

which makes a comparison with (1) easier.
The set of entries of complex Hadamard matrices forms an infinite group that is

isomorphic to the circle group S1. General complex Hadamard matrices are of interest
in physics [19], whereas in discrete mathematics, the main focus has been on matrices
with entries from a finite subgroup. In fact, every finite subgroup of C∗ is a (cyclic)
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group of roots of unity. A Butson-type Hadamard matrix of order n over mth roots of
unity is a complex Hadamard matrix of order n with hm = 1 for every entry h.

It is an easy exercise to show that the sets of complex and Butson-type Hadamard
matrices are closed under monomial equivalence but what about Hadamard equiva-
lence?

A basic fact for the circle group is that Aut(S1) is isomorphic to the unique group of
order 2 (cf. [1, Ch. 4, Problem 25]), and the nontrivial element of Aut(S1) corresponds
to complex conjugation here. Complex conjugation of H is denoted by H . To verify
that the set of complex Hadamard matrices is closed under conjugation, (3) can be
used to get

H H
∗ = H H∗ = HH∗ = nIn = nIn .

So the only difference between monomial equivalence and Hadamard equivalence for
complex Hadamard matrices is the inclusion of complex conjugation in the latter case.
Complex conjugation indeed plays a central role in the study of complex Hadamard
matrices [18].

For Butson-type Hadamard matrices over mth roots of unity, on the other hand,
the entries are from a cyclic group of order m, that is, a group isomorphic to Cm . By
letting Cm = 〈g : gm = e〉, the elements of Aut(Cm) are given by the functions

f (x) = xk, gcd(k,m) = 1, 1 ≤ k ≤ m. (5)

Hence, |Aut(Cm)| = ϕ(m), where ϕ(m) is Euler’s totient function.
In the literature, studies of equivalence of Butson-type Hadamard matrices over

mth roots of unity have mainly considered the case m = 4; see [13,14]. We have
|Aut(C4)| = 2, and the only nontrivial element corresponds to complex conjugation.
Butson-type Hadamard matrices form a subset of complex Hadamard matrices, and
we have seen that the set of such matrices is closed under complex conjugation.

However, there are studies of equivalence of Butson-type Hadamard matrices over
mth roots of unity for larger values of m. One such example is [12], co-authored by
the current author, where Hadamard equivalence is used without justifications. Those
missing justifications will now be provided.

3 Hadamard equivalence of Butson-typematrices

Everything would be straightforward if (5) would be automorphisms of C for all
admissible values of k, but this is not the case as only k = 1 (identity) and k = m − 1
(conjugation) give such automorphisms.However, considering cyclotomicfieldsQ(ζ ),
where ζ is a primitive mth root of unity, rather than C makes it possible to prove the
main theorem in a direct manner.

Theorem 1 The set of Butson-type Hadamard matrices is closed under Hadamard
equivalence.
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Proof Because the set of Butson-type Hadamard matrices is closed under monomial
equivalence, it remains to consider the case of applying a group automorphism to each
entry of the matrix. Let H = (hi, j ) be a Butson-type Hadamard matrix of order n over
mth roots of unity. By (2), we are done if we are able to show that

∑n
k=1 ha,kh

−1
b,k = 0

implies that
∑n

k=1 φ(ha,kh
−1
b,k) = 0, for any φ given by (5).

Let ζ be a primitivemth root of unity. It is well known that Gal(Q(ζ )/Q) has order
ϕ(m) and that the automorphisms map the mth roots of unity by a function (5); see,
for example, [20, Theorem 2.5]. A function φ given by (5) and whose domain is the
mth roots of unity determines the entire automorphism φ′ of Q(ζ ). So in Q(ζ ),

n∑

k=1

φ(ha,kh
−1
b,k) =

n∑

k=1

φ′(ha,kh
−1
b,k) = φ′

(
n∑

k=1

ha,kh
−1
b,k

)
= φ′(0) = 0.

	

We shall next give another, longer but more constructive, proof of the same result.

We will need a few lemmas and theorems, some of which—especially Lemma 1—are
well known but proofs are included for completeness.

Lemma 1 Let m ≥ 2. If ζ is a primitive mth root of unity, then
∑m−1

i=0 ζ i = 0.

Proof As ζ is an mth root of unity, ζm = 1, that is, ζm − 1 = 0. We may now write

0 = ζm − 1 = (ζ − 1)(1 + ζ + ζ 2 + · · · + ζm−1),

and the result follows as 1 is not a primitive mth root of unity, so ζ �= 1. 	

Lemma 2 The function (5) maps a qth root of unity to a qth root of unity, for any q.

Proof If zq = 1, then (zk)q = (zq)k = 1k = 1. 	

Lemma 3 Let G be the group of mth roots of unity (m ≥ 2), let φ ∈ Aut(G), let p be a
prime factor ofm, and let ζ be a primitivemth root of unity. Then,

∑p−1
i=0 φ(ζ im/p+ j ) =

0 for any integer j .

Proof We get

p−1∑

i=0

φ(ζ im/p+ j ) =
p−1∑

i=0

φ(ζ jζ im/p) =
p−1∑

i=0

φ(ζ j )φ(ζ im/p)

= φ(ζ j )

p−1∑

i=0

φ(ζ im/p) = φ(ζ j )

p−1∑

i=0

φ((ζm/p)i )

= φ(ζ j )

p−1∑

i=0

φ((ζ r )i )
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by substituting r = m/p. Hence, ζ r is a pth root of unity, whichmust be primitive as p
is a prime (and ζ r �= 1 as ζ is a primitivemth root of unity). Then, (ζ r )i , 0 ≤ i ≤ p−1
are precisely the p pth roots of unity. By Lemma 2 and the fact that automorphisms
are bijections, the values of φ((ζ r )i ) for 0 ≤ i ≤ p− 1 are also the pth roots of unity.
Therefore,

∑p−1
i=0 φ((ζ r )i ) = 0 by Lemma 1. 	


We need one more result, which has been proved in several different ways in the
literature [3,10,15–17].

Theorem 2 Let ζ be a primitive mth root of unity, and, for 1 ≤ i ≤ n, let zi be an mth
root of unity. Every relation of the form

∑n
i=1 ai zi = 0 can be obtained as a Z-linear

combination of relations, where each relation is of the form
∑p−1

i=0 ζ im/p+ j = 0 for
some prime factor p of m and integer j .

We are now ready for an alternative proof of the main theorem.

Proof of Theorem 1 As in the earlier proof, we show that
∑n

k=1 ha,kh
−1
b,k = 0 implies

that
∑n

k=1 φ(ha,kh
−1
b,k) = 0, for any φ given by (5).

By Theorem 2, we may write

0 =
n∑

k=1

ha,kh
−1
b,k =

N∑

s=1

⎛

⎝Ts

ps−1∑

i=0

ζ im/ps+ js

⎞

⎠ ,

where ζ is a primitivemth root of unity and, for 1 ≤ s ≤ N , Ts are integers, ps are (not
necessarily distinct) prime factors of m, and js are integers. Now consider the linear
combination obtained by substituting ha,kh

−1
b,k with φ(ha,kh

−1
b,k) for all 1 ≤ k ≤ n:

n∑

k=1

φ(ha,kh
−1
b,k) =

N∑

s=1

⎛

⎝Ts

ps−1∑

i=0

φ(ζ im/ps+ js )

⎞

⎠ =
N∑

s=1

(Ts · 0) = 0,

utilizing Lemma 3. 	
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