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Abstract
We investigate several families of polynomials that are related to certain Euler type
summation operators. Being integer valued at integral points, they satisfy combina-
torial properties and nearby symmetries, due to triangle recursion relations involving
squares of polynomials. Some of these interpolate the Delannoy numbers. The results
are motivated by and strongly related to our study of irreducible Lie supermodules,
where dimension polynomials in many cases show similar features.
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1 Introduction

We are interested in a family of polynomials p(n, x) that, for particular polynomials
a(n, x), satisfy recursion formulas of the form

p(n, x + 1) + 2p(n, x) + p(n, x − 1) = a(n, x)2.

Evaluated at natural numbers x = m, these polynomials define integers p(n,m) with
interesting combinatorial properties and representation theoretic interpretations.

To illustrate this, let us consider the Pochhammer polynomials. Their values at
integral points give the binomial coefficients for the classical Pascal triangle, which,

B Kathrin Maurischat
kathrin.maurischat@matha.rwth-aachen.de

Rainer Weissauer
weissauer@mathi.uni-heidelberg.de

1 Lehrstuhl A für Mathematik, RWTH Aachen University, Templergraben 55, 52062 Aachen,
Germany

2 Mathematisches Institut, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-021-01081-3&domain=pdf
http://orcid.org/0000-0002-6665-1522


1008 Journal of Algebraic Combinatorics (2022) 55:1007–1028

among others, can be considered as dimensions of certain irreducible representations
of the special linear group SL(n). The isomorphism classes of finite dimensional
irreducible representations of the special linear group SL(n) over C are described by
their dominant weights λ, parameterized by integers λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0. The
symmetric powers Sm(Cn) of the n-dimensional standard representation Cn of SL(n)

are the irreducible representations of dimension
(m+n−1

m−1

)
that are obtained for λ1 = m

and λi = 0, i ≥ 2. By an index shift, restoring the symmetry between n and m, for
n,m ≥ 1 we define

Pcl(n,m) := dim(Sm−1(Cn)) =
(

(m − 1) + (n − 1)

n − 1

)
.

The numbers Pcl(n,m) are values of rational polynomials pcl(n, x) of degree n−1 in
the variable x . Togetherwith the initial condition pcl(0, x)=0, they satisfy pcl(n,m)=
pcl(m, n) + δn1 · δm0 for all integers n,m ≥ 0. This almost symmetry condition
and the initial condition uniquely characterize the polynomials pcl(n, x), such that
pcl(1, x)= 1 and pcl(n, x)= (x + n − 2) · · · x/(n − 1)! holds for all n ≥ 2. Hence,
pcl(n,m) coincides with dim(Sm−1(Cn))=(m+n−2

n−1

)
for m, n ≥ 1. If we formally set

dim(S−1(Cn)) = 0, the dimension is given by pcl(n,m) for all n,m ≥ 0, except for
the case (n,m) = (1, 0).

In analogy, here we consider polynomials p(n, x) of degree ≤ 2(n − 1) with
p(0, x) = 0, such that the values p(n,m)+(−1)m+n·n are symmetric for all n,m ≥ 0.
Imposing the additional conditions p(n, x) = p(n,−x), this uniquely determines the
polynomials p(n, x). Form ≥ n, we further define P(n,m) = p(n, x)|x=m . Extended
by symmetry P(m, n) := P(n,m), these numbers (up to a simultaneous index shift
of n,m by 1) will be called the superbinomial coefficients. We refer to Tables 1 and 2
for the first values of p(n,m) and P(n,m), respectively.

In order to relate these superbinomial coefficients P(n,m) to the classical bino-
mial coefficients, let us explain how they arise from the representation theory of the
superlinear groups SL(n|n). The isomorphism classes of finite dimensional irreducible
representations are again described by dominant weights λ [7,9]. The superdimensions
of these representations are zero unless λ is maximal atypical [6,10,13]. The maxi-
mal atypical λ are again parameterized by integers λ1 ≥ λ2 ≥ · · · λn−1 ≥ 0. For
λ1 = m ≥ 0 and λi = 0 for i ≥ 2 as before, let Sm denote the corresponding irre-
ducible maximal atypical representations of SL(n|n). Notice, the representations Sm

are no longer isomorphic to the symmetric powers of some representations of SL(n|n).
However, form ≥ 1 we have for the dimension of the irreducible representation Sm−1

of SL(n|n)

P(n,m) = dim(Sm−1).

Observe the index shift, in analogywith the dimensions Pcl (n,m) for the classical case.
Next, in the relation between p(n,m) and P(n,m), the condition m ≥ n now really
becomes significant. Indeed, for fixedn the dimensions do not dependonm in a polyno-
mial way in the rangem < n, as we briefly discuss eventually. Evenmore interestingly,
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the polynomials p(n, x) interpolate the superdimension p(n, 0) = sdim(Sm−1) at the
point x = 0 < n, where p(n, x) a priori does not have an obvious dimensional inter-
pretation. This holds true in similar cases for more general SL(n|n) modules; see [8].
For character and dimension formulas for irreducible Lie supermodules of SL(n|n) in
general, we refer to [2,4,9,12].

Returning to our main interest, in this note we focus on particular polynomial
relations satisfied by the polynomials p(n,m). The first type of relations is

p(n,m + 1) + 2 · p(n,m) + p(n,m − 1) = A(n,m)2 (1)

for n ∈ N0 and m ∈ N, where A : N2
0 → N0 is defined by

A(n,m) =
min(m,n)∑

ν=0

(
n

ν

)(
n − 1 + m − ν

n − 1

)
. (2)

It is not hard to see that, for fixed n, there exist polynomials a2(n, x) of degree 2(n−1)
such that A(n,m) = a2(n, x)|x=m holds for all integersm ≥ 1. Let us define an Euler
type summation operator E2 by E2 f (x) = f (x +1)+2 · f (x)+ f (x −1). Since this
operator acts bijectively on the polynomial ringQ[x], the above relations characterize
the polynomials f (x) = p(n, x) as the unique solutions of the polynomial equations

E2 f (x) = a2(n, x)2.

In Definition 3.1, we similarly give polynomials a1(m, x) satisfying a1(m, x)|x=n =
A(m, n). In Theorem 3.2, we show the first as well as second variable summation
equations

p(n + 1, x) + 2p(n, x) + p(n − 1, x) = a1(n, x)2,

respectively,

p(n, x + 1) + 2p(n, x) + p(n, x − 1) = a2(n, x)2.

As polynomials identities, these equations hold for all x . In particular, p(n, x) is of
degree 2(n − 1) in x . This implies the polynomial identity na1(n, x) = xa2(n, x)
(Proposition 3.5), which amounts to the symmetry nA(m, n) = mA(n,m). Besides
the summation equations above, there also exists a summation relation of second kind

p(n, x) + p(n, x − 1) + p(n − 1, x) + p(n − 1, x − 1) = 2 · d(n, x)2. (3)

Here, d(n, x) turn out to be the Delannoy polynomials, defined in Sect. 4. However,
we do not know any representation theoretic interpretations of the results in Sect. 4.
This comes from the fact that such a result would relate representations of the groups
SL(n|n) for different n.
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Although the connection of the polynomials p(n, x) and their combinatorial prop-
erties to representation theory is not the primary focus of this paper, our interest arose
while searching for alternatives to the combinatorial character formulas [2,9], in order
to obtain and understand dimension formulas. In fact, for atypical irreducible repre-
sentations [7] these character formulas are not entirely satisfying, because the known
formulas turn out to be “rather intricate and difficult to apply” [4].We therefore looked
for a different approach to dimension formulas: In [8], we conjectured that for all irre-
ducible maximal atypical representations of weight λ that are attached to a fixed basic
weight λbasic (see [6]), the dimensions of the representations depend on the coeffi-
cients of the weight λ in a polynomial way. Notice that, for fixed n, the number of
different basic weights λbasic is finite and given by the Catalan number Cn . Hence,
this conjecture predicts the existence of Cn (usually different) dimension polynomials
for fixed n. For example, the highest weights of the representations Sk are basic in
the sense above if and only if 0 ≤ k ≤ n − 1. For their basic weights λbasic, consider
the set of isomorphy classes of the irreducible maximal atypical representations of
weight λ attached to λbasic. These sets are singletons for k < n − 1, represented by
Sk . For k = n − 1, on the other hand, this set is infinite and its representatives are
the representations Sm for m ≥ k. For k < n − 1, the associated dimension poly-
nomials are constant and equal to P(n, k). However, for k = n − 1, the dimension
polynomial is our polynomial p(n, x) above. Hence, our results on the superbinomial
coefficients suggest subtle relations between the Cn different dimension polynomials.
Furthermore, it could be that the Euler type summation equations, discussed here, are
special cases of dimension formulas for certain indecomposable, but not necessarily
irreducible modules. A special type of such indecomposable modules are the Kac
modules. It is well known that the knowledge of Jordan Hölder constituents of Kac
modules is strongly related to the character and dimension formulas. In [8], we also
workwith other types of indecomposablemodules not directly related toKacmodules.
We therefore suggest not to ignore other indecomposable modules that are different
from Kac modules.

2 A family of polynomials

Proposition 2.1 There is a unique family of polynomials

{p(n, x) ∈ Q[x] | n ∈ N0}

satisfying the following properties.

(i) p(0, x) = 0.
(ii) Degree condition: The degree is degx p(n, x) ≤ 2(n − 1) for all n ≥ 1.
(iii) Parity: p(n, x) = p(n,−x) holds for all n ∈ N0.
(iv) Symmetry: The function f (n,m) = p(n,m)+(−1)m+n ·n is a symmetric function

on N0 × N0, i.e., f (m, n) = f (n,m) holds.

Proof of Proposition 2.1 We show that the properties (i)–(iv) uniquely define the poly-
nomials p(n, x) by recursion. For n = 0, the polynomial p(0, x) = 0 is fixed by
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property (i). For n = 1, by (ii) we know p(1, x) = c is a constant polynomial. By
(iv),

p(1, 0) + (−1)1+0 · 1 = p(0, 1) + (−1)0+1 · 0,

so c = 1. Assuming p(k, x) to be constructed for 0 ≤ k ≤ n, we obtain by property
(iv) the following values of p(n + 1, x)

p(n + 1, k) = p(k, n + 1) + (−1)n+k(n + 1 − k).

Using (iii), we find p(n + 1,−k) = p(n + 1, k). We thus have fixed the values
p(n + 1, x) at the 2n + 1 places x ∈ {−n, . . . , 0, . . . , n}. But by (ii), the degree of
p(n + 1, x) is at most 2n. Hence, p(n + 1, x) is the unique interpolation polynomial
of degree 2n for the values above. ��
For example, condition (iv) together with (i) implies

p(n, 0) = (−1)n−1 · n and p(n, 1) = 1 + (−1)n(n − 1).

In particular,

p(0, x) = 0,

p(1, x) = 1,

p(2, x) = 4x2 − 2,

p(3, x) = 4x4 − 8x2 + 3,

p(4, x) = 16

9
x6 − 56

9
x4 + 112

9
x2 − 4,

p(5, x) = 4

9
x8 − 16

9
x6 + 92

9
x4 − 152

9
x2 + 5,

p(6, x) = 16

225
x10 − 8

45
x8 + 848

225
x6 − 592

45
x4 + 1612

75
x2 − 6,

p(7, x) = 16

2025
x12 + 32

2025
x10 + 596

675
x8 − 7984

2025
x6 + 34696

2025
x4 − 5872

225
x2 + 7,

p(8, x) = 64

99225
x14 + 32

4725
x12 + 64

405
x10 − 46384

99225
x8 + 27968

4725
x6 − 41312

2025
x4 + 339392

11025
x2 − 8.

The proof of Proposition 2.1 shows that, for all n ≥ 0, the values p(n, k) for
k = −n, . . . , n are integers. So by the almost symmetry (iv), for every integer j > 0,
the value

p(n, n + j) = p(n + j, n) + (−1) j · j

is integral. This proves

Corollary 2.2 Let p(n, x) be the polynomials in Proposition 2.1. Then, the map p
defined on N0 × N0 by p(n,m) is integer valued.
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Let n be a natural number. For integers 0 ≤ μ ≤ n − 1, put

μ∗ = n − 1 − μ.

For integers 0 ≤ ν, μ ≤ n − 1, define the polynomials

t(ν, μ, n; x) =
μ∏

k=1

(x + ν − μ + k) ·
ν∏

l=1

(x − 1 − μ + l).

Proposition 2.3 The polynomials p(0, x) = 0 and

p(n, x) =
n−1∑

ν,μ=0

t(ν, μ, n; x) · t(μ∗, ν∗, n; x)
ν!ν∗!μ!μ∗!

for n > 0 satisfy the properties of Proposition 2.1.

Proof of Proposition 2.3 By definition, condition (i) of Proposition 2.1 is satisfied. For
the summands of p(n, x), we have, for all ν, μ,

degx t(ν, μ, n; x) · t(μ∗, ν∗, n; x) = ν + μ + ν∗ + μ∗ = 2(n − 1).

So the same holds true for p(n, x). This implies property (ii). Obviously,

t(ν, μ, n;−x) = (−1)ν+μ · t(μ, ν, n; x),

so condition (iii) follows

p(n,−x) =
n−1∑

μ,ν=0

(−1)2(n−1) t(μ, ν, n; x) · t(ν∗, μ∗, n; x)
ν!ν∗!μ!μ∗! = p(n, x).

In order to prove (iv), which is trivial for n = m, we assume m > n. Substituting
μ 	→ n − 1 − μ, we write

p(n,m) =
m−1∑

ν∗,μ∗=0

t(ν, μ∗, n;m) · t(μ, ν∗, n;m)

ν!ν∗!μ!μ∗! .

Notice that, for m ≤ μ∗, the value

t(ν, μ∗, n;m) = (m + ν) · · · (m + ν − μ∗ + 1) · (m + ν − μ∗ − 1)s · · · (m − μ∗)
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is zero unless m + ν − μ∗ = 0, where the value is (−1)νν!μ∗!. We obtain

p(n,m) =
m−1∑

ν∗,μ∗=0

t(ν, μ∗, n;m) · t(μ, ν∗, n;m)

ν!ν∗!μ!μ∗! +
∑

ν+μ=n−1−m

(−1)ν+μ.

Substituting i = n − 1 − ν and j = n − 1 − μ, the first sum becomes

m−1∑

i, j=0

t(i,m − 1 − j,m; n)t( j,m − 1 − i,m; n)

i !(m − 1 − i)! j !(m − 1 − j)! = p(m, n).

So, for m > n we obtain p(n,m) = p(m, n)+ (−1)m+n−1(n−m). Hence, condition
(iv) of Proposition 2.1 holds for all integers m, n > 0. ��
Definition 2.4 Let m ∈ N. For integers α and β, we define the natural numbers

Dm(α + 1, β) =
{ m

α+β+1

(m+α
α

)(m−1
β

)
if α ≥ 0 and 0 ≤ β ≤ m − 1

0 else
.

Remark 2.5 i) Property (ii) of Proposition 2.1 can be sharpened to become

(ii’) degx p(n, x) = 2(n − 1) for all n > 0.

ii) Fixing the first variable, the function p(n, x) is polynomial in x by definition. By
property (iv) of Proposition 2.1, the values p(n,m) are nearly symmetric

p(m, n) = p(n,m) + (−1)m+n(n − m).

Hence, for fixedm ∈ N, the function p(n,m) is almost a polynomial of degree 2(m−1)
in the first variable n.
iii) For integers m > 0, there is a convenient presentation of t(ν, μ, n;m),

t(ν, μ, n;m)

ν!μ! =
{ m

m+ν−μ

(m+ν
ν

)(m−1
μ

)
if μ 
= m + ν

(−1)ν if μ = m + ν
.

In particular, for integers m ≥ n > 0, we obtain

p(n,m)=
n−1∑

ν,μ=0

m2

(m + ν − μ)2

(
m + ν

ν

)(
m − 1

μ

)(
m + (n − 1 − μ)

n − 1 − μ

)(
m − 1

n − 1 − ν

)
.

Equivalently, using Definition 2.4, for integers m ≥ n > 0,

p(n,m) =
n−1∑

ν,μ=0

Dm
(
ν + 1,m − 1 − μ)

·Dm((n − 1 − μ) + 1,m − 1 − (n − 1 − ν)
)
.
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Table 2 Values P(n,m) of the function P : N0 × N0 → Z

n m

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1

2 0 1 14 34 62 98 142 194 254

3 0 1 34 255 899 2303 4899 9215 15,875

4 0 1 62 899 5884 24,196 75,324 194,820 441,340

5 0 1 98 2303 24,196 151,805 676,197 2,376,701 7,031,301

6 0 1 142 4899 75,324 676,197 4,160,778 19,475,142 74,307,834

7 0 1 194 9215 194,820 2,376,701 19,475,142 118,493,179 573,785,095

8 0 1 254 15,875 441,340 7,031,301 74,307,834 573,785,095 3,465,441,272

Hence, the values p(n,m) are natural numbers for all integers m ≥ n.
The numbers P(n,m): In general, for integers m, n > 0, let us define the numbers

P(n,m) =
min{n−1,m−1}∑

ν,μ=0

Dm
(
ν + 1,m − 1 − μ)

·Dm((n − 1 − μ) + 1,m − 1 − (n − 1 − ν)
)
.

Hence, p(n,m) = P(n,m) holds for m ≥ n > 0, whereas for m < n we obtain

p(n,m) = P(n,m) + (−1)m+n−1(n − m).

On the other hand, we know p(n,m) = p(m, n) + (−1)m+n−1(n − m) by property
(iv). For m < n, we obtain

P(n,m) = p(m, n) = P(m, n).

Hence, the numbers P(n,m) are symmetric.

3 Summation operators

Consider the Eulerian summation operator E acting on functions f by

E f (x) = f

(
x + 1

2

)
+ f

(
x − 1

2

)
.

On monomials, E acts by E(xn) = ∑n
k=0

(n
k

)
xn−k2−k(1 + (−1)k). The preimages

E−1(xn) are unique by recursion, starting with E−1(0) = 0 and E−1(1) = 1
2 . This
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shows that E is bijective on polynomial rings over fields of characteristic 
= 2. Fur-
thermore, the summation operator E2 is also well defined on functions f : Z → C.
We have

E2 f (x) = f (x + 1) + 2 · f (x) + f (x − 1).

For integers k, consider the following polynomials of degree k with

[
x
0

]
= 1 and

[
x
k

]
= x(x − 1) · · · (x − k + 1)

k! for k ≥ 1.

For all integers n ≥ 0, their values coincidewith the binomial coefficients

(
n
k

)
=

[
n
k

]
.

Definition 3.1 For all n ∈ N, we define polynomials of degree n

a1(n, x) =
n∑

ν=0

[
x − 1 + ν

ν

] [
x

n − ν

]
,

and for all m ∈ N we define polynomials of degree m − 1

a2(m, x) =
m∑

ν=0

(
m
ν

)[
x − ν + m − 1

m − 1

]
.

Theorem 3.2 Let p : N0 × N0 → Z be the function defined in Corollary 2.2. Let
E1 and E2 be the summation operators in the first and second variable, respectively.
Consider the function A : N × N → N given by (Table 3)

E2
1 p(n,m) = p(n + 1,m) + 2 · p(n,m) + p(n − 1,m) = A(m, n)2. (4)

Then, we also have

E2
2 p(n,m) = p(n,m + 1) + 2 · p(n,m) + p(n,m − 1) = A(n,m)2. (5)

Further, A(n,m) defines the numbers [11, A266213] resp. the transposed array of the
numbers [11, A122542]. They satisfy the tribonacci identities1

A(n,m) = A(n − 1,m) + A(n,m − 1) + A(n − 1,m − 1).

1 Indeed A(n,m) = D(n,m) − D(n,m − 1) holds for the Delannoy numbers D(n,m) (our remarks
on Delannoy numbers following the proof of Proposition 4.3). Since the D(n,m) satisfy the tribonacci
identities [1], hence also the A(n,m) do.
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Table 3 Values A(n,m) of the function A : N0 × N0 → N0

n m

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0

1 1 2 2 2 2 2 2 2 2

2 1 4 8 12 16 20 24 28 32

3 1 6 18 38 66 102 146 198 258

4 1 8 32 88 192 360 608 952 1408

5 1 10 50 170 450 1002 1970 3530 5890

6 1 12 72 292 912 2364 5336 10,836 20,256

7 1 14 98 462 1666 4942 12,642 28,814 59,906

8 1 16 128 688 2816 9424 27,008 68,464 157,184

Further, they coincide with evaluations of the polynomials in Definition 3.1,

a1(m, n) = A(n,m) , a2(n,m) = A(n,m).

Let p(n, x) be the family of polynomials of Proposition 2.1 defining the numbers
p(n,m). Then, for all integers n > 0,

E2
1 p(n, x) = p(n + 1, x) + 2 · p(n, x) + p(n − 1, x) = a1(n, x)2 (6)

holds. Furthermore, for all integers m > 0, we have

E2
2 p(m, x) = p(m, x + 1) + 2 · p(m, x) + p(m, x − 1) = a2(m, x)2. (7)

Beforewe proveTheorem3.2,we deduce some consequences. Consider the symmetric
numbers P(n,m) defined in Remark 2.5(iii), which can be written as

P(n,m) =
min(n−1,m−1)∑

ν,μ=0

n2

(m + ν − μ)2

(
m + ν

ν

)(
m − 1

μ

)(
n + m − 1 − μ

n − 1 − μ

)(
m − 1

n − 1 − ν

)
.

(8)

For m > n, they satisfy P(n,m + i) = p(n,m + i) for i = −1, 0, 1. Simi-
larly, by Proposition 2.1(iv), for m < n, they satisfy P(n,m + i) = p(n,m +
i) + (−1)m+i+n(n − m − i) for i = −1, 0, 1. And for m = n, we obtain
P(n, n + i) = p(n, n + i) for i = 0, 1, and P(n, n + 1) = p(n, n + 1) − 1. By
Theorem 3.2, this implies the following corollary.

Corollary 3.3 For all integers m, n > 0, the symmetric numbers P(n,m) satisfy the
summation equations

P(n,m + 1) + 2 · P(n,m) + P(n,m − 1) = A(n,m)2 for m 
= n,
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and

P(n, n + 1) + 2 · P(n, n) + P(n, n − 1) + 1 = A(n, n)2 for m = n.

Theorem 3.4 Let Sm−1 be the irreducible SL(n|n) Lie supermodule of maximal atyp-
ical weight (m − 1, 0, . . . , 0 | 0, . . . , 0, 1 − m). For n,m ≥ 1, its dimension is given
by the number (8):

dim(Sm−1) = P(n,m).

Proof of Theorem 3.4 We use the indecomposable SL(n|n)-module

ASm = Symm(kn|n) ⊗ �m(kn|n)∨,

whose dimension is the product of the dimensions of its tensor factors. This immedi-
ately implies dim(ASm ) = A(n,m)2. By [5, Lemma 4.1], for all m ≥ 1 we have the
following decomposition in the Grothendieck ring of representations

ASm ∼ Sm−2 + Sm + 2 · Sm−1, (9)

for m 
= n, and for m = n we have

ASn ∼ Sn−2 + Sn + 2 · Sn−1 + 1. (10)

Formally set S−1 = 0. The summation equations for the dimensions are

dim(Sm) + 2 · dim(Sm−1) + dim(Sm−2) = A(n,m)2 for m 
= n,

and

dim(Sn) + 2 · dim(Sn−1) + dim(Sn−2) + 1 = A(n, n)2 for m = n.

ByCorollary 3.3, for fixedn, the numbers P(n,m) are also solutions of these equations.
Any solution of these recursion equations is of the form P(n,m) + (−1)m(c1(n)m +
c0(n)) for certain constants c1 and c0. This holds for dim(Sm−1) with constants c1 =
c0 = 0, due to the initial conditions dim(S−1) = 0 = P(n, 0) and dim(S0) = 1 =
P(n, 1). ��

We now list some of the polynomials a1(n, x) and a2(m, x):

a1(1, x) = 2x, a2(1, x) = 2,

a1(2, x) = 2x2, a2(2, x) = 4x,

a1(3, x) = 4

3
x

(
x2 + 1

2

)
, a2(3, x) = 4

(
x2 + 1

2

)
,

a1(4, x) = 2

3
x2(x2 + 2), a2(4, x) = 8

3
x(x2 + 2),
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a1(5, x) = 4

15
x

(
x4 + 5x2 + 3

2

)
, a2(5, x) = 4

3

(
x4 + 5x2 + 3

2

)
,

a1(6, x) = 4

45
x2

(
x4 + 10x2 + 23

2

)
, a2(6, x) = 8

15
x

(
x4 + 10x2 + 23

2

)
,

a1(7, x) = 8

315
x

(
x6 + 35

2
x4 + 49x2 + 45

4

)
, a2(7, x) = 8

45

(
x6 + 35

2
x4 + 49x2 + 45

4

)
,

a1(8, x) = 2

315
x2(x2 + 6)

(
x4 + 22x2 + 22

)
, a2(8, x) = 16

315
x(x2 + 6)

(
x4 + 22x2 + 22

)
.

The polynomials a1(n, x) and a2(m, x) satisfy the following properties.

Proposition 3.5 (a) For all n > 0, there is an identity of polynomials

n · a1(n, x) = x · a2(n, x).

In particular, nA(m, n) = mA(n,m) is a symmetric function on N2.
(b) The polynomial

a2(m, x) = 2m

(m − 1)! · xm−1 + · · · +
(
1 + (−1)m−1

)

of degree (m − 1) is even or odd. Its value at x = 1 is a2(m, 1) = 2m.

Proof of Proposition 3.5 The ν-th summand of the sum defining a1(n,−x) is

1

ν!(n − ν)! (−x − 1 + ν) · · · (−x + 1)(−x) · (−x)(−x − 1) · · · (−x − n + ν + 1).

This equals

(−1)n · x
n

·
(
n

ν

) [
x − ν + n − 1

n − 1

]
,

which up to the factor (−1)n x
n is the ν-th summand of a2(n, x). This implies (−1)nn ·

a1(n,−x) = x · a2(n, x). Property (iii) of Proposition 2.1, i.e. p(n, x) = p(n,−x),
is inherited by the images E2

1 p(n, x) = a1(n, x)2 under the summation operator E2
1 .

So a1(n, x) is either even or odd, depending on whether its degree is even or odd. Part
(a) follows. Accordingly, a2(n,−x) = (−1)n−1a2(n, x) is even or odd. The leading
term of the polynomial

[ x
m−1

]
is 1

(m−1)! x
n−1. So the leading term of a2(m, x) is

xm−1

(m − 1)! ·
m∑

ν=0

(
m

ν

)
= 2m

(m − 1)! · xm−1.

The evaluation of a2(m, x) at x = 0 only has constituents from ν = 0 and m, so we
obtain a2(m, 0) = 1 + (−1)m−1. Similarly, at x = 1 only the terms for ν = 0 and 1
are nonzero, and we obtain a2(m, 1) = 2m. ��
In the rest of this section, we prove Theorem 3.2. We start with a lemma.

123



1020 Journal of Algebraic Combinatorics (2022) 55:1007–1028

Lemma 3.6 Define the numbers

a(ν, μ, n,m) =
(
m − 1 + ν

ν

)(
m

n − ν

)(
m − 1 + n − μ

n − μ

)(
m

μ

)
. (11)

For m > n, they satisfy

a(ν, μ, n,m) = b(ν, μ, n,m),

where b(ν, μ, n,m) abbreviates the following sum of four terms

Dm(ν + 1,m − 1 − μ) · Dm(n − μ + 1,m − 1 − n + ν)

+ (1 − δν,n) · (1 − δμ,n) · Dm(ν + 1,m − 1 − μ) · Dm(n − μ,m − n + ν)

+ (1 − δν,0) · (1 − δμ,0) · Dm(ν,m − μ) · Dm(n − μ + 1,m − 1 − n + ν)

+ (1 − δν,0) · (1 − δμ,0) · (1 − δν,n) · (1 − δμ,n)

· Dm(ν,m − μ) · Dm(n − μ,m − n + ν).

Proof of Lemma 3.6 Using the definition of Dm(α+1, β) (see 2.4), the lemma follows
by straight forward calculations, distinguishing the cases ν, μ equal to 0, n, or generic.
We exemplify this in the generic case 0 < ν,μ < n. The sum b(ν, μ, n,m) here is

m2

(m + ν − μ)2

(
m + ν

ν

)(
m − 1

m − 1 − μ

)(
m + n − μ

n − μ

)(
m − 1

m − 1 − n + ν

)

+ m2

(m + ν − μ)2

(
m + ν

ν

)(
m − 1

m − 1 − μ

)(
m + n − 1 − μ

n − 1 − μ

)(
m − 1

m − n + ν

)

+ m2

(m + ν − μ)2

(
m + ν − 1

ν − 1

)(
m − 1

m − μ

)(
m + n − μ

n − μ

)(
m − 1

m − 1 − n + ν

)

+ m2

(m + ν − μ)2

(
m + ν − 1

ν − 1

)(
m − 1

m − μ

)(
m + n − 1 − μ

n − 1 − μ

)(
m − 1

m − n + ν

)
.

Summing the first and the second lines as well as the third and fourth, we obtain

m

(m + ν − μ)

[(
m + ν

ν

)(
m − 1

μ

)
+

(
m + ν − 1

ν − 1

)(
m − 1

m − μ

)]

(
m

n − ν

)(
m + n − 1 − μ

n − μ

)
,

which simplifies to a(ν, μ, n,m). ��

Proof of Theorem 3.2 We show (6) at the integer points x = m > n. Then, both,
E2
1 p(n, x) and a1(n, x)2 being polynomials, coincide. Let m > n be an integer. By
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changing the summation index, we obtain

a1(n,m)2 =
(

n∑

ν=0

(
m − 1 + ν

n − 1

)(
m

n − ν

))

·
⎛

⎝
n∑

μ=0

(
m − 1 + n − μ

m − 1

)(
m

μ

)
⎞

⎠ .

Hence, a1(n,m)2 = ∑n
ν,μ=0 a(ν, μ, n,m) for the numbers (11). On the other hand,

using the notation of Remark 2.5(iii),

E2
1 p(n,m)

=
n∑

ν,μ=0

Dm(ν + 1,m − 1 − μ) · Dm(n − μ + 1,m − 1 − n + ν)

+ 2 ·
n−1∑

ν,μ=0

Dm(ν + 1, n − 1 − μ) · Dm(n − 1 − μ + 1,m − 1 − (n − 1) + ν)

+
n−2∑

ν,μ=0

Dm(ν + 1,m − 1 − μ) · Dm(n − 2 − μ + 1,m − 1 − (n − 2) + ν).

Index shifts ν 	→ ν + 1, μ 	→ μ + 1 in the last sum and in one of the second sums
yield

E2
1 p(n,m) =

n∑

ν,μ=0

Dm(ν + 1,m − 1 − μ) · Dm(n − μ + 1,m − 1 − n + ν)

+
n−1∑

ν,μ=0

Dm(ν + 1,m − 1 − μ) · Dm(n − μ,m − n + ν)

+
n∑

ν,μ=1

Dm(ν,m − μ) · Dm(n − μ + 1,m − 1 − n + ν)

+
n−1∑

ν,μ=1

Dm(ν,m − μ) · Dm(n − 1 − μ + 1,m − n + ν).

Using this, equation (6) now follows from Lemma 3.6. The identity a1(n,m) =
a2(m, n) for integers m, n > 0 becomes obvious after substituting ν 	→ n − ν in
a1(n,m), noticing that in both sums the summands are actually zero forν > min(m, n).
Since a2(n,m) = A(n,m) by (2), formula (4) follows from (6). Then, equation (7)
holds for all integers x = n > 0 and also for all m > 0 due to the symmetry rela-
tion satisfied by p(n,m). Exchanging m and n, we obtain (5). Therefore, both being
polynomials of degree 2(m − 1) in x , a2(m, x)2 and E2

2 p(m, x) coincide. ��
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4 Mixed summation operators

Proposition 4.1 There exists a unique family of polynomials

{d(n, x) ∈ Q[x] ∣∣ n ∈ N}

satisfying the following properties:

(i) For all n, the degree of the polynomial d(n, x) is n − 1.
(ii) For all n, the leading coefficient of d(n, x) is 2n−1

(n−1)! .
(iii) The function d(n,m) is symmetric on N × N, i.e., d(n,m) = d(m, n).

Proof The conditions imply d(1, x) = 1. By recursion, let d(m, x) be determined
for all 1 ≤ m < n. By (i) and (ii), the polynomial d(n, x) has degree n − 1 and a
fixed leading coefficient. By (iii), the identities d(n,m) = d(m, n) determine n − 1
equations for the n − 1 missing coefficients of d(n, x). So they determine d(n, x)
uniquely. ��
We formally put d(0, x) = 0 and obtain

d(1, x) = 1,

d(2, x) = 2(x − 1

2
),

d(3, x) = 2

((
x − 1

2

)2
+ 1

4

)

,

d(4, x) = 4

3

(
x − 1

2

)((
x − 1

2

)2
+ 5

4

)

,

d(5, x) = 2

3

((
x − 1

2

)4
+ 7

2

(
x − 1

2

)2
+ 9

16

)

,

d(6, x) = 4

15

(
x − 1

2

)((
x − 1

2

)4
+ 15

2

(
x − 1

2

)2
+ 89

16

)

,

d(7, x) = 4

45

((
x − 1

2

)2
+ 9

4

) ((
x − 1

2

)4
+ 23

2

(
x − 1

2

)2
+ 25

16

)

,

d(8, x) = 8

315

(
x − 1

2

)((
x − 1

2

)6
+ 91

4

(
x − 1

2

)4
+ 1519

16

(
x − 1

2

)2
+ 3429

64

)

.

Proposition 4.2 Thepolynomials d(n, x)definedbyProposition4.1have the following
properties for all n ≥ 1:

(a) Tribonacci identity: d(n, x) = d(n, x − 1) + d(n − 1, x − 1) + d(n − 1, x).
(b) d(n, x) in x = m is the Delannoy number D(n − 1,m − 1); see [11, A008288].
(c) Functional equation: d(n, 1 − x) = (−1)n−1d(n, x).

Proof of Proposition 4.2 (a) The family of polynomials v(0, x) = 0 and, for n ≥ 1,

v(n, x) = d(n, x − 1) + d(n − 1, x − 1) + d(n − 1, x)

123



Journal of Algebraic Combinatorics (2022) 55:1007–1028 1023

Table 4 Delannoy array D(n − 1,m − 1) of the function d : N × Z → Z

n m

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

1 1 1 1 1 1 1 1 1 1 1 1 1

2 − 11 − 9 − 7 − 5 − 3 − 1 1 3 5 7 9 11

3 61 41 25 13 5 1 1 5 13 25 41 61

4 − 231 − 129 − 63 − 25 − 7 − 1 1 7 25 63 129 231

5 681 321 129 41 9 1 1 9 41 129 321 681

6 − 1683 − 681 − 231 − 61 − 11 − 1 1 11 61 231 681 1683

7 3653 1289 377 85 13 1 1 13 85 377 1289 3653

8 − 7183 − 2241 − 575 − 113 − 15 − 1 1 15 113 575 2241 7183

obviously satisfies the properties of Proposition 4.1. Hence, v(n, x) = d(n, x).
(b) Notice that the Delannoy numbers D(n − 1,m − 1) are determined by the

tribonacci identity and the conditions D(n − 1, 0) = D(0,m − 1) = 1, in agreement
with d(1, x) = 1 and the symmetry property Proposition 4.1(iii).

(c) Notice that, by definition,

b(n, x) := (−1)n−1d(n, 1 − x) − d(n, x)

satisfies b(n, 1 − x) = (−1)n−1b(n, x). It suffices to show

b(n,−x) = (−1)n · b(n, x). (12)

Because, since in this case b(n, 1 + x) = −b(n, x), and by considering the leading
term, we obtain b(n, x) = 0 and hence (c). Equation (12) is obvious for n = 0. For
n ≥ 1, we compute

(−1)nb(n, x) − b(n,−x) = (−1)n (d(n, 1 + x) − d(n, x))

− (d(n, 1 − x) − d(n,−x)) . (13)

Using part (a) for 1 + x , respectively, −x , instead of x , the right-hand side of (13)
becomes

(−1)n (d(n, 1 + x) + d(n − 1, x)) − (d(n − 1,−x) + d(n, 1 − x))

= b(n − 1,−x) − (−1)n−1b(n − 1, x).

In here, the last term is zero by induction hypothesis. So (12) is proved in general. ��
The proof of Proposition 4.2(c) essentially amounts to extending the Delannoy array
(Table 4) from N×N to non-positive m by a reflection along the line x = 1

2 . Thereby,
it introduces signs so that the tribonnaci rule of Proposition 4.2(a) remains valid.
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Proposition 4.3 For all n ∈ N, the polynomials d(n, x) of Proposition 4.1 and the
polynomials p(n, x) of Proposition 2.1 satisfy the polynomial identities

p(n, x) + p(n, x − 1) + p(n − 1, x) + p(n − 1, x − 1) = 2 · d(n, x)2.

Proof of Proposition 4.3 It is easy to see that, for n ∈ N, there is a unique family of
polynomials q(n, x) in Q[x] satisfying the following properties:

(i) For all n, the degree of the polynomial is degx q(n, x) = 2(n − 1).

(ii) For all n, the leading coefficient of q(n, x) is 22n−1

(n−1)!2 .
(iii) q(n, x) = q(n, 1 − x) holds for all n ∈ N.
(iv) The function q(n,m) is symmetric on N × N, i.e., q(n,m) = q(m, n).

Obviously, the family 2d(n, x)2 satisfies these axioms. Hence, q(n, x) = 2d(n, x)2.

The polynomials p(n, x) satisfy the properties of Proposition 2.1. By Remark 2.5(i),
we know degx p(n, x) = 2(n − 1). Hence, p(n, x) + p(n, x − 1) + p(n − 1, x) +
p(n−1, x−1) satisfies the preceding properties (i), (iii), and (iv). By Proposition 2.3,
the leading coefficient of p(n, x) can easily be determined to be

n−1∑

ν,μ=0

1

ν!(n − 1 − ν)!μ!(n − 1 − μ)! =
(

2n−1

(n − 1)!
)2

.

Therefore, the leading coefficient of p(n, x)+p(n, x−1)+p(n−1, x)+p(n−1, x−1)
is twice this number, and therefore equal to 22n−1

(n−1)!2 . Sowe have found a second solution
of q(n, x). The proposition follows. ��

Remarks on the Delannoy numbers D(n,m). It is known that

D(n,m) =
min(n,m)∑

k=0

2k
(
n

k

)(
m

k

)
=

min(n,m)∑

k=0

(
n

k

)(
m + n − k

n

)
,

with generating series
∑

n,m D(n,m)xn ym = 1
1−x−y−xy . See, e.g., [11,14,15]. This

in particular implies

d(n, x) =
n−1∑

k=0

(
n − 1

k

)[
x − k + n − 2

n − 1

]
,

and relates the numbers A(n,m) and the Delannoy numbers D(n,m) by the identity

A(n,m) = D(n,m) − D(n,m − 1),

or equivalently, A(n,m) = D(n − 1,m) + D(n − 1,m − 1). Indeed, these relations
are equivalent to

a2(n − 1, x) = d(n, x + 1) − d(n, x),
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and the latter follows from

[
x − k + n − 1

n − 1

]
−

[
x − k + n − 2

n − 1

]
=

[
x − k + n − 2

n − 2

]
.

From this, we obtain the alternative presentation

A(n,m) =
min(n,m)∑

k=1

2k
(
n

k

)(
m − 1

k − 1

)
.

For the relation of A(n,m) with diamond numbers, see [15].

5 Central values

Using the summation operator E f (x) = f (x + 1
2 ) + f (x − 1

2 ), Proposition 4.3 can
be reformulated as

2 · d(n, x + 1

2
)2 = E

(
p(n, x) + p(n − 1, x)

)
. (14)

This suggests that our families of polynomials have interesting properties at half-
integral places. We illustrate this by determining their values at x = 1

2 .

Proposition 5.1 (a) For the polynomials a1(n, x) and a2(n, x), the values at x = 1
2

are given by

a1

(
2m,

1

2

)
= a1

(
2m + 1,

1

2

)
=

[
m − 1

2
m

]
,

respectively,

a2

(
n,

1

2

)
= 2n · a1

(
n,

1

2

)
.

(b) For all m ∈ N0, define the rational number

r(m) =
m∑

k=0

[
k − 1

2
k

]2
=

m∑

k=0

(
1

22k

(
2k

k

))2

.

Then, the values at x = 1
2 of the polynomials P(n, x) of Proposition 2.1 are given

by the recursion formula

p

(
2m + 1,

1

2

)
= r(m) = (−1) · p

(
2m + 2,

1

2

)
. (15)

(c) The values at x = 1
2 of the polynomials d(n, x)2 are

d

(
2m,

1

2

)
= 0, respectively, d

(
2m + 1,

1

2

)
=

[
m − 1

2
m

]
.
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By the set of initial values of Proposition 5.1, and by the tribonacci identities satisfied
by a2(n, x) and d(n, x), we obtain recursion formulas for their values at x = 2k+1

2 .
Identity (7) then gives a recursion for the values p(n, 2k+1

2 ).

Proof of Proposition 5.1 (a) We first notice that

[
m − 1

2
m

]
= 1

22m

(
2m

m

)
= (−1)m

[− 1
2

m

]
.

So the generating series of

[
m − 1

2
m

]
is given by the Taylor series

∞∑

m=0

xm
[
m − 1

2
m

]
=

∞∑

m=0

(−x)m
[− 1

2
m

]
= (

1 − x
)− 1

2 ,

whereas

(
1 + x

) 1
2 =

∞∑

m=0

xm
[ 1
2
n

]
.

By Cauchy product expansion, we obtain the generating series for a1(n, 1
2 ),

√
1 + x

1 − x
=

∞∑

n=0

xn
n∑

ν=0

[ 1
2
ν

] [
n − ν − 1

2
n − ν

]
=

∞∑

n=0

xna1

(
n,

1

2

)
.

On the other hand, from

1√
1 − x2

=
∞∑

m=0

x2m
[
m − 1

2
m

]

we obtain

√
1 + x

1 − x
= 1 + x√

1 − x2
=

∞∑

m=0

(
x2m + x2m+1)

[
m − 1

2
m

]
.

Comparing coefficients, the first identity of part (a) is proved. For the second one,
recall na1(n, x) = xa2(n, x) from Proposition 3.5.

(b) From the list of p(n, x) following Proposition 2.1, we obtain p(1, 1
2 ) = 1 =

r(0) = −p(2, 1
2 ) and p(3, 1

2 ) = 5
4 = r(1) = p(4, 1

2 ). By induction, assuming (15)
holds true for all m < M , and by (6),

p

(
2M + 1,

1

2

)
+ 2p

(
2M,

1

2

)
+ p

(
2M − 1,

1

2

)
= a1

(
2M,

1

2

)2

,
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we conclude

p

(
2M + 1,

1

2

)
=

[
M − 1

2
M

]2
+ 2r(M − 1) − r(M − 1) = r(M).

Similarly, we deduce p(2M + 2, 1
2 ) = −r(M).

(c) By (14), we obtain

2 · d
(
n,

1

2

)2

= p

(
n,

1

2

)
+ p

(
n,−1

2

)
+ p

(
n − 1,

1

2

)
+ p

(
n − 1,−1

2

)
.

Since the polynomials p(n, x) are even functions, we get

d

(
n,

1

2

)2

= p

(
n,

1

2

)
+ p

(
n − 1,

1

2

)
.

By part (b), this is zero in case n = 2m, whereas in case n = 2m + 1 we obtain

d

(
2m + 1,

1

2

)2

= r(m) − r(m − 1) =
[
m − 1

2
m

]2
.

In particular, by interpolating the Delannoy numbers, the d(2m + 1, x) are positive.
This implies part (c). Notice that d(2m, 1

2 ) = 0 follows from Proposition 4.2(c). ��
Remark.The polynomials a1(n, x) and other polynomial interpretations of the number
families in the proof above occur as Mellin transforms of Laguerre functions in [3].
By [3, Thm 4], their zeros lie on the line x = 1

2 .

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability All data needed to verify the statements of this article, or on which this article relies on,
are included or cited in this manuscript.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bernhart, F.R.: Catalan, Motzkin, and Riordan numbers. Discrete Math. 204, 73–112 (1999)
2. Brundan, J.: Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra gl(n|m).

J. Amer. Math. Soc. 16, 185–231 (2003)
3. Bump, D., Choi, K.-K., Kurlberg, P., Vaaler, J.: A local Riemann hypothesis I. Math. Z. 233, 1–19

(2000)

123

http://creativecommons.org/licenses/by/4.0/


1028 Journal of Algebraic Combinatorics (2022) 55:1007–1028

4. Chmutov, M., Hoyt, C., Reif, S.: A Weyl-type character formula for PDC modules of gl(m|n). J. Lie
Theory 27(4), 1069–1088 (2017)

5. Heidersdorf, T.,Weissauer, R.: Pieri type rules andGL(2|2) tensor products. Algebr. Represent. Theory
24(2), 425–451 (2021)

6. Heidersdorf, T., Weissauer, R.: Cohomological tensor functors on representations of the general linear
supergroup. Mem. Amer. Math. Soc. 270, 1320 (2021). https://doi.org/10.1090/memo/1320

7. Kac, V.: Characters of typical representations of classical Lie superalgebras. Comm. Algebra 5, 889–
897 (1977)

8. Maurischat, K., Weissauer, R.: On Hilbert polynomials for modules of the supergroup GL(m|n),
preprint (2019)

9. Serganova, V.: Kazhdan–Lusztig polynomials and character formula for the Lie superalgebra gl(m|n).
Selecta Math. 2(4), 607–651 (1966)

10. Serganova, V.: On the Superdimension for Basic Classical Lie Superalgebras, Supersymmetry inMath-
ematics and Physics. UCLA Los Angeles, USA 2010. Springer, Berlin (2011)

11. Sloane, N.J.A. (eds.): The On-Line Encyclopedia of Integer Sequences. https://oeis.org. 27 Feb 2019
12. Su, Y., Zhang, R.B.: Character and dimension formulae for general linear superalgebra. Adv. Math.

211, 1–33 (2007)
13. Weissauer, R.: Model structures, categorial quotients and representations of super commutative Hopf

algebras II. The case Gl(m|n) (2010). arXiv: 1010.3217
14. Zaitsev, D.A.: A generalized neighborhood for cellular automata. Theoret. Comput. Sci. 666, 21–35

(2017)
15. Zaitsev, D.A.: Simulating cellular automata by infinite Petri nets. J. Cell. Autom. 13(1–2), 121–144

(2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1090/memo/1320
https://oeis.org
http://arxiv.org/abs/1010.3217

	Superbinomial coefficients
	Abstract
	1 Introduction
	2 A family of polynomials
	3 Summation operators
	4 Mixed summation operators
	5 Central values
	References




