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Abstract
Let G be a graph of order n, with vertex set V = {v1, . . . , vn} and adjacency matrix
A. For a non-empty set S of vertices let e = (x1, . . . , xn)T be the characteristic vector
of S, that is, x� = 1 if v� ∈ S and x� = 0 otherwise. Then the n × n matrix

WS := [
e, Ae, A2e, . . . , An−1e

]

is thewalk matrix ofG for S. This term refers to the fact that inWS the kth entry in the
row corresponding to v� is the number of walks of length k−1 from v� to some vertex
in S. Let μ1, . . . , μs be the distinct eigenvalues of A. For given S and characteristic
vector e, we re-arrange these eigenvalues in such a way that

SD(S) : e = e1 + e2 + · · · + er (1)

for a certain r ≤ s, where the ei are eigenvectors of A for eigenvalue μi , for all
1 ≤ i ≤ r . We refer to (1) as the spectral decomposition of S, or more properly, of
its characteristic vector e. We show that the walk matrix WS determines the spectral
decomposition of S and vice versa. Explicit algorithms are given which establish this
correspondence. In particular, we show that the number r of distinct eigenvectors that
appear in (1) is equal to the rank of WS . Various results can be derived from this
theorem. We show that WS determines the adjacency matrix of G if WS has rank
≥ n − 1. Another application is that if WS has rank ≥ n − 1, then another graph G∗
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on V is isomorphic to G if and only if there is a set S∗ ⊆ V so that WS is the same as
WS∗

, up to a reordering of the rows of WS . The assumption for these two theorems is
met by almost all graphs when S = V , as it is known that rank(WV ) = n for almost
all graphs.

Keywords Walk matrix of graphs · Spectral decomposition · Isomorphism problem
for graphs

Mathematics Subject Classification 05C50 · 05C75 · 05E10

1 Introduction

Let G be a graph of order n with vertex set V = {v1, . . . , vn} and adjacency matrix
A. Let S be a non-empty subset of V and let e = (x1, . . . , xn)T be its characteristic
vector, that is x� = 1 if v� ∈ S and x� = 0 otherwise, for � = 1, . . . , n. Then the
n × n matrix

WS := [
e, Ae, A2e, . . . , An−1e

]
, (2)

formed by the Aie as columns, is thewalk matrix ofG for S.This term refers to the fact
that the kth entry in the row indexed by v� is the number of walks in G of length k − 1
from v� to some vertex in S. Walk matrices first appeared in 1978 in Cvetković [5] for
the case S = V and in 2012 in Godsil [14] for arbitrary non-empty S ⊆ V . A survey
about walk matrices and the related topic of main eigenvalues and main eigenvectors
can be found in [20]. More recently walk matrices have been studied in spectral graph
theory [27–29] and in particular in connection with the question whether a graph is
identified up to isomorphism by its spectrum [17].

Letμ1, . . . , μs be the distinct eigenvalues ofG. Since A is symmetric, every vector
inR

n canbewritten uniquely as a linear combinationof eigenvectors of A. In particular,
when S is set of vertices then its characteristic vector e can be written in this way. For
convenience, we renumber the distinct eigenvalues of A so that

SD(S) : e = e1 + e2 + · · · + er with ei �= 0 and

Aei = μiei for all 1 ≤ i ≤ r (3)

for some r ≤ s. We refer to (3) as the spectral decomposition of S, or more properly,
of its characteristic vector.

We outline the main results. The key theorem shows that the walk matrix for S
determines the spectral decomposition of S, and vice versa. This holds for any graph
G and any non-empty set S of vertices of G. To state this in a precise fashion, we use
(3) to define the n × r main eigenvector matrix

ES = [
e1, e2, . . . , er

]

and, corresponding to the eigenvalues μ1, μ2, . . . , μr , we define the r × n main
eigenvalue matrix

123



Journal of Algebraic Combinatorics (2022) 55:663–690 665

MS =

⎛

⎜⎜⎜
⎝

1 μ1 μ2
1 · · · μn−1

1
1 μ2 μ2

2 · · · μn−1
2

...
...

... · · · ...

1 μr μ2
r · · · μn−1

r

⎞

⎟⎟⎟
⎠

.

The following is proved in Theorems 3.6 and 4.2 in Sects. 3 and 4:

Theorem 1.1 Let G be a graph and let S be a non-empty set of vertices of G. Let
W := WS, E := ES and M := MS be as above. Then

W = E · M .

Furthermore, if W is given, then both E and M are determined uniquely. In par-
ticular, the number of eigenvectors in the spectral decomposition of S is equal to the
rank of W .

The word ‘determine’ has a precise meaning that is defined in Sect. 4. The first part
of the theorem is straight forward from the definition of the matrices. The second part
does require a further analysis of the walk matrix and certain polynomials associated
to it. While the proof is elementary, it appears that the theorem has many applications.
The first concerns the adjacency matrix of the graph.

Theorem 1.2 Let G be a graph and let S be a set of vertices of G, with walk matrix
W := WS . Suppose that W has rank ≥ n − 1. Then W determines the adjacency
matrix of G.

Wegive an explicit formula for the adjacencymatrixwhenWS has rank≥ n−1, see
Theorems 5.1 and 5.5. The theorem is best possible in the following sense: There are
graphsG andG∗,with vertex sets S and S∗,whereWS = WS∗

have rank n−2,while
the corresponding adjacency matrices are not equal to each other. Generalizations for
the case when WS has rank < n − 1 are considered in Sect. 5.

Reordering the vertices of the graph amounts to permuting the rows of the walk
matrix, and it is useful to bring walk matrices into some standard form by such row
permutations. Here we use the lexicographical ordering of the rows. We denote the
lex-ordered version ofWS by lex(WS), see Sect. 7. If S = V , thenWS is the standard
walk matrix of G. The following is proved in Theorem 6.3.

Theorem 1.3 Let G andG∗ be graphswith standardwalkmatricesW andW ∗, respec-
tively. Suppose that W has rank ≥ n − 1. Then G is isomorphic to G∗ if and only if
lex(W ) = lex(W ∗).

In Sect. 6 we consider walk equivalence: Two graphsG andG∗ arewalk equivalent
to each other if their standard walk matrices are the same, WV = WV ∗

. In Proposi-
tion 6.1 we show thatG is walk equivalent toG∗ if and only if their adjacencymatrices
restrict to the same map on the space generated by the columns of WV .

In Sect. 7 we discuss probabilistic applications. Let P(n) be a property of graphs
on n vertices. Then we say that P(n) holds almost always, or that almost all graphs
have property P , if the probability for P(n) to hold tends to 1 as n tends to infinity.
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O’Rourke and Touri [18], based on the work of Tao and Vu [23], have shown that the
standard walk matrix is almost always invertible, see Theorem 7.1. From this we have
the following consequence for the graph isomorphism problem, further comments are
available in Sect. 7.

Theorem 1.4 For almost all graphs G the following holds: G is isomorphic to the
graph G∗ if and only if lex(W ) = lex(W ∗), where W and W ∗ are the standard walk
matrices of G and G∗, respectively.

Throughout we consider various notions of graph equivalences that arise from the
eigenvalues and eigenvectors associated to walk matrices and spectral decomposi-
tions. In these problems it becomes evident that the Galois group of the characteristic
polynomial of the adjacency matrix plays an important role. In the Appendix we give
examples and counterexample for several assertions such spectral equivalences

The results in this paper show that walk matrices form an essential bridge between
the combinatorics and the algebraic, in particular spectral, properties of finite graphs.
All graphs considered in the paper are finite, undirected and without loops or multiple
edges. In Sect. 2 we state the basics required for spectral decompositions. In Sect. 3 we
introduce main eigenvectors and main eigenvalues. Sections 4–7 contain the material
discussed above.

2 Preliminaries and notation

Let G be a graph on the vertex set V = {v1, v2, . . . , vn}. For u and v in V , we
write u ∼ v if u is adjacent to v. The adjacency matrix A = (ai j ) of G is given by
ai, j = 1 if vi ∼ v j and ai, j = 0 otherwise. The characteristic polynomial of G,

denoted charG(x), is the characteristic polynomial of A. The roots of charG(x) are
the eigenvalues of G and the collection of all roots is the spectrum of G. Since A is
symmetric, all eigenvalues are real. We denote the distinct eigenvalues of G by

μ1, μ2, . . . , μs

for a certain s ≤ n, in some arbitrary order. (Later it will be essential to reorder the
eigenvalues in particular circumstances.) The minimum polynomial of G is the monic
polynomial f (x) of least degree with f (A) = 0, denoted by f (x) = minG(x). We
have

minG(x) = (x − μ1)(x − μ2) · · · (x − μs)

since A is symmetric.
The smallest field K with Q ⊆ K ⊂ R which contains all eigenvalues of G is the

splitting field of charG(x), or of G, denoted K = Q[μ1, . . . , μs]. The set of all field
automorphisms γ : K → K which map eigenvalues of A to eigenvalues of A forms
the Galois group of charG(x), or of G, denoted by Gal(G). We express the action of
the field automorphism γ by a �→ aγ for a ∈ K and extend this notation to vectors,
matrices and polynomials in the obvious way. For instance, Aγ = (aγ

i j ) = (ai j ) = A
for all γ in Gal(G). Wewill use the fact that a ∈ K belongs to Q if and only if aγ = a
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for all γ ∈ Gal(G). An integer polynomial is monic if its leading coefficient is 1.
A real number that is the root of a monic integer polynomial is an algebraic integer.
Such a number is rational if and only if it is an ordinary integer. Two algebraic integers
are algebraically conjugate if they are roots of the same irreducible monic integer
polynomial.

Since (minG(A))γ = minγ

G(A) = 0 for all γ ∈ Gal(G), it follows that minG(x) =
minγ

G(x) and so this is an integer polynomial. Let

minG(x) = f1(x) · · · f�(x) (4)

be factored into irreducible integer polynomials fi (x).Then two eigenvaluesμ andμ∗
of G are algebraically conjugate if and only if they are roots of the same polynomial
fi (x) for some 1 ≤ i ≤ �. From Galois theory [21] we have

Theorem 2.1 The orbits of Gal(G) on the spectrum of G are the equivalence classes
of distinct algebraically conjugate eigenvalues of G.

For each i with 1 ≤ i ≤ s, consider the polynomial

mi (x) := (x − μ1) · · · (x − μi−1)(x − μi+1) · · · (x − μs) = (x − μi )
−1 minG(x)

and define the n × n matrix

Ei := 1

mi (μi )
mi (A). (5)

Clearly, each Ei is symmetric and its coefficients belong to K. The following lemma
can be found inmany books [7,10,13,15] on linear algebra, it can also be verified easily
directly from the definition. Usually these results are stated for matrices over the real
numbers. However, since the polynomials mi (x) are defined over K, all matrices and
computations are over K. This is essential for us: In particular, Galois automorphisms
act on the Ei and all associated quantities over K

n .

Lemma 2.2 Let A be the adjacency matrix of G with distinct eigenvalues μ1, . . . , μs .

For 1 ≤ i ≤ s, let Ei be as above and denote the n × n identity matrix by I. Then

(i) E2
i = Ei and Ei E j = 0 for all i �= j ∈ {1, . . . , s},

(ii) I = E1 + E2 + · · · + Es,
(iii) A = μ1E1 + μ2E2 + · · · + μs Es .

The matrices Ei are the minimum idempotents or orthogonal idempotents of the
graph. From the properties in (i) and (ii) it is easy to compute all powers of A and so
we obtain from (iii) the principal equation for A, namely

Ak = μk
1E1 + μk

2E2 + · · · + μk
s Es (6)

for all k ≥ 0. Further, let x ∈ K
n and consider Ei ·x for some 1 ≤ i ≤ s. Since

123



668 Journal of Algebraic Combinatorics (2022) 55:663–690

A(Ei ·x) = (μ1E1 + μ2E2 + · · · + μs Es)Ei ·x = μi E
2
i ·x = μi Ei ·x,

using Lemma 2.2(i), it follows that Ei ·x is an eigenvector of A for eigenvalue μi ,

provided that Ei ·x �= 0. From Lemma 2.2(ii) we conclude that

x = E1 ·x + · · · + Es ·x .
We call this expression the spectral decomposition of x into eigenvectors of A.

Since E2
i = Ei , we can view Ei as a projection map K

n → K
n . Its image

Eig(A, μi ) := {Ei ·x |x ∈ K
n}

is the eigenspace of A for eigenvalue μi . Clearly Ei and Eig(A, μi ) determine one
another. There are many useful interconnections. For instance, the multiplicity of μi

in the spectrum of G is equal to dim(Eig(A, μi )) = trace(Ei ), and so on.
Next suppose that x is an eigenvector of A for eigenvalue μ and let γ ∈ Gal(G).

Then Ax = μx implies Axγ = μγ xγ since Aγ = A. Thus, xγ is an eigenvector for
eigenvalue μγ . This shows that the action of Gal(G) on the set {μ1, . . . , μs} of all
distinct eigenvalues extends to an action on the set {Eig(A, μ1), . . . ,Eig(A, μs)} of
all eigenspaces, and hence also to an action on the set {E1, . . . , Es} of all idempotents
of G. Further actions will be discussed in Sect. 3. We collect these facts:

Theorem 2.3 [Spectral Decomposition]
Let μ1, . . . , μs be the distinct eigenvalues of the graph G. Let K be its splitting

field and let Eig(A, μ1), . . .Eig(A, μs) be the eigenspaces of its adjacency matrix.
Then

K
n = Eig(A, μ1) ⊕ · · · ⊕ Eig(A, μs)

and for x ∈ K we have the spectral decomposition

x = E1 ·x + · · · + Es ·x with Ei ·x ∈ Eig(A, μi ).

For i �= j , there exists a field automorphism γ ∈ Gal(G) with Eig(A, μi )
γ =

Eig(A, μ j ) if and only if μi is algebraically conjugate to μ j .

Remark 2.1 Spectral decompositions appear in many parts of combinatorics, see for
instance [7], and most often this is for the purpose of decomposing an operator. In this
paper, by contrast, we are interested in the decomposition of a vector into eigenvectors
of the operator, applied in particular to the characteristic vector of a set of vertices of
the graph.

3 From the spectral decomposition of a set to its walk matrix

Let G be a graph of order n on the vertex set V with adjacency matrix A and distinct
eigenvalues μ1, . . . , μs . Let K = Q[μ1, . . . , μs] be the splitting field of G, with
Galois group Gal(G), and let Ei : K

n → K
n for 1 ≤ i ≤ s be the orthogonal
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idempotents of G. Throughout S is a non-empty subset of V with characteristic vector
xS := (x1, . . . , xn)T ∈ K

n . For convenience, we write e = x S when the context is
clear. Then the spectral decomposition of S is

SD(S) : e = e1 + e2 + · · · + er with ei �= 0 and

Aei = μiei for all 1 ≤ i ≤ r . (7)

From the general facts in Sect. 2 we have ei = Eie and

Ake = μk
1e1 + μk

2e2 + · · · + μk
r er for all k ≥ 0. (8)

We are interested in the combinatorial significance of this decomposition.
The ei and μi are the main eigenvectors and main eigenvalues associated to S,

respectively. Comments and references concerning the notion of main eigenvectors
and eigenvalues are available in Remark 3.1. It is important to emphasize that the
actual eigenvalues which appear in (7) depend on S, in general, while the numbering
itself is only a matter of convenience.

We now associate to S its main polynomial

mainSG(x) := (x − μ1) · (x − μ2) · · · (x − μr )

where the μi corresponds to the eigenvectors in (7).

Lemma 3.1 Let S be a set of vertices of G and let xS = e = e1 + e2 + · · · + er be its
spectral decomposition. Then we have:

(i) For each γ ∈ Gal(G) the map γ : ei �→ eγ

i is a permutation of the set
{e1, e2, . . . , er } and the map γ : μi �→ μ

γ

i is a permutation of the set
{μ1, μ2, . . . , μr }.

(ii) The polynomial mainSG(x) is an integer polynomial dividing minG(x). It is the
unique monic polynomial f (x) of least degree such that f (A)(e) = 0. (In ring
theoretical terms, f (x) = mainSG(x) is the A-annihilator of e.)

Proof (i) Since eγ = e, we have eγ
1 + eγ

2 + · · · + eγ
r = e1 + e2 + · · · + er and

hence {eγ
1 , eγ

2 , . . . , eγ
r } = {e1, e2, . . . , er }, since the decomposition into eigenvectors

is unique. For the same reason μ
γ

i ∈ {μ1, μ2, . . . , μr } for each 1 ≤ i ≤ r .
(ii) It follows from (i) that

(
mainSG(x)

)γ = mainSG(x) for all γ ∈ Gal(G). Therefore,
mainSG(x) is an integer polynomial,with leading coefficient 1.Since (A−μi I)(ei ) = 0,
we have

(
mainSG(A)

)
e = 0. It is easy to check that if f (x) is a proper divisor of

mainSG(x) then f (A)(e) �= 0. �
The lemma imposes significant restrictions on the main eigenvalues that can appear

in the spectral decomposition of a vertex set. For instance, the following is immediate
from the lemma:

Corollary 3.2 Suppose that minG(x) is irreducible. Then mainSG(x) = minG(x) for
every non-empty set S ⊆ V .
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Remark 3.1 The notion of main eigenvalues and main eigenvectors is due to
Cvetković [5]. In the original context, see also [20], an eigenvector is said to be a
main eigenvector if its eigenspace contains a vector that is not perpendicular to e. This
definition is equivalent to the one we are using here:

Lemma 3.3 The eigenvalue μi is a main eigenvalue for e if and only if Eig(A, μi )

contains a vector that is not perpendicular to e.

Proof Clearly, Eie belongs to Eig(A, μi ), and if Eie �= 0 then eT(Eie) = eT(E2
i e) =

(Eie)T(Eie) �= 0 by Lemma 2.2. Conversely, suppose that Eia is not perpendicular
to e for some a ∈ K

n . Thus, 0 �= (Eia)Te = aT(Eie) and so Eie �= 0 is a main
eigenvector. �

In [5] and [20] the set S is equal to V and so e = xV is the all-one vector. We
refer to this situation as the standard case. The general situation, when S is an arbi-
trary non-empty set of vertices, has been considered in Godsil [14]. Various results
related to Lemma 3.1 for the standard case can be found in Cvetković [5], Godsil [13],
Rowlinson [20] and Teranishi [24].

We come to the main topic in this paper: To a chosen set S of vertices ofG, we asso-
ciate its walk matrix W S . This matrix is closely related to the spectral decomposition
of S, as we shall see.

As before let V be the vertex set of G and let k ≥ 0 be an integer. Then a walk of
length k in G is a sequence of vertices w = (u0, u1, . . . , uk) with ui ∈ V such that
ui−1 ∼ ui for i = 1, 2, . . . , k. (These vertices are not necessarily distinct.) For short,
we say that w is a k-walk from u0 to uk, and that these vertices are the ends of w.

When A denotes the adjacency matrix of G it is well-known that the (i, j)-entry of Ak

is the total number of k-walks from vi to v j , see for instance [2,13]. Hence we have:

Proposition 3.4 Let S be a subset of V with characteristic vector e = xS and let
0 ≤ k ≤ n. Then for all 1 ≤ j ≤ n, the j-th entry of Ake is the total number of
k-walks from v j to some vertex in S.

Definition Let S be a subset of V with characteristic vector e := xS . Then the walk
matrix for S is the n × n matrix with columns e, Ae, A2e, . . . , An−1e, thus

WS := [
e, Ae, A2e . . . , An−1e

]
.

In particular, the entries in the j th row of WS are the number of walks of length
0, . . . , n − 1 from v j ending at a vertex in S. When S = V we refer to WS as the
standard walk matrix of G.

For convenience, we extend this notation: For 0 ≤ i ≤ j let

WS
[i, j] := [

Aie, Ai+1e, ..., A j−1e, A je
]
.

In particular, WS = WS[0,n−1], and WS[0,0] = e is the first column of WS .

Returning to the spectral decomposition xS = e1 + e2 + · · · + er for S, we define
themain eigenvector matrix ES for S. Its columns are the main eigenvectors of S, that
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is

ES := [
e1, e2, . . . , er

]
.

This matrix has size n × r . We also need certain matrices associated to the main
eigenvalues μ1, μ2, . . . , μr for S. For 0 ≤ i ≤ j , denote by MS

[i, j] the r × ( j − i + 1)
matrix

MS
[i, j] =

⎛

⎜⎜
⎜⎜
⎝

μi
1 μi+1

1 · · · μ
j
1

μi
2 μi+1

2 · · · μ
j
2

...
...

...

μi
r μi+1

r · · · μ
j
r

⎞

⎟⎟
⎟⎟
⎠

. (9)

This matrix is the [i, j]-main eigenvalue matrix for S. Note that MS
[i, j], mainSG(x)

and the main eigenvalues for S all determine one another when i < j or when i = j
is odd. (For i = j �= 0, the sign of the eigenvalue may be determined from other
information, in some cases.) The r × r matrix

MS := MS[0,r−1]
is the main eigenvalue matrix for S in G. Recall, these definitions refer to the specific
arrangement of the eigenvectors for e = xS in the decomposition (7).

Lemma 3.5 (i) For all 0 ≤ j , the matrix MS
[0, j] has rank min{r , j + 1}.

(ii) For 0 < i < j , the matrix MS
[i, j] has rank min{r , j − i + 1} if 0 is not a main

eigenvalue. If 0 is a main eigenvalue, then MS
[i, j] has rank min{r , j − i + 1} − 1.

(iii) MS is invertible and det(MS)2 is an integer.

Proof For (i) and (ii) we use that MS
[i, j] is of Vandermonde type and so it is easy to

compute the determinant of a suitable square submatrix, having in mind that the main
eigenvalues are pairwise distinct. If 0 < i and 0 is an eigenvalue the result follows by
removing a row of zeros from MS

[i, j], we leave the details to the reader. For (iii) note

that M = MS is invertible by (i). By Lemma 3.1 any element γ ∈ Gal(G) permutes
the rows of M and so det(Mγ ) = ± det(M). This gives det((M2)γ ) = det(M2) for
all γ ∈ Gal(G) and hence det(M2) is an integer. �

With these preparations in hand, we obtain the first part of Theorem 1.1:

Theorem 3.6 Let S be a non-empty set of vertices of G. Then for all 0 ≤ i ≤ j , we
have W S

[i, j] = ES · MS
[i, j]. In particular, W S = ES · MS .

Proof Fix some k with i ≤ k ≤ j . Then Ake = μk
1e1 + · · · + μk

r er by (8). This
expression is equal to the (k + 1)st column on the right-hand side of the equation, as
required. �

We note several consequences of the theorem.
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Corollary 3.7 Let S be a non-empty set of vertices of G with walk matrix W S . Let
x S = e = e1 + e2 + · · · + er be the spectral decomposition of S. Then e1, e2, . . . , er
is a basis for the K-vector space spanned by the columns of W S[0,r−1]. In particular,

r = rank(WS[0,r−1]) = rank(WS).

Proof Let X be the vector space spanned by e1, e2, . . . , er over K. As the ei are
orthogonal to each other, they are linearly independent. Let Y be the vector space
spanned by the columns of WS[0,r−1] over K. By Theorem 3.6, we have WS[0,r−1] =
ES ·MS[0,r−1] and so every column ofWS[0,r−1] is a linear combination of e1, e2, . . . , er .

Hence, Y ⊆ X . By Lemma 3.5, the matrix MS[0,r−1] has rank r and so it has a right-

inverse M∗, that is MS[0,r−1]M∗ = Ir . Hence, WS[0,r−1]M∗ = ES and thereby X ⊆ Y .

�

Corollary 3.8 Suppose that charG(x) is irreducible. Then

(i) charG(x) = mainSG(x) for all S ⊆ V , and
(ii) rank(WS) = n for all S ⊆ V .

Proof For (i), the irreducibility of charG(x) and Lemma 3.1 implies that charG(x) =
mainSG(x) for all ∅ �= S ⊆ V . By definition, mainSG(x) has degree r and so n = r .
Property (ii) now follows from Corollary 3.7. �

Example 3.1 The simplest kind of a walk matrix occurs in regular graphs. Here e1 =
(1, 1, . . . , 1)T is an eigenvector for eigenvalue μ1 = k where k is the valency of the
graph. Therefore, xV = e = e1 is the spectral decomposition for S = V , with main
polynomial x − k and walk matrix WV = [e, ke, k2e, . . . , kn−1e]. Connected regular
graphs are characterized by this property.

Example 3.2 The graphG in Fig. 1 on the vertex set V = {1, 2, 3, 4} has characteristic
polynomial charG(x) = minG(x) = (x + 1)(x3 − x2 − 3x + 1) where the second
factor is irreducible. The Galois group of charG(x) is Sym(1) × Sym(3), fixing the
rational root −1 and permuting the irrational roots −1.48..., 0.31... and 2.17... as a
symmetric group.

The standard walk matrix of G is W = WV , its main polynomial is mainVG(x) =
x3 − x2 − 3x + 1.

G

1

4

3

2

A =

⎛
⎜⎜⎝

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎞
⎟⎟⎠ WV =

⎛
⎜⎜⎝

1 1 3 5
1 3 5 13
1 2 5 10
1 2 5 10

⎞
⎟⎟⎠

Fig. 1 Graph on 4 Vertices

123



Journal of Algebraic Combinatorics (2022) 55:663–690 673

We compute the walk matrix and main polynomial for some other subsets. We have

W {1} =

⎛

⎜⎜
⎝

1 0 1 0
0 1 0 3
0 0 1 1
0 0 1 1

⎞

⎟⎟
⎠ , W {2} =

⎛

⎜⎜
⎝

0 1 0 3
1 0 3 2
0 1 1 4
0 1 1 4

⎞

⎟⎟
⎠ ,

W {3} =

⎛

⎜⎜
⎝

0 0 1 1
0 1 1 4
1 0 2 2
0 1 1 3

⎞

⎟⎟
⎠ and W {4} =

⎛

⎜⎜
⎝

0 0 1 1
0 1 1 4
0 1 1 3
1 0 2 2

⎞

⎟⎟
⎠ .

Their main polynomials are main{1}
G (x) = main{2}

G (x) = (x3 − x2 − 3x + 1), of
degree 3 = rank(W {1}) = rank(W {2}), according to Corollary 3.7. For the remaining
sets, we have main{3}

G (x) = main{4}
G (x) = (1 + x)(x3 − x2 − 3x + 1), of degree

4 = rank(W {3}) = rank(W {4}). According to Proposition 4.1 in the next section, the
walk matrix for any set S ⊆ V is of the form WS = ∑

i∈S W {i}.
Remark 3.2 Let S be a set and let WS = (wi, j ) be its walk matrix. We observe that
WS contains information about the subgraph G[S] induced on S : Evidently wi,1 = 1
if and only if vi ∈ S. Furthermore, according to Proposition 3.4, we have that wi,2 is
the number of neighbors of vi in S. Therefore, (wi,2)wi,1=1 is the degree sequence of
G[S]. In particular, the second column of WV is the degree sequence of G.

Remark 3.3 With regard to the spectral decomposition (7) of a set S, say x S =
e1 + · · · + er , one may ask if the ei by themselves already determine the μi . How-
ever, in general this is not the case, as the following shows. Consider graphs G and
G∗ with vertex sets V and V ∗ which have the same splitting field K and the same
number s of distinct eigenvalues μ1, . . . , μs and μ∗

1, . . . , μ
∗
s , respectively. Assume

furthermore that the vertex sets can be reordered so that Eig(G, μi ) = Eig(G∗, μ∗
i )

for all 1 ≤ i ≤ s. In this case, we call G and G∗ eigenspace equivalent. Note that
G is eigenspace equivalent to G∗ if and only their adjacency matrices A and A∗
commute up to renumbering vertices. It is easy to see that every regular graph G is
eigenspace equivalent to its complementG. In this case, x S = e1+· · ·+er is expressed
by eigenvectors whose eigenvalues may be those of G or of G. We have examples of
non-isomorphic eigenspace equivalent graphswhich are not of this kind, seeAppendix
8.1. It is an open problem to determine graphs up to eigenspace equivalence.

Remark 3.4 Asimilar question occurs for the spectral decomposition x S = e1+· · ·+er
when we ask if the μi by themselves already determines the ei , up to rearranging
vertices. Again, in general this is not the case, as the following shows. Consider two
graphs G and G∗ on the same vertex set V = V ∗ which have the same irreducible
characteristic polynomial. (In particular,G andG∗ are cospectral.) Let S = V , e = xS

and consider e = e1 + · · · + en = e∗
1 + · · · + e∗

n, see Corollary 3.2. Then it is easy
to show that G is isomorphic to G∗ if and only if e1 = e∗

1, up to a permutation of the
entries of the vectors. There are no examples if the order of the graphs is n < 8. For
n = 8 an example of least order can be found in Appendix 8.6.
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4 From the walkmatrix for a set to its spectral decomposition

Let S be a set of vertices of the graphG with adjacencymatrix A. In the current section
we show that the walk matrix for S determines its spectral decomposition. We start
with several general properties of walk matrices.

Proposition 4.1 (i) Let S ⊆ V and let 0 ≤ i < j . Then AW S[i, j] = WS[i+1, j+1].
(ii) Let S and T be disjoint subsets of V . Then W S + WT = WS∪T .

(iii) Let S ⊆ V and let 0 ≤ i < j . Then

(WS
[i, j])

T · WS
[i, j] =

⎛

⎜
⎜⎜
⎝

n2i n2i+1 · · · ni+ j

n2i+1 n2i+2 · · · ni+ j+1
...

...
. . .

...

ni+ j ni+ j+1 · · · n2 j

⎞

⎟
⎟⎟
⎠

where nk is the number of all k-walks in G with both ends in S. (Note, (WS
[i, j])T

is the transpose of W S
[i, j].)

Proof The statement (i) follows from the definition of WS
[i+1, j+1]. For the remain-

der, let s, t, u be the characteristic vectors of S, T and U := S ∪ T . We denote the
corresponding walk matrices by WS,WT ,WU . The statement (ii) is immediate since
s + t = u. To prove (iii) let S = {a, b, . . . } and let a, b, . . . be the corresponding
characteristic vectors. Then WS

[i, j] = W a[i, j] + W b[i, j] + . . . by (ii). So we expand

(WS
[i, j])T · WS

[i, j] as a sum of terms of the form X = (W a[i, j])T · W c[i, j] with c ∈ S.

A row of (W a[i, j])T is of the form aTAk and a column of W c[i, j] is of the form A�c.

Therefore the corresponding entry of X is aTAk · A�c = aTAk+�c. This is the number
of (k + �)-walks from a to c. �

In the following, if A and B are graph quantities, we say that ‘A determines B’ if
there is an algorithmwith input A and output B which is independent of any other prop-
erty of the graph. For instance, Theorem 3.6 says that for any vertex set S the matrices
ES and MS determine the walk matrix WS . The next result proves the converse, and
therefore verifies the second part of Theorem 1.1:

Theorem 4.2 Let S be a set of vertices of G with walk matrix W S of rank r .

(i) If r < n, then W S[0,r ] determines W S, MS and ES .

(ii) If r = n, then W S[0,r−1](= WS) determines MS and ES .

Proof We drop superscripts, writing WS = W etc., where possible. For (i) we notice
that the last column of W[0,r ] is a linear combination of the first r columns of W[0,r ],
by Corollary 3.7. Hence there are rational coefficients f0, . . . , fr−1 so that

Are = f0e + f1Ae + · · · + fr−1A
r−1e.

Hence f (x) = − f0 − f1x − · · · − fr−1xr−1 + xr is a monic polynomial with(
f (A)

)
(e) = 0. It follows from Lemma 3.1 that f (x) = mainSG(x). Hence we have
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determined all main eigenvalues for S and hence also M[i, j] for all 0 ≤ i ≤ j . We
have W[0,r−1] = E · M[0,r−1] by Theorem 3.6. Since M[0,r−1] has an inverse M∗ by
Lemma 3.5, it follows that W[0,r−1] · M∗ = E . Therefore, using Theorem 3.6 once
more we have determined W[i, j] for all 0 ≤ i ≤ j .

For (ii) we have charG(x) = mainSG(x) by Lemma 3.1 and since A satisfies its
characteristic equation, we obtain

0 = charG(A) = c0I + c1A + · · · + cn−1A
n−1 + An

= (A − μ1I )(A − μ2I ) · · · (A − μnI ). (10)

Here cn−1 = μ1 + μ2 + · · · + μn = trace(A) = 0 and so

− An = c0I + c1A + · · · + cn−2A
n−2 + cn−1A

n−1

= c0I + c1A + · · · + cn−2A
n−2. (11)

It follows that

− Ane = c0e + c1Ae + · · · + cn−2A
n−2e

= W[0,n−2] · cT (12)

where c := (c0, c1, ..., cn−2). SinceW = W[0,n−1] is given, we can compute the walk
numbers

nn, nn+1, . . . , n2n−2

in Proposition 4.1(iii). (These are (n−1) entries from row 2 to row n in the last column
of WT[0,n−1]W[0,n−1].) Therefore, if w := (nn, nn+1, . . . , n2n−2), then we have

WT[0,n−2] · Ane = wT (13)

by Proposition 4.1(iii). Taking (12) and (13) together we have

(WT[0,n−2] · W[0,n−2])cT = −wT. (14)

Since rank(W[0,n−1]) = n, the matrix W[0,n−2] and so also

WT[0,n−2] · W[0,n−2]

have rank n − 1. It follows that WT[0,n−2] · W[0,n−2] is invertible and so

cT = −(WT[0,n−2] · W[0,n−2])−1wT.

This means that we have determined c from W = W[0,n−1]. But these are the coeffi-
cients of the characteristic polynomial and so all eigenvalues are determined. Hence
M is determined. Finally apply Theorem 3.6 to find E . �
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Remark 4.1 If S is a set of vertices, then we have seen that the spectral decomposition
of S, with the matrices ES and MS, determines its walk matrix WS, and vice versa.
We have examples of graphs G, G∗ with V = S = V ∗ = S∗ and matrices E �= E∗
but M = M∗. For instance, the two graphs G and G∗ of order 8 and labelled No. 79
and No. 80 in Cvetković [6] are cospectral. They have the same characteristic and
main polynomials for S = V ,

charG(x) = charG∗(x) = (x3 − x2 − 5x + 1)(x − 1)(x + 1)2,

mainVG(x) = mainG∗(x) = x3 − x2 − 5x + 1.

Hence, they have the same main eigenvalues. But computation shows that their main
eigenvectors are different. Another pair of this kind are the graphs labelled No. 92 and
No. 96 in [6].

Remark 4.2 We also have examples of graphs G, G∗ with V = S = V ∗ = S∗ and
matrices E = E∗ but M �= M∗. Trivial examples occur for pairs of regular graphs
of the same order but with different valencies. For non-regular graphs with the same
main eigenvectors but different main eigenvalues, see Appendix 8.2.

5 From the walkmatrix to the adjacencymatrix

As before, G denotes a graph of order n on the vertex set V with adjacency matrix A.

Further, S denotes a non-empty set of vertices with walk matrix W = WS . Here we
investigate to what degree W determines the adjacency matrix of G. The following is
a prototype of this problem:

Theorem 5.1 Suppose that W has rank r = n. Then W determines A.

Proof Here W = W[0,n−1] determines E and M = M[0,n−1] by Theorem 4.2. From
this we find M[1,n] and henceW[1,n] = EM[1,n] by Theorem 3.6. By Proposition 4.1(i)
we have AW[0,n−1] = W[1,n]. As W is invertible, we obtain A = EM[1,n]W−1. �

One important consequence occurs for graphs with irreducible characteristic poly-
nomial. Here Corollary 3.8 and Theorem 5.1 provide the following:

Theorem 5.2 Suppose that the characteristic polynomial of G is irreducible. Then W
determines A.

Remark 5.1 Some results about the irreducibility of the characteristic polynomial of a
graph are available in [19]. For probabilistic results on the rank of the standard walk
matrix, see Sect. 7. From the results there it becomes clear that Theorem 5.1 covers
almost all graphs.

Next we come to the case when W has rank r < n. This happens if and only if
there are eigenvectors which are not scalarly dependent on main eigenvectors. For the
remainder of this section, we assume that r = rank(W ) < n. Let μ1, . . . , μr and
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e1, . . . , er be the main eigenvalues and main eigenvectors that appear in the decom-
position

SD(S) : e = e1 + e2 + · · · + er . (15)

Let λr+1, . . . , λn be the remaining non-main eigenvalues, with eigenvectors

fr+1, . . . , fn ∈ K
n .

To avoid any confusion: it may happen that λ j = μi for some i, j . Indeed, this will
be the case precisely when the eigenspace for μi has dimension > 1. In this case we
take f j perpendicular to ei . It follows that the f� for r + 1 ≤ � ≤ n are orthogonal to
the columns of W . In addition, we select the f� to be an orthonormal set. Hence,

fr+1, . . . , fn is an orthonormal basis of ker(WT). (16)

Next consider the matrix

Ŵ := [
W[0,r−1]

∣∣fr+1, fr+2, . . . , fn
]
. (17)

Since W[0,r−1] has rank r by Corollary 3.7, we conclude from (16) that Ŵ is invert-
ible; the inverse is given as follows. Since W[0,r−1] has rank r , it follows that
WT[0,r−1]W[0,r−1] is invertible and so we put

W † := (WT[0,r−1]W[0,r−1])−1 · WT[0,r−1],
a matrix of size r × n. Next let

W :=

⎛

⎜⎜⎜
⎝

W †

fTr+1
...

fTn

⎞

⎟⎟⎟
⎠

(18)

and verify that W · Ŵ = In by using (16). When we compute Ŵ · W = In , we obtain
the equation

n∑

j=r+1

f j · fTj = In − W[0,r−1] · W †. (19)

The matrix f j · fTj is the projection of K
n onto the hyperplane with normal f j and so

the sum on the left represents the eigenspace decomposition of ker(WT). From (17)
we have

A · Ŵ = [
W[1,r ]

∣∣λr+1fr+1, λr+2fr+2, . . . , λnfn
]
,

see also Proposition 4.1(i), and therefore

A = [
W[1,r ]

∣∣λr+1fr+1, λr+2f f +2, . . . , λnfn
] · Ŵ−1

A = [
W[1,r ]

∣∣λr+1fr+1, λr+2f f +2, . . . , λnfn
] · W

123



678 Journal of Algebraic Combinatorics (2022) 55:663–690

A = W[1,r ] · W † +
n∑

j=r+1

λ j (f j · fTj ). (20)

Alternatively, this equation can be derived from (19) by multiplying both sides by
A and using Proposition 4.1(i). Collecting these observations, we have proved the
following:

Theorem 5.3 Suppose that W has rank r < n. Denote the non-main eigenvalues by
λr+1, . . . , λn . Then

A = W[1,r ] · (WT[0,r−1]W[0,r−1])−1 · WT[0,r−1] +
n∑

j=r+1

λ j (f j · fTj )

where fr+1, . . . , fn is an orthonormal basis of kerWT consisting of the non-main
eigenvectors of G with Af j = λ j f j for r < j ≤ n.

Definition Let S be a set of vertices of the graph G and denote its walk matrix by W .

Then

AW := W[1,r ] · (WT[0,r−1]W[0,r−1])−1 · WT[0,r−1]

is the W-restriction of A, or S-restriction of A.

We note some properties of this matrix.

Proposition 5.4 Suppose that W has rank r < n. Then AW is a symmetric matrix with
eigenbasis e1, . . . , er , fr+1, . . . fn and eigenvaluesμ1, . . . , μr , 0, . . . , 0. In particular,

(i) rankAW = r if 0 is not a main eigenvalue for S and rankAW = r − 1 otherwise;
(ii) A · AW = AW · A;
(iii) if X denotes the K-vector space spanned by the columns of W then {AW · x |x ∈

K
n} ⊆ X with equality if and only if 0 is not a main eigenvalue for S.

Proof Since A and f j · f Tj are symmetric, also AW is symmetric. It is straightforward to
verify from (20) that e1, . . . , er , fr+1, . . . , fn is an eigenbasis for the given eigenvalues.
To prove (i) notice that themain eigenvalues are always distinct. Verify (ii) on the given
basis. For (iii), notice that AW · x is a linear combination of the columns of W[1,r ].
The remainder follows from (i). �

We come to applications of Theorem 5.3 when WS has rank n − 1 or n − 2.

Theorem 5.5 Suppose that W has rank n − 1. Then W determines A.

Proof Let fn be a non-main eigenvector ofG with eigenvalues λn .Then fn · f Tn is deter-
mined by W according to (19). By Theorem 4.2 the main eigenvalues μ1, . . . , μn−1
are determined by W and so λn = −μ1 − · · · − μn−1 is known. Now A can be
determined by Theorem 5.3. �
Theorem 5.6 Suppose that W = WS has rank n − 2. Assume that (a) S = V or (b)
that the number of edges of G is given. Then W determines all eigenvalues of G. Let
λn−1 and λn be the two non-main eigenvalues of G.
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(i) If λn−1 = λn, then W determines A.

(ii) If λn−1 �= λn, then W determines the adjacency matrix of at most two distinct
graphs G and G∗ with walk matrix W .

Proof By Theorem 4.2 W determines M and hence the main polynomial, say

main(x) = xn−2 + a1x
n−3 + · · · + an−3x + an−2.

Let λn−1 and λn be the two non-main eigenvalues and put

(x − λn−1)(x − λn) =: x2 + b1x + b2.

Therefore, when

char(x) = xn + c1x
n−1 + c2x

n−2 + · · · + cn−1x + cn,

then char(x) = (x − λn−1)(x − λn) · main(x) = (x2 + b1x + b2) · main(x) gives

c1 = b1 + a1 = 0 and c2 = b2 + a1b1 + a2 = −m,

where m is the number of edges of G. (We are using the well-known fact that −cn−2
always is the number of edges of the graph, see [2,13].) Under the assumption (a),
the column W[1,1] determines the vertex degrees and from these we determine m.

Under assumption (b), this information is given anyhow. Therefore, b1 = −a1 and
b2 = a21 − a2 − m and so the two non-main eigenvalues

λn−1,n =
a1 ±

√
4(a2 + m) − 3a21

2
.

of G are determined by W and m.

Next let fn−1 and fn be non-main eigenvectors of G for the eigenvalues λn−1 and
λn . Then fn−1 · f Tn−1 + fn · f Tn is determined by W according to (19). If λn−1 = λn ,
we can determine A by Theorem 5.3.

It remains to consider the case λn−1 �= λn . Here we write

λn−1fn−1 · f Tn−1 + λnfn · f Tn = λn−1(fn−1 · f Tn−1 + fn · f Tn )

+(λn − λn−1)fn · f Tn
= λn−1(In − W[0,n−3] · W †)

+(λn − λn−1)fn · f Tn , (21)

using (19). Furthermore, from (20) we obtain

A = W[1,r ] · W † +
n∑

j=n−1

λ j (f j · fTj )

= W[1,r ] · W † + λn−1(In − W[0,n−3] · W †) + (λn − λn−1)fn · f Tn . (22)
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In this equation W[1,r ] · W † + λn−1(In − W[0,n−3] · W †) is known and so we let
w1, . . . , wn be the entries on the diagonal of that matrix. Similarly, denote the diagonal
entries of fn · fTn by f2n,1, . . . , f

2
n,n where fn = (fn,1, . . . , fn,n)

T. Since the diagonal
entries of A are zero, we have

− (λn − λn−1)
−1wi = f2n,i for i = 1, . . . , n. (23)

Recall that fn is a unit vector in the kernel of WT. This space has dimension 2 and
so fn depends on one parameter t, i.e., an angle of rotation. The equation (23) consists
of a system of quadratic equations for t and therefore it has at most two solutions.
Hence, there are at most two options for fn, and hence by (22), there are at most two
options for A. �
Remark 5.2 The exception in (ii) does occur, an example is given in Appendix 8.3.
There we obtained two different 8×8 adjacencymatrices with the samewalkmatrix of
rank 6. In this particular example, the corresponding graphs however are isomorphic.
We conjecture that the two graphs in (ii) of the theorem are indeed always isomorphic.

Remark 5.3 The next case to consider are graphs G �� G∗ of order n with the same
standard walk matrix W of rank n − 3. By computation, we have shown that n = 7 is
the least n for which a pair of this kind exists. One example is available in Appendix
8.4.

6 Walk equivalence and isomorphism

Here we consider pairs of graphs which have the same walk matrix for suitably chosen
sets of vertices. The following is a characterization in terms of W -restrictions of the
adjacency matrix.

Proposition 6.1 Let G and G∗ be graphs on the vertex set V and let S, S∗ ⊆ V .

Denote by W and W ∗ the corresponding walk matrices, with restrictions AW and
A∗
W ∗ , respectively. Then the following are equivalent

(i) W = W ∗,
(ii) G, G∗ have the same main eigenvalues and main eigenvectors for S, S∗, respec-

tively, and
(iii) S = S∗ and AW = A∗

W ∗ .

In particular, if W and W ∗ are the standard walk matrices for G and G∗, respectively,
then W = W ∗ if and only if AW = A∗

W ∗ .

Proof If (i) holds then the first column of W = W ∗ determines S = S∗ and from (20)
we have AW = A∗

W ∗ . Hence (i) implies (iii). Next (ii) implies (i) by Theorem 3.6.
It remains to show that (iii) implies (ii). Let r and r∗ be the rank of W and W ∗,

respectively. By Proposition 5.4, the condition AW = A∗
W ∗ implies r∗ = r or r∗ =

r + 1, without loss of generality. First suppose that r∗ = r when the proposition
implies μ∗

i = μi and e∗
i = ciei with certain coefficients ci ∈ K, for 1 ≤ i ≤ r . Since
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S = S∗, we have x S = ∑
i ei = x S

∗ = ∑
i e

∗
i = ∑

i ciei and hence e∗
i = ei for

1 ≤ i ≤ r . Thus (ii) holds in this case. Next suppose that r∗ = r + 1 when μ∗
i = μi

and e∗
i = ciei with certain coefficients ci ∈ K, for 1 ≤ i ≤ r , and er∗ = cr∗ fr+1,

say. Since S = S∗ we have x S = ∑r
i=1 ei = x S

∗ = ∑r
i=1 e

∗
i + er∗ = ∑

i ciei + er∗ .
This implies er∗ = 0, a contradiction. Hence, (iii) implies (ii). �

It is essential to be able to reorder the vertices of a graph and change all associated
matrices accordingly. Let V = {v1, . . . , vn} be the vertices of G and let Sym(n) be
the symmetric group on {1, 2, . . . , n}. For g ∈ Sym(n) we denote g : i → i g for
i = 1, . . . n. From this we obtain permutations of the elements and subsets of V by
setting g : vi → v

g
i := vi g for i = 1, . . . n and g : T → T g := {vg|v ∈ T } for any

T ⊆ S.

The same permutation gives rise to a new adjacency relation ∼g and a new graph
G∗ = Gg by setting vg ∼g ug if and only if v ∼ u in G. In this way g defines an
isomorphism g : G → G∗, denoted G � G∗.

With g ∈ Sym(n) we associate the n × n permutation matrix P = P(g). It has the
property that for all 1 ≤ i ≤ n we have v j = v

g
i if and only if v j = P · vi . (Here vi

is the characteristic vector of vi , etc..) It follows that P · xT = x(T g) for all T ⊆ V
when xT denotes the characteristic vector of T . The proof of the next lemma is left to
the reader.

Lemma 6.2 Let G and G∗ be graphs on the vertex sets V and V ∗ with walk matrices
W and W ∗, defined for certain sets S ⊆ V and S∗ ⊆ V ∗, respectively. Suppose that
g ∈ Sym(n) is a permutation for which Gg = G∗ and Sg = S∗. If P := P(g), then

(i) e∗
j = Pe j for all 1 ≤ j ≤ r∗ = r , e∗ = Pe and W ∗ = P · W ,

(ii) A∗ = PAPT, and
(iii) A∗

W ∗ = PAW PT.

Definition Let G and G∗ be graphs on the vertex sets V and V ∗, respectively, and
let S ⊆ V and S∗ ⊆ V ∗. Denote the corresponding walk matrices by W and W ∗.
Then (G, S) is walk equivalent to (G∗, S∗), denoted (G, S) ∼ (G∗, S∗), if there is a
permutation matrix P such thatW ∗ = P ·W . If (G, S) ∼ (G∗, S∗) with S = V , then
G is walk equivalent to G∗, denoted G ∼ G∗.

Remark 6.1 In the definition, if we have W ∗ = P · W , then S∗ is determined by
e∗ = P · e, the first column of W ∗. From this it follows easily that ∼ indeed is an
equivalence relation. To be precise, it is a relation for graphs with a distinguished
vertex set. It turns into an equivalence relation on graphs per se only when S = V .

Remark 6.2 If G is isomorphic to G∗ via the permutation g, then it follows from
Lemma 6.2 that (G, S) ∼ (G∗, S∗) for any S ⊆ V when we set S∗ = Sg. Conversely
however, walk equivalence does not imply isomorphism. For instance, ifG andG∗ are
regular graphs with the same valency thenG ∼ G∗, andwemay not conclude thatG is
isomorphic to G∗. Furthermore, if G ∼ G∗ then we cannot conclude much in general
about the walk equivalence of pairs (G, S), (G∗, S∗)with S ⊂ V and S∗ ⊂ V ∗. There
are simple examples for G ∼ G∗ but (G, S) � (G∗, S∗) for all |S|, |S∗| < n. (For
instance, let G be the union of two 3-cycles and G∗ a 6-cycle.)
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Lexicographical Order: In order to decide whether (G, S) is walk equivalent to
(G∗, S∗) it is essential to be able to transform the corresponding walk matrices into
some standard format.

LetW = WS be thewalkmatrix ofG for S.Then there is a permutation g ∈ Sym(n)

of the rows ofW , with corresponding permutation matrix P = P(g), so that the rows
of PW are in lexicographical order. The matrix

lex(W ) := PW

then is the lex-form ofW with reordering matrix P. Evidently, P is unique if and only
if the rows of W are pairwise distinct. It is also clear that (G, S) ∼ (G∗, S∗) if and
only if lex(WS) = lex(WS∗

). In order to keep track of the reordering, we append the
‘label vector’ L := (v1, . . . , vn)

T as last column to W , obtaining

W ‡ = [
W

∣∣L
]
.

The matrix PW ‡ = lex(W ‡) then is the vertex lex-form of W .

Example 6.1 Let G be the graph in Fig. 1 on V = {v1, v2, v3, v4}, let S = {v3} and
W := WS . Then

W =

⎛

⎜⎜
⎝

0 0 1 1
0 1 1 4
1 0 2 2
0 1 1 3

⎞

⎟⎟
⎠ ,W ‡ =

⎛

⎜⎜
⎝

0 0 1 1 v1
0 1 1 4 v2
1 0 2 2 v3
0 1 1 3 v4

⎞

⎟⎟
⎠ and lex W ‡ =

⎛

⎜⎜
⎝

1 0 2 2 v3
0 1 1 4 v2
0 1 1 3 v4
0 0 1 1 v1

⎞

⎟⎟
⎠ .

It follows that the reordering permutation is (v3, v1, v4)(v2).

The next theorem proves Theorem 1.3 in the introduction.

Theorem 6.3 Let G and G∗ be graphs of order n and suppose that there is a subset
S of vertices of G such that W S has rank ≥ n − 1. Then G is isomorphic to G∗ if
and only if (G, S) ∼ (G∗, S∗) for some vertex set S∗ of G∗. Furthermore, if G is
isomorphic to G∗ then the isomorphism is determined uniquely from the lex forms of
W S and W S∗

, unless W S has a repeated row when there are two isomorphisms.

Proof IfG is isomorphic toG∗ via g ∈ Sym(n), the result follows fromLemma6.2 and
Remark 6.2, taking S∗ = Sg. Conversely, let g ∈ Sym(n) be such that P(g)W = W ∗
where W = WS and W ∗ = WS∗

. Consider the graph H = Gg. By Lemma 6.2 its
walk matrix is P(g)W = W ∗. Hence, H and G∗ have the same walk matrix. As the
rank of W ∗ is ≥ n − 1, it follows from Theorems 5.1 and 5.5 that H and G∗ have the
same adjacency matrix. Hence, H = G∗ and so G is isomorphic to G∗. Suppose that
P(h)W = lex(W ) = P(h∗)W ∗ for the corresponding reordering permutations h and
h∗. It follows that P(h) = P(h∗)P(g) and so g = (h∗)−1h. If the rows of W (and
hence of W ∗) are pairwise distinct then h and h∗ are unique. If W has repeated rows,
then there is exactly one pair of repeated rows since rank(W ) ≥ n − 1 by assump-
tion. In this case, g = (h∗)−1h is unique up to the transposition interchanging these
rows. �.
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The following is a special case of Theorem 6.3.

Theorem 6.4 Let G be a graph of order n and let S, S∗ be sets of vertices of G. Suppose
that W S has rank ≥ n − 1. Then there is an automorphism g of G with Sg = S∗ if
and only if lex(WS) = lex(WS∗

).

Example 6.2 The graph in Fig. 1 has the following walk matrices for S = {3} and
S = {4}, respectively,

W {3} =

⎛

⎜⎜
⎝

0 0 1 1
0 1 1 4
1 0 2 2
0 1 1 3

⎞

⎟⎟
⎠ and W {4} =

⎛

⎜⎜
⎝

0 0 1 1
0 1 1 4
0 1 1 3
1 0 2 2

⎞

⎟⎟
⎠ .

These matrices are lex-equivalent with two repeated rows and have rank ≥ 3. Theo-
rem 1.3 implies that there is an automorphism of G which interchanges 3 and 4.

Remark 6.3 Suppose thatG has order n and average degree d.Let S be a set of vertices.
Then WS can be computed from A by carrying out d · n · (n − 1) additions. It follows
fromTheorem1.3 that isomorphism testing forG is polynomial ifWS has rank≥ n−1.
The complexity analysis of this problem is interesting but remains outside the scope
of this paper.

Remark 6.4 Recently all connected graphs of order n = 7 and n = 8 for which the
standard walk matrix WV has rank n − 1 have been enumerated in [16]. For n = 7
also the Galois group of such graphs has been computed.

7 Probabilistic results

Let P(n) be a property of finite undirected simple graphs on n vertices. Then P(n)

holds almost always, or almost all graphs have property P , if the probability for P(n)

to hold tends to 1 as n tends to infinity. The following is due toO’Rourke and Touri [18]
and is based on Tao and Vu [23]. Recall that the standard walk matrix of G with vertex
set V is WV :
Theorem 7.1 For almost all graphs, the standard walk matrix is invertible.

Recall that G and G∗ are walk-equivalent if their standard walk matrices have the
same lex form. From Theorems 5.1 and 6.4, we have immediately the next theorem,
its second part proves Theorem 1.4.

Theorem 7.2 (i) For almost all graphs, the standard walk matrix determines the adja-
cency matrix of the graph.
(ii) For almost all graphs G, we have that G is isomorphic to the graph G∗ if and only
if G is walk-equivalent to G∗.

Remark 7.1 Following on fromRemark 6.3, the isomorphism testing problemG � G∗
is polynomial for almost all G.

123



684 Journal of Algebraic Combinatorics (2022) 55:663–690

Let G be a graph with characteristic polynomial charG(x). In Theorem 5.2 we
have noted that if charG(x) is irreducible then WS is invertible for any vertex set
S. Therefore, in this case the conclusion of Theorem 7.1 holds for walk matrices
of general type. In the literature there are several papers in which this irreducibility
problem is considered from a probabilistic point of view, see [3,4,8,19,26]. In fact,
there is the

Conjecture 7.3 For almost all graphs, the characteristic polynomial is irreducible.

The characteristic polynomial of a graph is irreducible if and only if all eigenvalues
are simple and its Galois group acts transitively on these eigenvalues. For recent
papers on the Galois group of integers polynomials, see Dietmann [8], Bary-Soroker,
Koukoulopoulos & Kozma [1] and Eberhard [9]. We have the following stronger

Conjecture 7.4 For almost all graphs G, the Galois group Gal(G) contains the alter-
nating group Alt(n), where n is the order of G.

This conjecture is supported by a theorem ofVan derWaerden [25] which states that
for almost all monic integer polynomials the Galois group is isomorphic to Sym(n),

where n is the degree of the polynomial. There are examples of graphs with irreducible
characteristic polynomial where Gal(G) � Alt(n). But these are difficult to find, in
most practical computations the group turns out to be Sym(n).

Theorem 7.5 If the Conjecture 7.3 holds, then the following is true for almost all
graphs G and arbitrary non-empty vertex set S of G : For any graph G∗, there is an
isomorphism G → G∗ if and only if (G, S) ∼ (G∗, S∗) for some vertex set S∗ of G∗.
Furthermore, if G is isomorphic to G∗, then the isomorphism can be determined from
the lex forms of W S and W S∗

.

8 Appendix

We give details and examples of graphs and walk matrices with particular features
mentioned in earlier sections of the paper.

123



Journal of Algebraic Combinatorics (2022) 55:663–690 685

Appendix 8.1

The following two graphs G and G∗ of order 8 have the same eigenspaces, and hence
are eigenspace equivalent, but are not isomorphic (Fig. 2).

G G∗

2

1

3 5

7

6

4

8

2

1

3 5

7

6

4

8

Fig. 2 Graphs with the Same Eigenspaces

Appendix 8.2

The following two non-isomorphic graphs of order 8 have the same main eigenvectors
for S = V but differentmain eigenvalues. They appear in L. Collins and I. Sciriha [22].
Let G and G∗ be as shown in Fig. 3, and let

e1 =
(
1 + √

5

2
,
1 + √

5

2
,
1 + √

5

2
,
1 + √

5

2
, 1, 1, 1, 1

)T

,

e2 =
(
1 − √

5

2
,
1 − √

5

2
,
1 − √

5

2
,
1 − √

5

2
, 1, 1, 1, 1

)T

.

It is straightforward to verify that e1 and e2 are the main eigenvectors of G and G∗
with two main eigenvalues respectively (Fig. 3).

1 + √
5, 1 − √

5 and
3

2
(1 + √

5),
3

2
(1 − √

5),
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G

1

2 3

4

5 7

6

8

G∗

2

4 3

1

7

6

8

5

Fig. 3 Graphs with the same main eigenvectors but different main eigenvalues

Appendix 8.3

The following two adjacency matrices on 8 vertices

A1 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 1 1 0 1 0
0 0 1 0 1 0 0 1
0 1 0 0 1 1 0 0
1 0 0 0 0 1 0 0
1 1 1 0 0 0 1 0
0 0 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, A2 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 1 0 1 0 0 1
0 0 0 1 1 0 1 0
1 0 0 0 1 1 0 0
0 1 0 0 0 1 0 0
1 1 1 0 0 0 1 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

give rise to the same standard walk matrix W of rank 6,

W =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

1 3 8 23 64 181 506 1425
1 3 8 23 64 181 506 1425
1 3 9 24 69 190 539 1502
1 2 5 13 37 101 287 797
1 4 11 32 89 252 705 1984
1 2 5 14 37 106 291 826
1 2 7 19 55 153 433 1211
1 1 3 8 23 64 181 506

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

.

In this case the graphs for A and A∗ are isomorphic to each other. This graph is drawn
in Fig. 4.
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Fig. 4 Two different adjacency
matrices with the same walk
matrix

1

G
236

74

8

5

Appendix 8.4

A pair of non-isomorphic graphs G and G∗ of least order n = 7 with the same walk
matrix is given in Fig. 5. Their walk matrix is

W = W ∗ =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 4 11 35 104 318 960
1 3 9 27 82 248 752
1 2 7 20 62 186 566
1 2 8 22 70 208 636
1 2 7 20 62 186 566
1 3 9 27 82 248 752
1 4 11 35 104 318 960

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

.

G G∗

4

1

5

7

2 6

3

4

1

5

7

2 6

3

Fig. 5 A pair of non-isomorphic graphs with the same walk matrix of rank(W ) = n − 3 = 4.

Appendix 8.5

We return to the graphG in Fig. 1 to show in an example how the Galois group and the
automorphism group act on the main eigenvectors and main eigenvalues of the graph.
The characteristic polynomial of G is (x + 1)(x3 − x2 − 3x + 1), it has the roots

λ0 = −1, λ1 = −1.48..., λ2 = 0.31... and λ3 = 2.17...
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with corresponding eigenvectors

a0 =

⎛

⎜
⎜
⎝

0
0

−1
1

⎞

⎟
⎟
⎠ , a1 =

⎛

⎜
⎜
⎝

−0.67...
1

−0.40...
−0.40...

⎞

⎟
⎟
⎠ , a2 =

⎛

⎜
⎜
⎝

3.21...
1

−1.45...
−1.45...

⎞

⎟
⎟
⎠ and, a3 =

⎛

⎜
⎜
⎝

0.46...
1

0.85...
0.85...

⎞

⎟
⎟
⎠ .

The graph automorphism which fixes v1, v2 and interchanges v3, v4 maps a0 to −a0
and fixes a1, a2, a3. (Clearly, graph automorphisms always leave all eigenspaces
invariant: Inmatrix terms, if P is a permutationmatrixwith AP = PA and if Ax = λx,
then APx = PAx = λPx .) TheGalois groupGal(G) of (x3−x2−3x+1) is the sym-
metric group on {λ1, λ2, λ3}, its elements permute Eig(A, λ1),Eig(A, λ2),Eig(A, λ3)

in the same way.
Nextwe find themain eigenvectors for S = {v1}, for instance. Themain polynomial

of this set is (x3 − x2 − 3x + 1). We write e = (1, 0, 0, 0)T in terms of its main
eigenvectors,

e = (1, 0, 0, 0)T = e1 + e2 + e3 = c1a1 + c2a2 + c3a3

for certain coefficients ci ∈ K, the splitting field of (x3 − x2 − 3x + 1). In fact,
c1 = −0.37.., c2 = 0.20... and c3 = 0.17... . By Lemma 3.1 we have that Gal(G)

permutes the ei and sowe obtain the explicit action ofGal(G) on themain eigenvectors
of S = {v1}.
Appendix 8.6

By computation, we found that the characteristic polynomial of pairs of cospectral
graphs of order n < 8 is always reducible. The following in an example for n = 8
with a pair of non-isomorphic graphsG,G∗ with irreducible characteristic polynomial

x8 − 10x6 − 4x5 + 24x4 + 8x3 − 16x2 + 1.

Their complements have the same characteristic polynomial

x8 − 18x6 − 26x5 + 26x4 + 42x3 − 16x2 − 16x + 4

and this polynomial is again irreducible (Fig. 6).

G G∗

Fig. 6 Two non-isomorphic graphs of order 8 with the same irreducible characteristic polynomial
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