
Journal of Algebraic Combinatorics (2022) 55:513–531
https://doi.org/10.1007/s10801-021-01060-8

Abelian permutation groups with graphical representations

Mariusz Grech1 · Andrzej Kisielewicz1

Received: 22 November 2020 / Accepted: 8 August 2021 / Published online: 22 September 2021
© The Author(s) 2021

Abstract
In this paper we characterize those automorphism groups of colored graphs and
digraphs that are abelian as abstract groups. This is done in terms of basic permutation
group properties. Using Schur’s classical terminology, what we provide is character-
izations of the classes of 2-closed and 2∗-closed abelian permutation groups. This is
the first characterization concerning these classes since they were defined.

Keywords colored graph · Automorphism group · Permutation group · Abelian
group · 2-closed

1 Introduction

This paper is motivated by the problem called by Babai [5, p.52] the concrete repre-
sentation problem. Recall that König’s problem for groups asked which finite groups
are the automorphism groups of (simple) graphs. This question, in its abstract version,
was quickly answered by Frucht who showed that every group is isomorphic to the
automorphism group of some graph. The concrete version, of more combinatorial fla-
vor, askswhich finite permutation groups are the automorphism groups of graphs. This
problem turns out to be much harder (see [5,10]). In the abstract version we look for a
graph with an arbitrary number of vertices whose automorphism group is isomorphic
to a given (abstract) group. In the concrete version we are given a permutation group
(G, X) acting on a set X of elements and we are looking for a graph (X , E) with the
same set X of vertices whose automorphisms are precisely the permutations in G.
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There are related active areas of research concerning graphical representations
of abstract groups, Cayley graphs and automorphism groups of circulant graphs (see
[4,5,9,26] for the beginnings, and [1,2,7,8,17,27–30] to mention just a fewmost recent
results). All these are closely connected with the problem considered in this paper.
Yet, we must emphasize that we approach the topic from a different point of view. Our
main interest is in permutation group structure and classifying permutation groups
by their natural representations as the automorphism groups of colored graphs. This
relates directly to the direction of research suggested inWielandt’s [31]. Many natural
applications of permutation groups, especially in fields outside mathematics, concern
the ways they act rather than their group structure (cf. [21–23]). Moreover, we are
particularly interested in intransitive permutation groups, as they reflect the way how
graphs that fail to be vertex transitive are composed from transitive components. Now,
while transitive permutation groups are understood pretty well (mainly due to research
connected with the classification of finite simple groups), very little is known, in fact,
about intransitive groups and their complex actions on different orbits. Note that most
graphs are not vertex transitive and the action of the automorphism group on different
orbits may be very different and relate closely to various graph properties.

It is easy to see that some permutation groups, like the alternating groups An on
n elements or the groups Cn generated by the cyclic permutation (1, 2, . . . , n), are
not the groups of automorphisms of any graph (on n elements). For a long time there
was no progress in the concrete version of König’s problem. Only research on the so-
calledGraphical Regular Representation of groups (GRR) followed amore systematic
approach to the problem. The final result of this extensive study by Godsil [9], even if
it concerned representations of abstract groups, may be interpreted as the description
of those regular permutation groups that are the automorphism groups of graphs. The
analogous result for automorphism groups of directed graphs has been obtained by
Babai [4].

The next natural class of permutation groups to study from this point of view is the
class of cyclic permutation groups, that is, those generated by a single permutation.
König’s problem for this class turned out not so easy as it could seem at the first sight.
After some partial results containing errors and wrong proofs ([24,25] corrected in
[11]), the final result has been obtained only recently [15,16]. The full description
turns out to consist of seven technical conditions concerning possible lengths of the
orbits.

To obtain this description, we have applied the aforementionedWielandt’s approach
to start from considering the invariance groups of families of binary relations rather
than the automorphism groups of simple graphs. In the language of graphs these are
the automorphism groups of (edge) colored graphs. This approach is more natural. So,
first, in [15], we have obtained an easy-to-formulate result that a cyclic permutation
groupG is the automorphismgroup of a colored graph if and only if for every nontrivial
orbit O ofG there exists another orbit Q such that gcd(|O|, |Q|) ≥ 3. The proof yields
also the result that if a cyclic permutation group is the automorphism group of a colored
graph, then it is the automorphism group of a colored graph that uses at most 3 colors.
Only then may one consider for which cyclic permutation groups 2 colors suffice,
which turns out to have a rather technical solution (see [16]). There are many other
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results in the area showing that considering edge-colored graphs rather than simple
graphs is the right approach (see [21]).

The next natural class to attack in the concrete version of König’s problem is that
of abelian permutation groups. The survey [26] reports a result by Zelikovskij [32]
where the solution of König’s problem for a large class of abelian permutation groups
(namely, thosewhose order is not divisible by 2, 3 or 5) is provided. There is noEnglish
translation of [32], so the survey quotes only the English summary. The restriction
means that the lengths of the orbits must be relatively prime to 30, and its apparent
aim is to avoid technical complications. Worse, the result as stated is false. In [14] we
demonstrate a counterexample and point out the false algebraic assumption used by
Zelikovskij in the proof.

In this paper we make the first step to find a correct characterization of the abelian
permutation groups that are the automorphism groups of graphs. As before, we start
from characterizing those abelian permutation groups that are the automorphism
groups of colored graphs and digraphs. Again, it turns out that this can be done in
a quite nice way in terms of basic properties of permutation groups.

Our characterizations use a technical notion specific to intransitive permutation
groups. For a given permutation group G we say that a permutation σ is 2-orbit
compatible with G if for every pair of orbits O and Q of G there is a permutation
σ ′ ∈ G such that σ and σ ′ have identical actions on O ∪ Q. The group G is 2-orbit-
closed if every permutation that is 2-orbit-compatible with G belongs to G. Every
transitive permutation group, or having just two orbits, is trivially 2-orbit-closed, but
permutation groups containing more than 2 orbits may not be.

It is not difficult to observe that each automorphism group of an edge-colored
directed graph is necessarily 2-orbit-closed. In this paper, we prove that for abelian
groups this condition is also sufficient: an abelian permutation group A is the auto-
morphism group of an edge-colored directed graph if and only if A is 2-orbit-closed
(Theorem 3). Moreover, we prove that an abelian permutation group A is the automor-
phism group of an edge-colored (simple) graph if and only if A is 2-orbit-closed and
satisfies an additional condition concerning groups induced by A on its orbits (Theo-
rem 2). Our main tool in proving these results is the subdirect sum decomposition of
intransitive groups, which is recalled for convenience of the reader in Sect. 2.1.

2 Terminology

For standard notions and terminology of permutation groups see, e.g., [6]. We use the
notation (G, X) to denote a permutation group G acting on a finite set X . Permuta-
tion groups are considered up to permutation isomorphism, i.e., two groups that are
permutation isomorphic (in the sense of [6, p. 17]) are treated as identical. In par-
ticular we usually assume that X = {1, 2, . . . , n}, and by Sn and An we denote the
full symmetric group and the alternating group, respectively, acting on X . By Cn we
denote the subgroup of Sn generated by the cyclic permutation (1, 2, . . . , n). By In
we denote the trivial permutation group acting on n elements, that is, the subgroup of
Sn containing the identity permutation only.
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A k-colored digraph � = (X , γ ) is a set X (of vertices) with a function γ :
X × X → {0, 1, . . . , k − 1}. If γ is a function from the unordered pairs P2(X) of
the points of X to {0, 1, . . . , k − 1}, then � is called a k-colored graph. They may
be viewed as the complete digraph or the complete graph, respectively, on a set X ,
whose edges are colored with at most k different colors. In the case k = 2, they may
be identified with simple digraphs and graphs, with edges colored 1, and nonedges
colored 0.

The i-th degree of a vertex x ∈ X , denoted di (x), is the number of edges in color i
incident with x . The k-tuple (d0(x), . . . , dk−1(x)) is referred to as the k-tuple of color
degrees of x . In colored digraphs we may distinguish also outdegrees and indegrees,
and the corresponding k-tuples.

A permutation σ of X is an automorphism of � = (X , γ ), if it preserves the colors
of edges in �. Obviously, each automorphism preserves also the k-tuples of color
degrees of vertices. The automorphisms of � form a permutation group, which is
denoted Aut(�). We say also that � represents (graphically) the permutation group
Aut(�). We note that not every permutation group is representable by a colored graph
or digraph. For example, the alternating group An is not representable for any n > 3
(neither by a colored graph nor by a digraph). The cyclic groupCn is not representable
by a colored graph (for any n > 2), but it is representable by a (2-colored) digraph.

Given a permutation group (G, X), byOrb(G, X) = Orb(G)we denote the colored
digraph in which two edges have the same color if and only if they belong to the same
orbit of G in its action on X × X (i.e., orbital). Similarly, by Orb∗(G, X) = Orb∗(G)

we denote the colored graph in which two edges have the same color if and only if
they belong to the same orbit of G in its action on P2(X).

It is easy to see that Aut(Orb∗(G)) ⊇ Aut(Orb(G)) ⊇ G as groups of permutations
over X . The first group is called the 2∗-closure of G, while the second group is called
the 2-closure of G. When a permutation group happens to be equal to its 2∗-closure
or 2-closure, then it is called 2∗-closed or 2-closed, respectively. These groups are
the largest permutation groups with the given set of orbits on P2(X) or on X × X ,
respectively (see [5,31]; according to Wielandt [31] the notion of 2-closure as a tool
in the study of permutation groups was introduced by I. Schur.

IfG is not 2∗-closed, then G is not the automorphism group of any (colored) graph.
Otherwise, there may be various colored graphs � such that G = Aut(�). Yet, each
such graph can be obtained from Orb∗(G) by identifying some colors. In particular, if
G = Aut(�) for a simple graph�, then� can be obtained fromOrb∗(G) by identifying
some colors with 1 (corresponding to edges) and other colors with 0 (nonedges).

We define GR(k) to be the class of all permutation groups that are automorphism
groups of colored graphs using at most k colors. The union GR = ⋃

k≥1 GR(k) is
just the class of 2∗-closed permutation groups. Similarly, we define DGR(k) as the
class of all permutation groups that are automorphism groups of colored digraphs
using at most k colors. The union DGR = ⋃

k≥1 DGR(k) is just the class of 2-closed
permutation groups.

While this seems pretty natural topic in the area of graphs and permutation groups
not much has been done so far in it. The reason is that, on the one hand, the topic
turned out to be rather hard, and on the other hand, the main stream of research in
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permutation groups was focused so far on delivering tools for the classification of
finite simple groups, and this restricted research to transitive groups.

2.1 Subdirect sum decomposition

A natural tool in the study of intransitive permutation groups is the subdirect sum
of permutation groups. Given two permutation groups G ≤ Sn and H ≤ Sm , the
direct sum G ⊕ H is the permutation group on {1, 2, . . . , n +m} defined as the set of
permutations π = (σ, τ ) such that

π(i) =
{

σ(i), if i ≤ n
n + τ(i − n), otherwise.

Thus, in G ⊕ H , permutations of G and H act independently in a natural way on a
disjoint union of the base sets of the summands.

We introduce the notion of the subdirect sum following [13] (and the notion of
intransitive product in [20]). Let H1�;G1 ≤ Sn and H2 � G2 ≤ Sm be permutation
groups such that H1 and H2 are normal subgroups ofG1 andG2, respectively. Suppose,
in addition, that factor groups G1/H1 and G2/H2 are (abstractly) isomorphic and
φ : G1/H1 → G2/H2 is the isomorphism mapping. Then, by

G = G1[H1] ⊕φ G2[H2]

we denote the subgroup ofG1⊕G2 consisting of all permutations (σ, τ ), σ ∈ G1, τ ∈
G2 such that φ(σH1) = τH2. Each such group will be called a subdirect sum of G1
and G2, and denoted briefly G1 ⊕φ G2 (in this notation the normal subgroups H1 and
H2 are assumed to be specified in the full description of the isomorphism φ).

If H1 = G1, thenG1/H1 is a trivial (one-element) group, and consequently,G2/H2
must be trivial, which means that we have also H2 = G2. Then, G = G1 ⊕ G2 is the
usual direct sum, with φ being the mapping between one-element sets. In such special
case the subdirect sum⊕φ will be referred to as trivial. In the casewhenG1 = G2 = G
and H1 = H2 is the trivial one-element subgroup of G, and φ : G → G is the identity
mapping, the subdirect sum is nontrivial. In this case we call the resulting sum a
parallel sum (permutation isomorphic groups G1 and G2 act in a parallel manner on
their orbits) and denote it briefly G||G. For example, the cyclic group generated by
the permutation σ = (1, 2, 3)(4, 5, 6) is permutation isomorphic to C3||C3.

The main fact established in [20] is that every intransitive group has the form of a
subdirect sum, and its components can be easily described. Let G be an intransitive
group acting on a set X = X1 ∪ X2 in such a way that X1 and X2 are disjoint fixed
blocks for G. Let G1 and G2 be restrictions of G to the sets X1 and X2, respectively
(they are called also constituents). Let H ′

1, H
′
2 ≤ G be the subgroups fixing pointwise

X2 and X1, respectively. Let H1 ≤ G1 and H2 ≤ G2 be the restrictions of H ′
1 and H ′

2
to X1 and X2, respectively. Then we have

Theorem 1 [20, Theorem 4.1] If G is a permutation group as described above, then

a) H1 and H2 are normal subgroups of G1 and G2, respectively,
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b) the factor groups G1/H1 and G2/H2 are abstractly isomorphic, and

G = G1[H1] ⊕φ G2[H2],

where φ is the isomorphism of the factor groups.

3 Preliminary results

First, we establish the representability of regular abelian permutation groups and some
other groups connected with the automorphism groups of Cayley graphs. Here, we
make use of known results on the so-called Cayley index of abelian groups.

Recall that each regular permutation group may be viewed as the action of an
abstract group G on itself given by left multiplication. In such a case we have X = G,
and the resulting permutation group will be denoted by (G,G), or simply by G, if it
is clear from the context that we mean the corresponding regular permutation group.
In particular, we use standard notation Zm

k and Zm
k × Zs

r for abstract abelian groups to
denote also corresponding permutation groups obtained by the regular action of these
groups on themselves (in particular, Cn and Zn denote here the same permutation
group).

Given an abstract group G, by Cay(G) we denote the complete directed colored
Cayley graph, that is one with all nontrivial elements as generators defining different
colors. Observe that Cay(G) = Orb(G,G). By Cay∗(G) we denote the complete
undirected colored graph obtained from Cay(G) by identifying colors corresponding
to g and g−1 for every nontrivial g ∈ G, and removing the loops. Again, Cay∗(G) =
Orb∗(G,G).

Now, given a set S of nontrivial elements of G (i.e., different from the identity),
by Cay∗(G; S) we define the colored graph obtained from Cay∗(G) by identifying all
colors not in S. To admit further identifications, let � be a partition of S. Then by
Cay∗(G;�)we define the colored graph obtained fromCay∗(G; S) by identifying the
colors in each block of�. In our notation applied below,� is written simply by listing
its blocks, a block is written in the square brackets, and in the case of a one-element
block, brackets are omitted. To make notation as compact as possible we adopt the
convention that � contains only one representative of each pair {g, g−1}. In addition,
we assume that there are nontrivial pairs g, g−1 not in S, and all elements not in S
get color 0 in diagrams represented by nonedges. Then, the graph Cay∗(G;�) is the
complete directed graph whose edges are colored with exactly |�| + 1 colors.

The following lemma presents the colored graphs whose automorphism groups
are (Zk

2, Z
k
2) for k = 2, 3, 4. (The k-tuples of elements of Zk

2 are denoted below by
corresponding strings of 0’s and 1’s.)

Lemma 1 Each of the following colored graphs represents the regular action of its
defining group:

(i) Cay∗(Z2
2; 10, 01),

(ii) Cay∗(Z3
2; 100, 010, 001),

(iii) Cay∗(Z4
2; 1000, [0100, 1010], [0010, 0001])
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Fig. 1 Cay∗(Z4
2; 1000, [0100, 1010], [0010, 0001])

Proof We consider the case (iii). Denote the graph by �. It is pictured in Fig. 1. (Solid,
dashed, and dotted lines correspond to colors 1000, 0100, and 0010, respectively). We
will speak correspondingly of solid, dashed, and dotted neighbors.

Since � is obtained from a Cayley graph on Z4
2 by identifying colors, it follows

that its automorphism group Aut(�) contains the regular action of Z4
2 (which in this

notation is given by addition). We need only to prove that Aut(�) contains no other
permutation. Let us consider the stabilizer A0 of the vertex 0000 in Aut(�). As the
latter is transitive, it is enough to show that A0 is trivial.

Since the only solid neighbor of 0000 is 1000, A0 fixes 1000 as well. Further,
the only dashed neighbor of 0000 that is a dotted neighbor of 1000 is 1010, while
the only solid neighbor of the latter is 0010. Thus the four vertices with coordinates
x0y0 are fixed. Considering their dashed neighbors, we see that also each vertex
with coordinates x1y0 must be fixed. It follows that the vertices of the cube xyz0
are individually fixed. Considering their dotted neighbors, we conclude that the same
holds for the cube xyz1, which completes the proof.

The cases (i) and (ii) are easier and are left to the reader as an exercise. �
Now, recall that an abelian permutation group (A, X) is transitive if and only if it is

regular. It follows that a transitive abelian permutation group A can be identified with
the regular action of A (considered as an abstract group) on itself (cf. [6]). In this case,
we have a special permutation on A defined by α : x → x−1 called the involution.
(For properties and a very special role of this permutation see, e.g., [7,19]). It is easy
to observe that the involution preserves the colors of the edges in Cay∗(A). This leads
to the well-known fact:

Lemma 2 Le A be a regular abelian permutation group, and α its involution. If � is
a colored graph such that Aut(�) ⊇ A, then α ∈ Aut(�).

This is so since Cay∗(A) = Orb(A, A), and � needs to be a graph obtained from
Orb(A, A) by identification of colors.

It follows from this lemma that generally a regular abelian permutation group A
does not belong toGR, except for the case when α is trivial (the identity permutation).
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This is exactly the case, when A = Zn
2 for some n ≥ 0. It is well known that for n ≥ 5,

Zn
2 is representable as the automorphism group of a simple (Cayley) graph (see [18],

or claim 1.2 in [19]). Combining this with Lemma 1 we have

Lemma 3 Let A be a regular abelian permutation group. If A = Zn
2 for some n ≥ 0,

then A ∈ GR(4); otherwise, A /∈ GR.

We note that Z3
2 requires 4 colors, in the sense that there exists no k-colored graph

with k < 4 whose automorphism group is Z3
2. The proof of this fact is rather tedious,

but one may also check this with a help of computer. We mention it, because it means
that the number 4 in the results of this paper cannot be lowered.

The permutation group generated by left translations of a regular abelian group A
and its involution α plays a special role in this paper.We denote it by A+ = 〈A, α〉. We
note that if α is nontrivial, then A+ is nonabelian. Nevertheless we need knowledge
about the representability of such groups, and to establish it, we apply Theorem 1
in [19].

Lemma 4 If A is a regular abelian permutation group, then A+ ∈ GR(2), except for
the following groups: A = Z2

2, Z
3
2, Z

4
2, Z4× Z2, Z4× Z2

2, Z
2
3, Z

3
3 , or Z

2
4 . In any case,

A+ ∈ GR(4).

Proof The first claim follows from [19, Theorem 1] combined with the remark 1.2
preceding this theorem (which adds to the list of exceptions Z2

2). For the second claim,
the three first cases follow by Lemma 1. For the remaining cases the following five
4-colored graphs of the form Cay∗(A, P) have the automorphism group equal to A+:

Cay∗(Z4 × Z2; 10, 01), Cay∗(Z4 × Z2
2; 100, 010, 001]), Cay∗(Z2

3; 10, 01, 11),
Cay∗(Z3

3; 010, [001, 100], [110, 101]), Cay∗(Z2
4; 10, 01, 13).

Checking this fact for each of the five graphs is routine, and similar to checking the
case (iii) in the proof of Lemma 1. �

We note that Cay∗(Z2
3; 10, 01, 11) (pictured in the left-hand side of Fig. 4) is a

unique 4-colored graph (in the sense of [12]) with the unique automorphism group
(Z2

3)
+. This means that if a colored graph has the automorphism group (Z2

3)
+, then

it is color-isomorphic to Cay∗(Z2
3; 10, 01, 11) (i.e., it can be obtained from the latter

by suitable renaming vertices and colors). In particular, the number 4 in this lemma
cannot be lowered.

We have also two exceptional intransitive abelian permutation groups whose repre-
sentability (from the point of view of our proof) needs to be established directly. They
are two nontrivial subgroups of the direct sum Z2

3 ⊕ Z2
3.

Lemma 5 Let A be a nontrivial subgroup of Z2
3 ⊕ Z2

3 of the form

A = Z2
3[H ] ⊕φ Z2

3[H ],

such that H = Z3 or H = I9. Then A ∈ GR(4).

Proof First consider the case when H is a subgroup isomorphic to Z3. Note that in
this case the decomposition formula above describes A uniquely up to permutation
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Fig. 2 Aut(�) = Z2
3 [Z3] ⊕φ Z2

3 [Z3]

isomorphism. Indeed, each subgroup Z3 of Z2
3 may be treated as one of the summands

of suitably presented Z2
3, and the isomorphism φ between groups isomorphic to Z3 is

unique up to renaming generators of Z3.
We construct a graph � as a suitable composition of two graphs of the form

Cay∗(Z3
2;�). The first component of � (corresponding to the first orbit of A) is

Cay∗(Z3
2; 01, 11, 10), and the second one (corresponding to the second orbit of A)

is Cay∗(Z3
2; 10, 01) (we assume here that the colors 1, 2, 3 are assigned to edges in

accordance with the position on the list, so in particular, the edge (00, 01) in the first
graph has the same color 1 as the edge (00, 10) in the second graph). To describe the
colors of edges between the two components, we assume that the pairs in the second
component are denoted with overline (thus, the first component consists of pairs xy,
where x, y ∈ {0, 1, 2}, and the second component consists of analogous overlined
pairs xy). Then, we put the color 3 for the edge (00, 00) and the color 1 for the edge
(00, 01). This is done under assumption that Aut(�) ⊇ A, where the first Z3 subgroup
in the decomposition A = Z2

3[Z3] ⊕φ Z2
3[Z3] is equal to (Z3, {00, 10, 20}), and the

second to (Z3, {00, 10, 20}). This assumption forces the colors for other edges in those
orbitals of A that contain the mentioned edges. The remaining edges are colored 0.
Note that there is no edge of color 2 between the components.

The graph � is illustrated in Fig. 2. The dashed, dotted, and solid lines correspond
to colors 1, 2, and 3, respectively. To make the drawing more readable, we have
applied the convention that each line between components ending with double arrows
corresponds to nine edges in the given color joining each vertex in the horizontal line
pointed out by the arrows in the left component with each vertex in the horizontal line
pointed out by the arrows in the right component.

Thus we have Aut(�) ⊇ A = Z2
3[Z3] ⊕φ Z2

3[Z3], where φ is the natural isomor-
phism between Z3-subgroups. Moreover, Aut(�) preserves the orbits of A, since the
quadruples of color degrees in the first component are different from that in the second
component.

Now, consider the stabilizer S0 of point 00 in Aut(�). To get the equality above, it
is enough to show that the cardinality |S0| = 3. Because of the dotted edges (color 2)
coming out from 00, S0 fixes the set {11, 22}. We show that, actually, S0 fixes individ-
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ually points in this pair. Suppose, to the contrary, that S0 contains an automorphism
σ transposing 11 and 22.

Then, σ transposes sets {10, 11, 12} and {20, 21, 22}, which are disjoint triangles
in color 3 (solid line) in the first component. Due to edges in color 3 between the
components, σ transposes also the sets: {01, 11, 21} and {02, 12, 22}, which are the
triangles in color 1 (dashed lines) in the second component. Similarly, due to edges in
color 1 between the components, σ transposes the sets: {00, 10, 20} and {02, 12, 22},
which contradicts the previous claim.

Thus, the set {00, 11, 22} remains individually fixed in S0. It is now easy to see
that each point in the first component remains fixed under S0. Consequently, (because
of solid edges between the two components) each triangle in color 1 in the second
component remainsfixed, and (due to the edges colored 2 in the second component), for
every automorphism, the permutation in oneof these triangles determines permutations
in other triangles. Thus, the cardinality of the stabilizer of 00 in Aut(�) is equal to 3,
proving the lemma for H = Z3.

Consider now the case when H = I9 is the trivial subgroup of Z2
3. Then A is

the parallel sum A = Z2
3 ||Z2

3. In this case we construct a graph � as a combination
of Cay∗(Z2

3; 10, 01, 11) and Cay∗(Z2
3; 01, 10). In addition, each edge of the form

(xy, xy) is colored 1, each edge of the form (xy, (x + 1)y), where addition is modulo
3, is colored 2, and the other edges are colored 0. The proof that Aut(�) = Z2

3 ||Z2
3 is

similar to the first case (but simpler), so we leave it to the reader. �

In fact, the parallel sum Z2
3 ||Z2

3 is known to belong to GR(2). A suitable construc-
tion is contained in the proof of the main result in [3].

4 The structure of abelian permutation groups

From now on (A, X) denotes an abelian permutation group on a fixed set X , with
orbits X1, . . . , Xr . Then, by Ai = A|Xi we denote the restriction of A to Xi , by A j

i
the restriction of the pointwise stabilizer of the orbit X j to the orbit Xi , and by A∗

i the
restriction of the pointwise stabilizer of the set V \ Xi to the orbit Xi .

Two orbits Xi and X j , i �= j , are called adjacent if the factor group Ai/A
j
i is

not an elementary abelian 2-group. We note that this relation is symmetric. Indeed,
the restriction B of A to Xi ∪ X j can be presented as B = Ai [A j

i ] ⊕φ A j [Ai
j ]. This

means, in particular, that Ai/A
j
i is isomorphic to A j/Ai

j , which implies the claim.
Accordingly, an orbit Xi of A will be called isolated, if it is not adjacent to any orbit
X j , j �= i .

Let us recall that a permutation σ preserving orbits of A is called 2-orbit-compatible
with the permutation group A, if for each pair of orbits Xi and X j , i �= j , the restriction
of σ to Xi ∪ X j belongs to the restriction of the group A to Xi ∪ X j . The group A
is 2-orbit-closed if every permutation that is 2-orbit-compatible with A belongs to
A. The 2-orbit-closure of A, denoted Ā, is the group consisting of all permutations
2-orbit-compatible with A. Obviously, Ā has the same orbits as A. Moreover, it has
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the same restrictions ( Ā)i = Ai , ( Ā)
j
i = A j

i , ( Ā)∗i = A∗
i . In particular, we have the

following.

Lemma 6 Let A be a permutation group. Then the following hold

1. A is abelian if and only if Ā is abelian.
2. An orbit Xi is isolated in A if and only if Xi is isolated in Ā.

The notion of 2-orbit closure arises naturally, when one considers automorphism
groups of colored graphs and digraphs. All these groups are obviously 2-orbit closed.
It is enough to observe that a colored graph (or digraph) � has exactly two kinds of
edges with regard to its automorphism group: those joining vertices within an orbit of
the group and those joining vertices between two different orbits. It is easily seen that
a permutation 2-orbit-compatible with Aut(�) preserves the colors of all edges. The
following is an obvious property of 2-orbit-closed groups.

Lemma 7 Let A and B be 2-orbit-closed permutation groups acting on the same
set X and having the same orbits. If for any two orbits O and Q, the restriction
A|O∪Q = B|O∪Q, then A = B.

We have also the following crucial characterization.

Lemma 8 If A is a 2-orbit-closed abelian permutation group, then for every orbit Xi

of A, Xi is isolated in A if and only if Ai/A∗
i is an elementary abelian 2-group.

Proof First observe that for each i ≤ r , A∗
i ⊆ ⋂

j �=i A
j
i . We show that for 2-orbit-

closed groups the converse inclusion holds, as well. Indeed, suppose that τ ∈ A j
i for

each j �= i . It follows, that for each j �= i , there is a permutation σ j ∈ A, such
that its restriction to Xi ∪ X j is equal to τ extended to X j by fixing all points in X j .
Consequently, the permutation σ whose restriction to Xi is equal to τ and fixing all
points in X \ Xi is 2-orbit-compatible with A and therefore belongs to A. Whence,
τ ∈ A∗

i , as required.
Now, we prove our claim by contraposition. Suppose that Ai/A∗

i is not an elemen-
tary abelian 2-group, that is, it has an element x A∗

i of order > 2. This is equivalent
to that x2 /∈ A∗

i , which means (by what proved above) that there is j �= i such that

x2 /∈ A j
i . The latter is equivalent to Ai/A

j
i has an element x A∗

i of order > 2, that is,

Ai/A
j
i is not an elementary abelian 2-group. This means that Xi is not isolated. These

equivalences yield the required result. �
Note that the factor group Ai/A∗

i is an abstract group; we do not define any action
of this group. It plays a special role in our main result below.

5 Characterization of 2∗-closed abelian permutation groups

Using definitions formulated at the beginning of Sect. 4, we state our main result.

Theorem 2 Let A be a nontrivial abelian permutation group. Then A is the automor-
phism group of a colored graph if and only if the following conditions hold
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1. A is 2-orbit-closed, and
2. for every orbit Xi of A, if the factor group Ai/A∗

i is an elementary abelian 2-group,
then so is Ai .

Note that the factor group Ai/A∗
i is an elementary abelian 2-group (as abstract

group) if and only if it is isomorphic to Zn
2 for some n ≥ 0. In turn, the permutation

group Ai (being transitive) is an elementary abelian 2-group if and only if it is permu-
tation isomorphic to the regular action of Zn

2 for some n ≥ 0. Note that this includes
trivial cases with n = 0. (There are also other permutation groups that are elementary
abelian 2-groups, but they are not transitive, and do not apply in our theorem).

The proof of Theorem 2 consists of a number of lemmas. We keep the notation of
the previous section. First we prove the “only if” part of the theorem.

Lemma 9 If an abelian permutation group A ∈ GR, then A satisfies conditions (1)
and (2) of Theorem 5.1.

Proof As we have already noted before Lemma 7, condition (1) obviously holds. For
(2), let � be a colored graph with Aut(�) = A, and suppose that Ai/A∗

i is isomorphic
to Zm

2 for somem ≥ 0. Since Ai is abelian and transitive on Xi , it acts regularly on Xi .
Therefore Xi may be identified with Ai and the action of Ai with the regular action
on itself. In particular, A∗

i may be considered as a subset of Xi .
For each pair of elements x, y ∈ A∗

i , there is a permutation σ ∈ A moving x into
y and fixing all the elements outside Xi . Because of commutativity, σ does the same
with any pair t x and t y, where t ∈ Ai is treated as a permutation on Ai . It follows
that the cosets of Ai/A∗

i have the same property: for each pair of elements x, y in the
same coset, there is a permutation σ ∈ A moving x into y and fixing all the elements
outside Xi . It follows that for every pair of such elements x, y, and every element
z /∈ Xi , the edges xz and yz in � have the same color.

We observe that for each x ∈ Xi , x−1 is in the same coset as x . Indeed, since
Ai/A∗

i
∼= Zm

2 , for cosets we have x A
∗
i x A

∗
i = A∗

i , and by commutativity, x2A∗
i = A∗

i ;
hence x A∗

i = x−1A∗
i , as required. Thus, we infer that the edges xz and x−1z in �

have the same color, for every element z /∈ Xi .
We proceed to show the involution α in Xi = Ai treated as a permutation of X

(fixing all elements x /∈ Xi ) preserves the colors of edges in �. Indeed, by what
established above, it preserves the colors of all edges in � that have at most one end in
Xi . On the other hand, by Lemma 2 we know that α preserves the colors of the edges
within Xi , which proves the claim.

Consequently, α ∈ Ai . Since Ai is regular, it means that α must be trivial, that is,
x = x−1 for all x ∈ Ai . It follows that Ai is an elementary abelian 2-group, proving
the lemma. �

The proof of the “if” part is by induction on the number of orbits in A. Below, we
establish the result for two orbits. Note that in this case A is trivially 2-orbit-closed.

Lemma 10 If A is a nontrivial abelian permutation group with two orbits and A
satisfies condition (2) of the theorem, then A ∈ GR(4).
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Proof Let O and Q be the orbits of A. Let A = B[B ′] ⊕φ C[C ′] be the subdirect
decomposition of Awith regard toO and Q. LetO1, . . . , Or be the partition of the orbit
O into orbits of B ′. Since the actions of B onO is regular (as B is abelian and transitive),
the factor group B/B ′ acts on the set of orbits O1, . . . , Or in a regular way. The same
is true of the action of C/C ′ on the set of orbits Q1, . . . , Qs of C ′ on Q, since B/B ′
and C/C ′ are isomorphic, r = s. It follows also that φ : B/B ′ → C/C ′ establishes
a one-to-one correspondence between the orbits O1, . . . , Or and Q1, . . . , Qr so that
the action of B/B ′ on O1, . . . , Or is equivalent to the action of C/C ′ on Q1, . . . , Qr .
After suitable renumbering we may assume that φ(Oi ) = Qi for all i = 1, . . . , r .
Moreover, we may assume that the orbits Oi are identified with the cosets of B/B ′,
the orbits Qi are identified with the cosets of C/C ′, and B ′ = O1 and C ′ = Q1.

We construct a 4-colored graph on the set O∪Q of vertices. It consists of two parts:
�1 on the set of vertices O , and�2 on the set of vertices Q.We take�i to be a 4-colored
graph given by Lemma 4, such that Aut(�1) = 〈B, β〉 and Aut(�2) = 〈C, γ 〉, where
β and γ are corresponding involutions.

For the edges joining O and Q we put colors as follows. First, for each i = 1, . . . , r ,
and for all y ∈ Oi and all z ∈ Qi , the edge yz is colored 1. These edges reflect the
one-to-one correspondence between cosets. They guarantee that the regular action on
cosets is parallel: if (σ, τ ) is a permutation on O ∪Q preserving the set of these edges
(where σ permutes O , and τ permutes Q), then σ(Oi ) = Oj implies τ(Qi ) = Q j for
all i, j ≤ r . Therefore, in the remaining part of the construction we assume that these
edges are the only edges between O and Q colored 1. Note that this guarantees also
that, if Aut(�) ⊆ B ⊕ C , then Aut(�) = B[B ′] ⊕φ C[C ′] = A. So, it remains only
to prove that Aut(�) ⊆ B ⊕ C . (This construction will be referred further as joining
cosets in parallel manner).

Now the construction differs depending on whether the orbits O and Q are adjacent
or not. First we consider the case of adjacent orbits, and define the set of edges between
O and Q colored 2. They are chosen to prevent involutions in O and Q.

Since B/B ′ is not isomorphic to Zn
2 , it has an element x B ′ of order greater than 2.

If we would have x B ′ = x−1B ′, then x2B ′ = B ′, a contradiction. Hence x and x−1

lie in different cosets. We color all the edges between B and φ(x B) with the color 2.
Moreover, to make sure that Aut(�) ⊇ A, we put color 2 for all edges between yB
and φ(yx B) for any y ∈ B. The remaining edges between X and O are colored 0.
Thus, since x−1B �= x B, the edges between B and φ(x−1B) have color 0, while the
edges between B and φ(x B) have color 2. This ensures that the involution γ does not
preserve colors of the edges, and similarly, β does not, either.

Figure 3 illustrates the case for B = Z8, B ′ = Z2,C = Z12, and C ′ = Z3;
solid lines correspond to color 1, while dotted lines correspond to color 2. The cycles
representing (Z8)

+ (on the left, in color 2), and (Z12)
+ (on the right, in color 1) are

drawn in a way grouping vertices corresponding to cosets; this is to make the picture
more readable.

To prove that Aut(�) ⊆ B ⊕ C , it remains to show that O is a fixed block for
Aut(�). This may be achieved by suitable rearrangement of colors of edges in �1, so
that the quadruple of color degrees of vertices in O is different than that in Q (note
that because Aut(�) is transitive on its orbits, this quadruple is the same for all vertices
in the given orbit). Such a rearrangement is impossible only in one case, when both
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Fig. 3 Graph � with Aut(�) = Z8[Z2] ⊕φ Z12[Z3], consisting of two cycles representing Z8 and Z12,
and edges joining the cycles.

graphs �i are isomorphic, all 4 colors are used, and degree in each color is the same.
It follows that, according to Lemma 4, this happens only in the case when B and C
are isomorphic with Z2

3. Moreover, it follows that, in such a case, A is a group of the
form Z2

3[H ] ⊕φ Z2
3[H ], and since the orbits are adjacent, H = Z3 or H = I9. Yet,

by Lemma 5, A ∈ GR(4) in such a case, which completes the proof for the adjacent
orbits.

Now, assume that O and Q are not adjacent. Then, by condition (2), both B and C
are elementary abelian 2-groups of the form Zm

2 . Moreover, since A is nontrivial, at
least for one of these group m > 0. In this case, the involutions are trivial, so we do
not need any special construction to prevent them. Whence, in this case, all the edges
between X and O other than the edges guaranteeing parallel action between the cosets
are colored 0. Since no group of the form Zm

2 , m > 0, has 4n + 1 elements for any n,
as in the previous case, the colors of edges in �i can be rearranged so that to ensure
that O is fixed block for Aut(�). Then the result follows as before, completing the
proof. �
Remark 1 For future reference note that the edges between the orbits are colored in at
most three colors 0, 1, 2. This includes the case covered by Lemma 5.

Remark 2 The assumption is that A is nontrivial is only to exclude the exceptional
case of the trivial permutation group acting on exactly 2 elements, which (because of
lack of room) is not representable by any 2-element graph.

Now we prove the “if” part.

Lemma 11 If A is a nontrivial abelian permutation group satisfying condition (1) and
(2) of the theorem, then A ∈ GR(4).
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Proof The proof is by induction on the number of orbits r of A. If r = 1, A is
transitive, and condition (2) means that A is an elementary abelian 2-group, since in
this case A∗

i = A. By Lemma 3 A ∈ GR(4). If A has 2 orbits, then the result holds
by Lemma 10.

Now, suppose that A has r > 2 orbits, and the result holds for all groups with the
number of orbits less than r .

Consider an arbitrary orbit Xi and the decomposition of A with regard to this orbit,
that is, let A = Ai [A∗

i ] ⊕φ B[B ′], where B is the restriction of A to X \ Xi . Since A
is nontrivial, we may assume in addition that B is nontrivial (Ai may happen to be a
fixed point). Let B̄ be the 2-orbit closure of B. By Lemma 6, B̄ is abelian, and it has
r − 1 orbits. Moreover, it satisfies condition (2), providing all isolated orbits in B̄ are
those isolated in A. Let us continue under this additional assumption.

Then, by the induction hypothesis, B̄ ∈ GR(4), and there exists a 4-colored graph
�2 on the set of vertices X \ Xi representing B̄. We construct a graph � on X repre-
senting A. Let �1 be a 4-colored graph on Xi representing (Ai )

+ (by Lemma 4). We
may assume that both the graphs �1 and �2 are connected in colors 2 and 3 (meaning
every two vertices in �i are connected by a path using only edges of color 2 or 3;
this may be achieved by a suitable change of colors). For each orbit X j of B̄ (that
are exactly the orbits of A other than Xi ), we put the edges colored 1 between Xi

and X j joining corresponding cosets in parallel manner as in the proof of Lemma 10.
The remaining edges joining the vertices of Xi and X \ Xi are colored 0. Obviously,
Aut(�) ⊇ A, and since B̄ is intransitive, each automorphism of � preserves the orbit
Xi . Thus, Aut(�) ⊆ (Ai )

+ ⊕ B̄.
We prove that no nontrivial involution on Xi is admitted, that is, Aut(�) ⊆ Ai ⊕ B̄).

Indeed, if Ai/A∗
i is an elementary abelian 2-group, then by (2), so is Ai , and the

involution is trivial. Then (Ai )
+ = Ai , and the claim is obvious. So, we may assume

that Ai/A∗
i is not an elementary abelian 2-group. Then by Lemma 8, Xi is not isolated,

which means that there is an orbit X j , j �= i , adjacent to Xi . In particular, Ai/A
j
i is

not an elementary abelian 2-group. Consider the restriction of A to Xi ∪X j , which can

be presented in the form Ai [A j
i ] ⊕φ A j [Ai

j ]. Similarly as in Lemma 10, we infer that

there is x ∈ Ai such that x and x−1 lie in different cosets of Ai/A
j
i . Now, A j/Ai

j is

regular, as it is transitive and abelian, so if an automorphism of � fixes Ai
j , it fixes all

the cosets of A j/Ai
j . Because of the edges between Xi and X j guaranteeing a parallel

action on cosets, we infer that if an automorphism of � fixes A j
i , then it fixes all the

cosets in Ai/A
j
i . Consequently, there is no automorphism of � whose restriction to

Xi would be the involution. This proves our claim.
The construction ensures that for any two orbits X j and Xk of A, the restriction

of Aut(�) to X j ∪ Xk is the same as the restriction of A to X j ∪ Xk . By Lemma 7,
Aut(�) = A, as required.

Thus, we have proved that A ∈ GR(4), under conditions (∗∗) that all isolated
orbits in B̄ are those isolated in A, and that B has a nontrivial orbit. Consider now the
general situation. If there is a trivial orbit (fixed point) in A, we may take this orbit as
Xi above, and the result follows (because conditions (∗∗) are satisfied). Otherwise, if
there is any isolated orbit in A, then we may take it as Xi , and again conditions (∗∗)
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are satisfied, and the result follows. The result also follows in any case when there is
an orbit Xi such that (∗∗) are satisfied. All that remains to consider is the situation
when A has an even number r of orbits, all nontrivial, and paired in such a way that
for every orbit Xi there is a unique orbit X j in A such that Xi and X j are adjacent.

If r = 2, then the result follows by Lemma 10. If r ≥ 4, we take a pair of adjacent
orbits Xi and X j , put Y = Xi ∪ X j , and Z = X \ Y , and decompose A with regard
to Y and Z : A = C[C ′] ⊕φ B[B ′]. Now, the proof is the same as in the case of
decomposing with regard to a chosen orbit Xi , with the natural modification for C
consisting of two orbits, and using Lemma 10 rather than Lemma 4. This makes the
proof simpler, since we may omit the part concerning involutions. An additional case
is created for n = 4, since then we need to use a more sophisticated coloring of edges
to prevent transposing sets Y and Z . In this caseC and B consist each of two (adjacent)
orbits, and the problem arises when �1 and �2, representingC and B, respectively, are
isomorphic as colored graphs. Then we make use of Remark 1 following the proof of
Lemma 10. According to this remark wemay assume that in the graph�1 representing
C the edges between the orbits are in colors 0, 1, 2, while for the graph�2 representing
B the edges between the orbits are in colors 1, 2, 3. Then �1 and �2 are no longer
isomorphic, and the construction works also in this case. This completes the proof of
the lemma. �

Now, Theorem 2 follows immediately by Lemmas 9 and 11. In fact, we have
proved something more, namely, that in case of abelian permutation groups “four
colors suffices.”

Corollary 1 An abelian group A is the automorphism group of a colored graph if and
only if it is the automorphism group of a complete graph whose edges are colored in
at most 4 colors.

We note that, by the remark following Lemma 3, the bound 4 above is sharp. In fact,
using, e.g., the construction of the direct sum with the summand Z3

2 one may obtain
an infinite family of abelian permutation groups requiring 4 colors to be representable
by a colored graph.

6 Characterization of 2-closed abelian permutation groups

We show that the notions “2-closed” and “2-orbit-closed” coincide. The result is an
essential characterization, since although checking 2-orbit-closure is not easy, check-
ing 2-closure is computationally much harder. It is enough to note that the most
elementary definition of 2-closure [5] involves orbitals of a permutation group (and
hence, the induced action on the pairs of points), while the definition of 2-orbit-closure
refers merely to the basic notion of orbit.

Theorem 3 Let A be an abelian permutation group. Then A is the automorphism
group of a colored directed graph if and only if A is 2-orbit-closed.

Proof To prove this result we follow the approach in the proof of Theorem 2. In fact,
the proof is simpler because we can start the induction from r = 1 orbits, and there
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Fig. 4 Simple and directed graphs: Aut(�) = (Z2
3)+ and Aut(�) = Z2

3

is no problem of involution and special cases, as in the previous proof. In addition,
we may omit the assumption about nontriviality of A, since the result holds for trivial
groups, as well (in particular, In ∈ DGR(2) can be represented by the directed graph
consisting of one directed path of length n− 1). As the arguments are similar, we give
here only a sketch, referring the reader for details to the previous proof.

The “only if part” is immediate by the remark before Lemma 7. We prove the “if
part” by induction on the number of orbits r of A. If r = 1, A is transitive, and
hence regular, and by the result of Babai [4], every nontrivial regular abelian group
A ∈ DGR(2), except for A = Zn

2 with n = 2, 3, 4, and A = Z2
3. In the first case,

by Lemma 1, Zn
2 ∈ DGR(4) (and again Z3

2 requires 4 colors; here we have x = x−1

and the cases of directed and undirected graphs are the same). In the second case,
Z2
3 ∈ DGR(4) by Lemma 4. In fact, it can be easily seen that Z2

3 ∈ DGR(3) (see the
right-hand side of Fig. 4).

Now, suppose that A has r > 1 orbits, and the result holds for all groups with the
number of orbits less than r .

Consider an arbitrary orbit Xi and the decomposition of A with regard to this orbit,
that is, let A = Ai [A∗

i ] ⊕φ B[B ′], where B is the restriction of A to X \ Xi . Let B̄ be
the 2-orbit closure of B. By Lemma 6, B̄ is abelian, and it has r − 1 orbits.

It follows, by the induction hypothesis, that B̄ ∈ DGR(4), and there exists a 4-
colored digraph�2 on the set of vertices X \Xi representing B̄. We construct a digraph
� on X representing A. Let �1 be a 4-colored digraph on Xi representing Ai (which
exists by the proof for the case r = 1). We may assume that both the graphs �1 and
�2 are connected (as undirected graphs) in colors 2 and 3 (this may be achieved by
suitable change of colors). For each orbit X j of B̄, we put the edges colored 1 from Xi

to X j joining corresponding cosets in parallel manner as in the proof of Lemma 10.
We assume that these edges are directed from Xi to X j . The remaining edges joining
the vertices of Xi and X \ Xi are colored 0.

Then, obviously, Aut(�) ⊇ A, Moreover, since �1 and �2 are connected in colors
2 and 3, and edges in color 1 between �1 and �2 are directed from �1 to �2, each
automorphism of � preserves the orbit Xi . Thus, Aut(�) ⊆ Ai ⊕ B̄.
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The construction ensures that for any two orbits X j and Xk of A, the restriction of
Aut(�) to X j ∪ Xk is the same as the restriction of A to X j ∪ Xk . Hence, by Lemma 7,
Aut(�) = A, as required. This completes the proof. �

Again, what we have proved in addition is that “four colors suffices,” and that the
bound 4 below is sharp.

Corollary 2 An abelian group A is the automorphism group of a colored directed graph
if and only if it is the automorphism group of a complete directed graph (without loops)
whose edges are colored in at most 4 colors.
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