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Abstract
We give some optimal size generating sets for the group generated by shifts and local
permutations on the binary full shift. We show that a single generator, namely the fully
asynchronous application of the elementary cellular automaton 57 (or, by symmetry,
ECA 99), suffices in addition to the shift. In the terminology of logical gates, we have
a single reversible gate whose shifts generate all (finitary) reversible gates on infinitely
many binary-valued wires that lie in a row and cannot (a priori) be rearranged. We
classify pairs of words u, v such that the gate swapping these two words, together with
the shift and the bit flip, generates all local permutations. As a corollary, we obtain
analogous results in the case where the wires are arranged on a cycle, confirming a
conjecture of Macauley-McCammond-Mortveit and Vielhaber.

Keywords Reversible gates · Groups

1 Introduction

In this paper, we study the subgroup G of the self-homeomorphism group of {0, 1}Z
generated by shifts and local permutations that only modify a bounded set of cells
(which can be seen as reversible finitary logical gates) on the set of all bi-infinite
binary sequences, studied previously in [2] under the name OB(2, 1) (as a subgroup
of the larger group RTM(2, 1)).

We prove a result about generators for the group G: In Sect. 7, we characterize
those pairs of words u, v such that the homeomorphism swapping u and v at the
origin, together with the shift and the bit flip, generates all of G. In the process, we
identify some natural subgroups of G in Sect. 5, with constraints related to linearity,
and to (group-)geometric phenomena such as one-sided information flow.
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We say a set of local permutations is a universal gate set if it, together with the
shift, generates G. As an application of the result about word swaps, we prove there
exists a singleton universal gate set by showing that the co-called asynchronous ECA
57 gate generates both a universal word swap and the bit flip. In particular, it follows
that G is 2-generated.

In [7,13], it is asked whether asynchronous ECA 57 is universal in the case when
wires are arrangedon a cycleZ/nZ.We solve this question by showing that universality
on Z implies universality on Z/nZ for all large enough n in Sect. 4. We include copy-
pasteable implementations of standard gates in terms of shifts of asynchronous ECA
57 in the appendices.

We find the group G interesting for several reasons: From the perspective of com-
putation and logical gates, G is precisely the computation you can do with reversible
gates if your infinitely many wires are arranged in a row. It differs from the groupoid
[15] and clone formalisms [3]most concretely in the aspect that themodel has infinitely
many borrowed bits (in the sense of [14]) which arise naturally from the infiniteness
of Z. Reordering of the wires is not built into the formalism, which strengthens the
notion of universality.

The group G seems like a natural simplest group that can be used for the geometric
group theory of reversible logic gates.

The author finds G and its variants useful in the context of symbolic dynamics, and
has applied G and its local embeddings (in the LEF sense [5]) in several works on
automorphism groups, e.g., such groups appear in disguise in [9,10].

2 Definitions

We assume 0 ∈ N and in f ◦ g = f g, g is applied first. All intervals [a, b], as well
as half-open and open ones, are interpreted inside Z. Words are 0-indexed by default.
For two words u, v ∈ {0, 1}n write D(u, v) ⊂ [0, n − 1] for the set of coordinates
where u and v differ, and d(u, v) ∈ {0, 1}n for the characteristic function of D(u, v).

We consider X = {0, 1}Z with the product topology arising from the discrete
topology of {0, 1}. The shift is σ : X → X defined by σ(x)i = xi+1. A power σ n is
also informally referred to as a shift, which should not cause confusion. For n ≥ 1,
the n-periodic points are the points x ∈ X satisfying σ n(x) = x . The set of n-periodic
points is denoted by Xn . The shifts of a function are its conjugates by shifts σ n .

There is an obvious way to see X as a vector space over the two-element field, and
addition and terms such as linear and affine for maps on X are interpreted with respect
to this structure. The subset X0 = {x ∈ X | ∃R : ∀|i | ≥ R : xi = 0} is a subspace.
An affine translation refers to a function t : X → X of the form x 	→ x + w, with
w ∈ X0.

We assume basic knowledge of group theory, such as split extensions and semidirect
products, see any standard reference [8]. A locally finite group is one whose finitely
generated subgroups are finite. We use the 〈F1, ..., Fn〉 notation to denote the smallest
subgroup of a group G (deduced from the context) containing the elements equal to
Fi (when Fi ∈ G) or found in Fi (when Fi is a set).
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3 G

Definition 1 The group G is defined as the subgroup of the self-homeomorphism
group of X generated by the shift σ and homeomorphisms f : X → X satisfying

∃r : ∀i : (|i | ≥ r �⇒ f (x)i = xi ). (1)

We make some basic observations about the structure of this group G (see also
[2,9]).

We call self-homeomorphisms f of X satisfying Eq. 1 local permutations, inert1

elements of G or gates. A set of gates F is universal if G = 〈F, σ 〉.
For an inert element f ∈ G, the finite set of coordinates that may change under the

application of f is called its support. Of more importance than the support and the
number r is the R in the following lemma, which states that if f is inert in G, then
not only does it change only finitely many symbols in a given point of X , but it also
looks at only finitely many coordinates.

Lemma 1 An element f ∈ G is inert if and only if there exists a strong radius R and
a local rule f̂ : {0, 1}[−R,R] → {0, 1}[−R,R] such that f (x)i = xi for all |i | > R, and
f (x)i = f̂ (x[−R,R])i for i ∈ [−R, R].
Proof Clearly, any R and f̂ define an inert element of G.

Suppose then f ∈ G is inert, and let r be as in the definition. Since f is continuous,
there exists R such that f (x)[−r ,r ] is determined by x[−R,R], where we may assume
R ≥ r . Since f (x)i = xi when |i | ∈ [−R,−r − 1] ∪ [r + 1, R], in fact f (x)[−R,R] is
also determined by x[−R,R]. So we can pick f̂ (w) = f (xw)[−R,R] where xw ∈ {0, 1}Z
is any point with xw[−R,R] = w. Since f is a homeomorphism, it is in particular a

bijection, so f̂ is also a bijection. ��
Define the strong support of inert f as the set of coordinates that can be changed

by f , and whose change may affect another coordinate, which is finite by the previous
lemma.

The number R can be arbitrarily larger than r , even if r = 0.

Remark 1 We note that (by easy counterexamples) the inert elements of G are not the
same as self-homeomorphisms of X which have clopen support in the usual sense of
homeomorphisms (where the support of a homeomorphism is the closure of the com-
plement of its set of fixed points). Neither are they the same as self-homeomorphisms
of X which always modify only finitely many coordinates, or ones that always modify
only a bounded number of coordinates. By definition, they are precisely the self-
homeomorphisms of X which always modify a bounded set of coordinates.

Lemma 2 Elements of G can be written in a unique way as σ n ◦ f with f inert. There
is a unique homomorphism α : G → Z satisfying α(σ) = 1. The kernel of α consists
of the inert elements. The group G is (locally finite)-by-Z, more precisely a semidirect
product of Z acting on the locally finite group of inert elements.

1 This word is by analogue with subshift automorphism group terminology [6].
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The inert map g in f = σ n ◦ g is called the inert part of f .

Proof Since the local permutations form a group themselves, and this group is normal-
ized by σ (i.e., conjugation of an inert element by σ gives an inert element), it follows
that every element ofG is of the form σ n ◦ f where f is inert, and clearly n is uniquely
determined, after which f is clearly uniquely determined. Any homomorphism to Z

maps any inert f to 0 (since inert elements are of finite order), so by the normal form,
σ 	→ 1 uniquely determines the homomorphism.

It follows from this that ker α consists of precisely the inert elements, and inert
elements clearly form a locally finite group, since the support of the composition of
two inert element is at most the union of the support of the generators. This gives
G the structure of a (locally finite)-by-Z group, and since the homomorphism α is
split, G is in fact a semidirect product of Z acting on the locally finite group of inert
elements. ��

We end this section with some general discussion.
The inert elements can be naturally considered reversible gates by Lemma 1, as

they perform an operation on finitely many wires of the input independently of the
other wires. From this perspective, the shift should be seen as either a technical tool
or as an internal symmetry of the group—shifts are not necessarily computationally
meaningful, but conjugation by a shift is very meaningful, as it simply means applying
a gate to another contiguous set of wires, and this is precisely what it means to say
that G is a semidirect product of Z acting on the inert elements.

Though we do not do so here, from this point of view of logical gates it would
be natural to see G not just as a group but as a group where the shifts are part of
the structure. A group H with a fixed epimorphism π : H → Z is often called (Z-
)indicable, so one could sensibly call a group with a fixed split epimorphism π : H →
Z strongly Z -indicable, with the understanding that π and the right inverse can be
taken to be part of the structure, if needed. In particular, if the Z-embedding giving
the right inverse is taken part of the structure, then substructures of G always contain
the shifts.

We mention some standard notions in category theory with are related: One can
see a group H with a preferred Z-subgroup as a pair (H , ψ) where ψ : Z → H is
a homomorphism (that is part of the structure). Such pairs form the under category,
also known as the coslice category, Z ↓ Grp. This does not enforce the semidirect
product structure in the sense that the Z picked out by ψ can behave very badly in
other objects of this category, but this does enforce the property that subobjects of G
automatically contain the shifts (note that monomorphisms in Grp are the injections).
Dually, one can see G as an indicable group with a fixed π : G → Z, i.e., an element
of the slice category Grp ↓ Z, but this does not force subobjects of G to contain the
shifts.

4 Gn

Definition 2 For any n ∈ N, write Gn = Alt({0, 1}n).
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The notation is meant to imply that Gn can be seen as a modulo n variant of G. In
this section, we develop an explicit algebraic connection.

For inert f , the strong shift-invariant radius of f is the minimal R among strong
radii of conjugates σm ◦ f ◦ σ−m , and for general f ∈ G, the strong shift-invariant
radius is the strong shift-invariant radius of the inert part. The importance of the strong
shift-invariant radius is the following.

Definition 3 Let f = σm ◦ g ∈ G, with g inert with strong shift-invariant radius R.
Suppose n > 2R + 1. Then, for x ∈ Xn define

f̄n(x) = σm ◦ lim
k→∞

(
k∏

i=−k

σ−in ◦ g ◦ σ in

)
(x)

For w ∈ {0, 1}n define fn(w) = f̄n(...www.www...)[0,n−1].

In particular, σn(aw) = wa for a ∈ {0, 1}, w ∈ {0, 1}n−1.
Since n > 2R + 1, the limit is well-defined as the maps σ−in ◦ g ◦ σ in commute

pairwise (for distinct values of i) and every j ∈ Z is in the support of only finitely
many of them (in fact only one of them). Observe that f̄n commutes with σ n , and thus
preserves the set of n-periodic points. The action of f̄n on the n-periodic points of
{0, 1}Z fully determines the action of fn on {0, 1}n , and vice versa.

Remark 2 For completeness, we give a formula for fn . Let f ∈ G \{id} be inert, let the
strong shift-invariant radius of f be R, and let |m| be minimal such that σm ◦ f ◦σ−m

has strong radius R, and let f̂ : {0, 1}[−R,R] → {0, 1}[−R,R] be the local rule for
σm ◦ f ◦ σ−m . If [m − R,m + R] ≡ [a, b] mod n for some a, b ∈ [0, n − 1], then
define

fn(w) = w[0,a) · f̂ (w[a,b]) · w(b,n−1],

and if [m − R,m + R] ≡ [0, a)∪ (n− 1− b, n− 1] mod n for some a, b ∈ [0, n− 1]
(where possibly a = 0 or b = 0) then define

fn(w) = f̂ (u)[b,2R+1) · w[a,n−1−b] · f̂ (u)[0,b)

where u = w(n−1−b,n−1] · w[0,a). For f = σ k ◦ g with g inert, we have fn = σ k
n ◦ gn

Note that if m, R, f̂ are as above, then f applies its local rule f̂ “at m”, i.e., in the
coordinates [m − R,m + R].
Lemma 3 Let f = σ k ◦ g with g inert with strong shift-invariant radius R. If n >

max(2, 2R + 1), then fn ∈ Gn.

Proof Consider first inert g with strong shift-invariant radius R. Since n > 2R+1, by
the formulas of Remark 2, gn permutes only the contents of some 2R + 1 coordinates
of [0, n − 1], so in fact gn performs 2n−(2R+1) “copies” of the same permutation
depending on the values of the other n − 2R − 1 coordinates, thus it is a composition
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of an even number of permutations with disjoint supports, all having the same parity,
thus gn ∈ Gn .

The shift σn is a permutation of the n coordinates of a given word, so it can be
written as a product of swaps of adjacent coordinates. When n ≥ 3, coordinate swaps
are even by the argument of the above paragraph, and thus σn is even as a composition
of even permutations. Thus for f = σ k ◦ g with g inert, we have fn = σ k

n ◦ gn
∈ Gn . ��

The proof shows that σn ∈ Gn whenever n ≥ 3. We mention a combinatorial
consequence of this: The parity of a permutation on a set X is the parity of |X | − c
where c is the number of cycles in the cycle decomposition. Thus, the sign of σn is
2n − pn where pn is the number of orbits of words of length n under the cyclic shift.
The sequence pn is well-known, it is sequence A000031 in the OEIS, and a standard
formula for it is pn = 1

n

∑
d|n φ(d)2n/d (where φ is the Euler totient function). We

are stating precisely that pn is even for all n ≥ 3. Since p1 = 2 and p2 = 3, p2 is the
only odd value in the sequence p1, p2, p3, ....

Lemma 4 Let g be inert with strong shift-invariant radius R, and suppose n >

max(2, 2R + 1). Then, gn ◦ σm
n = σm

n ◦ (σ−m ◦ g ◦ σm)n for all m ∈ Z.

Proof We prove instead the equivalent equality ḡn ◦ σ̄m
n = σ̄m

n ◦ (σ−m ◦ g ◦ σm)n for
the actions on n-periodic points. Letting x ∈ Xn , we have

ḡn ◦ σ̄m
n (x) = lim

k→∞

(
k∏

i=−k

σ−in ◦ g ◦ σ in

)
(σm(x))

= σm ◦ lim
k→∞

(
k∏

i=−k

σ−in ◦ (σ−m ◦ g ◦ σm) ◦ σ in

)
(x)

= σ̄m
n ◦ (σ−m ◦ g ◦ σm)n(x)

where σm waddles over the finite expressions by using abelianity of Z and by conju-
gating gs, and the result stays correct in the limit since σ is continuous. ��

The map f 	→ fn does not give a homomorphism from G to Gn (it is not even
well-defined for all elements of G), and even if we induce a mapping from G to Gn

using a finite generating set ofG, it will typically not give a homomorphism (the group
G is not residually finite).

As long as information is “not passed around the cycle,” we see the same relations
in both G and Gn , through the mapping constructed above. The following lemma
states a weak version of this fact:

Lemma 5 Let f 1, ..., f k ∈ G with f i = σ�i ◦ gi , where gi is inert. Let gi have strong
shift-invariant radius Ri and let |mi | be minimal such that σ−mi ◦ gi ◦ σmi has strong
radius Ri . Let t = ∑

j |� j |. Suppose that for some h, [mi − t − Ri ,mi + t + Ri ] ⊂
[h, h + n − 1] for all i . Then, ( f 1 ◦ · · · ◦ f k)n = f 1n ◦ · · · ◦ f kn .
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Proof First, we reduce to the inert case.
Observe that by iterating Lemma 4 the RHS of the equality is

f 1n ◦ · · · ◦ f kn = σ�1
n ◦ g1n ◦ · · · ◦ σ�k

n ◦ gkn = σ

∑
j � j

n ◦ h1n ◦ · · · ◦ hkn

where hi = σ−ti ◦gi ◦σ ti for some |ti | ≤ t (where ti is some partial sum). In particular,
the hi are inert with strong shift-invariant radius Ri . The LHS on the other hand is

( f 1 ◦ · · · ◦ f k)n = (σ
∑

j � j ◦ h1 ◦ · · · ◦ hk)n = σ

∑
j � j

n ◦ (h1 ◦ · · · ◦ hk)n

by definition.
Wemay thus assume �i = 0 for all i , by replacing eachmi withmi + ti (after which

the corresponding assumption [mi − Ri ,mi + Ri ] ⊂ [h, h + n − 1] still holds), and
by cancelling the common part σ

∑
j � j

n . We have then reduced the problem to the case
where the f i = gi = hi are inert.

Let us now prove the equivalent equality

( f 1 ◦ · · · ◦ f k)n = f̄ 1n ◦ · · · ◦ f̄ km .

on Xn . For this, observe that the action of the maps f i on the interval [h, h + n − 1]
is precisely the same as the action of the maps f̄ in , and the action of the f̄ in on any
contiguous sequence of n integers determines the action. Thus, the map f i 	→ f̄ in
even induces a homomorphism from 〈 f 1, ..., f k〉 to 〈 f̄ 1n , ..., f̄ kn 〉, in particular we
have ( f 1 ◦ · · · ◦ f k)n = f 1n ◦ · · · ◦ f kn as desired. ��

A finitely generated group H with word norm | · |H with respect to some finite
generating set is LEF (locally embeddable in finite groups) if for all n there exists an
injective map φ : H → F where F is a finite group, such that for all h, h′ ∈ H with
|h|H , |h′|H ≤ n, we have φ(h)φ(h′) = φ(hh′). See [5]. The above lemma shows that
G is LEF.

5 How not to generateG (subgroups)

We now define some important self-homeomorphisms of X (not all in G) and make
simple observations about subgroups they generate. For the purpose of universality, the
importance of understanding subgroups is of course that if a set F ⊂ G is contained
in a proper subgroup F ⊂ H < G, then also 〈F〉 ≤ H < G, preventing F from
generating G.

The reversal R : X → X defined by R(x)i = x−i is not an element of G, but
normalizesG inside the self-homeomorphism group of X (soG has index 2 in 〈R,G〉).
The swap is s ∈ G defined by s(x)0 = x1, s(x)1 = x0,∀i /∈ {0, 1} : s(x)i = xi .
The k-CNOT is ck ∈ G defined by ck(x)0 = 1 − x0 ⇐⇒ x[1,k] = 1k and
∀i �= 0 : ck(x)i = i . The map c0 inverts the symbol at the origin, and is usually called
the NOT gate in the theory of logical gates. We also refer to it as the flip. The map c1
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is linear, and is called the CNOT or controlled NOT. It is useful to keep in mind the
identity

c1 ◦ (σ−1 ◦ (R ◦ c1 ◦ R) ◦ σ) ◦ c1 = s (2)

which states the swap in terms of CNOTs. The gate c2 is called the Toffoli gate.
We make some observations about subgroups generated by these elements. Write

Sym<∞(Z) for the group of finite-support permutations on Z.

Lemma 6

〈s, σ 〉 = { f ∈ G | ∃π ∈ Sym<∞(Z), n ∈ Z : ∀i, x : f (x)i = xπ(i)+n}
〈c0, σ 〉 = { f ∈ G | ∃c ∈ X0, n ∈ Z : ∀x : f (x) = σ n(x) + c} ∼= Z2 � Z
〈c1, Rc1R, σ 〉 = { f ∈ G | ∀x, y : f (x + y) = f (x) + f (y)}
〈c0, c1, Rc1R, σ 〉 = { f ∈ G | ∃c ∈ X0 : ∀x, y : f (x + y) = f (x) + f (y) + c}

Proof (Proof sketch) In each case, it is straightforward to show that the generators
are contained in the RHS, and that the RHS is a group. To see that all of the group is
generated, for the first equality we need that every permutation can be decomposed
into swaps. The second is clear, and this is a standard realization of the lamplighter
group Z2 � Z. The third follows from (2) and the fact elementary matrices generate
matrix groups. The RHS of the fourth equality is equivalent to f being the sum of a
linear map and a constant in X0, and the subgroup 〈c0, σ 〉 allows addition of arbitrary
constants. ��

The first group is a standard example of a finitely generated LEF group that is not
residually finite [5] (G itself is also such an example).

The following subgroups are important in the classification of universal word swap
gates, and we include a more complete treatment.

Definition 4 If V ≤ X0 is a shift-invariant vector space, let

GV = { f ∈ G | ∃n ∈ Z, v ∈ X0 : ∀x : f (x) ∈ σ n(x) + v + V }.

Define

GR = {σ n ◦ f | f ∈ ker(α), n ∈ Z, ∃(gi )i∈Z : ∀x ∈ X : f (x)i = gi (x(−∞,i]).

for some functions gi : {0, 1}(−∞,i] → {0, 1}. Define GL = R ◦ GR ◦ R

Informally, GV is the subgroup of G for which the cosets of V are a system of
blocks of imprimitivity, and these cosets are permuted by an affine translation. The
interpretation of GR is that information can only travel to the right, though literally
this only holds in the inert part.
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Example 1 For all k, we have ck ∈ GL and Rck R ∈ GR . We have c0 ∈ GV for any V ,
and if π is the permutation (00 11)(01)(10) of {0, 1}2, in cycle notation, then the map
f (x) = x(−∞,0).π(x[0,1])x[2,∞) is in GV where V = {x ∈ X0 | ∑

i xi ≡ 0 mod 2}.
This map f ∈ GV (which is f00,11 in the notation of Sect. 7), is not linear, but

is affine. The map that performs the permutation (000 111) is in GV ′ for a proper
subspace V ′ < X0, but is not even affine. ◦
Lemma 7 Let V < X0 be a shift-invariant proper subspace. Then, GV ,GL ,GR are
proper subgroups of G.

Proof First, we show GV is a subgroup. Let us call the vector v in the definition
the offset and n the shift. Let f ∈ GV with offset v and shift n. Then for any x ,
f (x+V ) ⊂ σ n(x)+σ n(V )+v+V = σ n(x)+v+V by shift-invariance of V . Since
f is a homeomorphism, cosets of V partition X , and σ n(x) + v = σ n(y) + v ⇐⇒
x − y ∈ V , we have f (x + V ) = σ n(x) + v + V . Thus,

f (σ−n(x + v) + V ) = σ n(σ−n(x + v)) + v + V = x + V

for any x , thus f −1(x + V ) = σ−n(x) + σ−n(v) + V , thus f −1(x) ∈ σ−n(x) +
σ−n(v) + V for all x , so f −1 ∈ GV with offset σ−n(v) and shift −n.

Suppose then f , g ∈ GV , and let the offsets be u, v, and shifts m, n, respectively.
Then, f ◦ g(x) ∈ f (σ n(x) + v + V ) ∈ σm+n(x) + σm(v) + u + V , so f ◦ g admits
offset σm(v) + u and shift m + n, thus f ◦ g ∈ GV .

To see that GV is a proper subgroup, observe that since V is shift-invariant and
V �= X0, V does not contain the vector ω0.10ω.We in fact have c1 /∈ GV for the CNOT
c1: since c1(0Z) = 0Z and c1 is inert, if c1 ∈ GV then necessarily the offset v in the
definition would satisfy v ∈ V . But then, f (ω0.010ω) = ω0.110ω ∈ ω0.010ω + V
implies ω0.10ω ∈ V , a contradiction.

Next, we show GR is a subgroup. Let us call the sequence (gi )i∈Z appearing in the
definition the rule sequence. Let σ n ◦ f ∈ GR with rule sequence (gi )i∈Z. Then, it
has inverse σ−n ◦ (σ n ◦ f −1 ◦ σ−n), and we only need to find a rule sequence for
σ n ◦ f −1 ◦ σ−n .

First, we show that f −1 has a rule sequence. Observe that necessarily gi (y) = yi
for all but finitelymany i (since f is inert). Observe then that we have gi (ya) �= gi (yb)
for all i ∈ Z and y ∈ {0, 1}(−∞,i−1], a �= b. There are several ways to see this: it
follows from the fact that f m = id for some m (since f is inert), or from a direct
counting argument using the fact gi (y) = yi for large |i |.

Now, we can build, by induction, a sequence of functions h′
i : {0, 1}(−∞,i] →

{0, 1}(−∞,i] such that h′
i (gi (y)) = yi for all y ∈ {0, 1}(−∞,i], and the functions agree

in the sense h′
i+1(ya)(−∞,i] = h′

i (y) for y ∈ {0, 1}(−∞,i], a ∈ {0, 1}: Pick hi = id
for all small enough i , and h′

i+1(ya) = h′
i (y)b where b is the unique letter such that

gi+1(h′
i (y)b) = a. Now, hi (y) = h′

i (y)i defines a rule sequence for f −1.
Now,

σ n f −1σ−n(x)i = f −1σ−n(x)i+n = hi+n(σ
−n(x)(−∞,i+n]) = hi+n(x(−∞,i]).
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where we shift the domain of hi+n to hi+n : {0, 1}(−∞,i] → {0, 1} with the obvious
interpretation. Thus, (hi+n)i∈Z is a rule sequence for σ n ◦ f −1 ◦ σ−n .

Suppose then that σ n ◦ f , σm ◦ f ′ ∈ GV with f , f ′ inert. The above paragraph
shows that the set of inert elements having a rule sequence is closed under conjugation
by the shift, so by σm f ′σ n f = σm+n(σ−n f ′σ n) f , we only need to show that if f ′
and f have rule sequences, then so does f ′ ◦ f . This follows from

f ′ f (x)i = g′
i ( f (x)(−∞,i]) = g′

i (y)

where y j = g j (x(−∞, j]) for j ≤ i . This expression only looks at the values of x in
x(−∞,i], thus defines a rule sequence.

To see that GR is a proper subgroup, observe that the swap s /∈ GR .
The proof for GL is symmetric. ��

6 How to generateG andGn

The following is essentially folklore in the theory of reversible circuits.

Lemma 8 Let n ≥ 4. Letting

S = {(σ−m ◦ s ◦ σm)n | m ∈ [0, n − 2]},

we have Gn = 〈S, c0n, c
2
n〉. In particular,

Gn = 〈sn, c0n, c2n, σn〉.

Proof The maximal minimal strong shift-invariant radius among gates in S ∪ {c0, c2}
is 1 (for c2), so the expressions are well-defined and we have S ∪ {c0n, c2n} ⊂ Gn by
Lemma 3.

It is known that every even permutation on {0, 1}n can be written as a finite compo-
sition of applications of the NOT gate and Toffoli gate when we are allowed to apply
these gates to arbitrary 3-tuples of wires (this is the folklore part, see e.g., [4,14]). The
swaps in S allow arbitrary permutations of the coordinates, so we can conjugate any
3-tuple of coordinates to the support {0, 1, 2} of the Toffoli gate c2n , and similarly we
can apply the NOT gate in any coordinate.

For the second claim, observe that the gates in S are conjugate to sn by powers of
σn . ��
Lemma 9

G = 〈c2, s, c0, σ 〉 = 〈c2, c1, Rc1R, c0, σ 〉

Proof It is enough to show that the local permutations are generated, and by conjugat-
ing with powers of σ (which is in both claimed generating sets), it is enough to show
that those with strong support contained in [0, n − 1] are generated, for arbitrarily
large n.
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By the previous lemma, the leftmost generating set can perform every even permu-
tation of the word on the interval [0, n − 1] for n ≥ 4: none of the generators of Gn

in the first generating set in the Lemma 8 send information over the borders of the
interval [0, n − 1], so the action of the subgroup generated by

{σ−m ◦ s ◦ σm | m ∈ [0, n − 2]} ∪ {c0, c2}

precisely simulates the action of Gn of the corresponding generators in the lemma.
As in Lemma 3, we see that every permutation of {0, 1}n is even when seen as a

permutation of {0, 1}n+1 where the rightmost bit is never changed or looked at (i.e.,
it is a borrowed bit in the terminology of [14]), so the leftmost generating set indeed
generates all of G.

The second equality follows from (2). ��
In logical gates contexts where wire swaps are available for free, a commonly used

gate set is {c0, c1, c2}, known as the NCT library (NOT, Controlled NOT, Toffoli gate),
and corresponds to the rightmost generating set c2, c1, Rc1R, c0, σ above (though we
need two versions of c1). The gate c1 is usually included as it is cheaper than c2 in
physical implementations, but for the purpose of theory, it can simply be expressed
in terms of c0 and c2, and thus need not be included when s is included, giving the
leftmost generating set c2, s, c0, σ .

When the wires are organized into a finite cycle, any universal set of gates for G
gives one for the alternating group Gn .

Theorem 1 Let F ⊂ G be any finite generating set. Then for large enough n, { fn | f ∈
F} generates Gn.

Proof It is enough to show that { fn | f ∈ F} generates some generating set of Gn .
By Lemma 8, it is enough to generate all of S and the gates c0n, c

2
n . Thus, it is enough

to generate the standard generating set {sn, c0n, c2n, σn}.
The gate s can be written as a finite composition of elements in F , i.e., s = f 1 ◦

· · · ◦ f k for some f 1, ..., f k ∈ F . By Lemma 5, for n large enough, we then have
sn = f 1n ◦ · · · ◦ f kn . The same argument applies to the gates in {c0, c2, σ }, so for large
enough n, we indeed have

{sn, c0n, c2n, σn} ⊂ 〈 fn | f ∈ F〉,

concluding the proof. ��
The crucial point in the proof was that Gn has essentially a single finite generating

set that does not depend on n, so it is enough to write the formulas generating this
generating set, and these formulas then work for large n. The converse of Theorem 1
is not true, i.e., the fact { fn | f ∈ F} and the shift together generate Gn for all large
enough n does not imply that F and σ generate G:

Proposition 1 For all n ≥ 4, Gn = 〈c0n, c1n, c2n〉.
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Proof Write Ci = σ−i
n ◦ c1n ◦ σ i

n , and observe that

c1 ◦ (σ−1 ◦ (R ◦ c1 ◦ R) ◦ σ) ◦ c1

= Cn−2 ◦ · · · ◦ C1 ◦ · · · ◦ Cn−1 ◦ · · · ◦ C1 ◦ · · · ◦ Cn−1.

By (2), we obtain the generating set in Lemma 8. ��
Note that {c0, c1, c2} ⊂ GL , so these gates and the shift do not generate G, we

are only able to generate the standard generating set for all n by sending information
around the cycle.

7 GeneratingG by word-swapping

For words u, v ∈ {0, 1}n , write fu,v for the map fu,v(x)[0,n−1] = v if x[0,n−1] = u,
fu,v(x)[0,n−1] = u if x[0,n−1] = v, fu,v(x)[0,n−1] = x[0,n−1] otherwise, and
fu,v(x)i = xi for i /∈ [0, n − 1]. For example, the Toffoli gate is c2 = f011,111.
We give a classification of the pairs of words u, v such that fu,v is a universal gate

together with the shift and the flip, i.e., 〈 fu,v, σ, c0〉 = G. The characterization is that
the words differ in exactly one place, which is not at the border.

Theorem 2 Let u′, v′ ∈ {0, 1}n be distinct words and let G ′ = 〈c0, fu′,v′ , σ 〉. Then,
G = G ′ if and only if D(u′, v′) ∈ 0∗0100∗.

Proof For sufficiency, suppose the RHS holds. Since c0, σ ∈ G ′, we can conjugate
u′ to u = 0n and v′ to v = D(u′, v′). By applying the gate f0n ,v , flipping the i th
bit on the tape, applying the gate again, and again flipping the i th bit, we effectively
eliminate one of the bits that f0n ,v looks at. In symbols,

σc0 f0n ,0vc
0 f0n ,0vσ

−1 = f0n−1,v

and

σ−nc0σ n f0n ,v0σ
−nc0σ n f0n ,v0 = f0n−1,v.

By the assumption, v contains the subwords 01 and 10, so c1 and Rc1R are in G ′
by applying the formulas of the previous paragraph, eliminating all but the subword
01 (resp. 10) of v. Then by (2), also s ∈ G ′.

Now, use the same trick to eliminate all but the subword 010 from v to obtain
f000,010 ∈ G ′. This can be conjugated to the Toffoli gate c2 by applying suitable shifts
of the swap and the flip. It then follows from Lemma 9 that G ′ = G.

As for necessity, if D(u′, v′) ∈ 0∗, then fu′,v′ is the trivial gate. If D(u′, v′) ∈ 0∗1,
then {σ, c0, fu′,v′ } ⊂ GR . If D(u′, v′) ∈ 10∗, then {σ, c0, fu′,v′ } ⊂ GL .

If D(u′, v′) containsmore than one 1, then considerw = ω0.D(u′, v′)0ω as a vector
in X0. Together with its shifts, it generates a shift-invariant vector space V ≤ X0. It
does not generate all of X0: one way to see this is that the support of a sum of distinct
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shifts of w has cardinality at least 2, since the leftmost coordinate of the leftmost
summand and the rightmost coordinate of the rightmost summand are not cancelled.
It is straightforward to show that {c0, fu′,v′ , σ } ⊂ GV . ��

In particular, the previous theorem shows that c0, c2, σ do not generate G (as we
also observed directly after Proposition 1), since the Toffoli gate f011,111 satisfies
D(011, 111) = 100 /∈ 0∗0100∗.

One cannot omit c0 from the theorem, sincewe can never haveG = 〈 fu,v, σ 〉 for the
simple reason that either 0Z or 1Z is a fixed point for both generators when D(u, v) ∈
0∗0100∗, and when D(u, v) /∈ 0∗0100∗, even { fu,v, c0, σ } does not generate G by the
theorem.

8 Asynchronous application of elementary CA

We now exhibit a very simple inert element that generates G together with the shift,
i.e., a singleton universal gate set. This is an optimal way to generate G in several
ways: we need only one gate, which only modifies one cell at a time, and which has
strong radius r = 1. This radius is optimal since all permutations of two or fewer bits
are affine.

We recall theWolframnumber [12] of an elementary cellular automaton. Enumerate
words {0, 1}3 in reverse lexicographic order asw0 = 111, w1 = 110, w2 = 101, .... To
each b ∈ {0, 1}8, we associate a self-homeomorphism eb of X defined by eb(x)0 = b j

where w j = x[−1,1], and eb(x)i = xi for i �= 0. This number b is traditionally written
in decimal to obtain the Wolfram number. We show that the singleton universal gate
sets among the en are precisely e57 = e001110012 and e99 = e011000112 .

Usually, a cellular automaton applies the local rule to all cells of Z at once. The
definition here is the definition of (fully) asynchronous application of the cellular
automaton, as studied in [7,13].

The map e57 can be described as follows: e57(x)0 = 1 − x0 unless x−1 = 0 and
x1 = 1, and no other cell is changed. Thus, e57 = c0 ◦ σ ◦ f001,011 ◦ σ−1. The map
e99 is its mirror image.

Theorem 3 The function en is a universal gate in G if and only if n ∈ {57, 99}.
In particular, G = 〈e57, σ 〉 = 〈e99, σ 〉 is 2-generated.

Proof Consider general en, n ∈ {0, 1, ..., 255}. For en to be in G, the binary represen-
tation of n must be of the form

n = (ab(1 − a)(1 − b)cd(1 − c)(1 − d))2.

If d = 1, then 0Z is fixed, so we must have d = 0. Similarly we must have a = 0, so for
universality we must have n = (0b1(1 − b)c0(1 − c)1)2, and the remaining choices
are among 00110011, 00111001, 01100011, 01101001. These are e51, e57, e99, e105,
respectively. We have e51 = c0, so it is not a singleton universal gate set by Lemma 6.
The gate e105 sums the bits at x−1, x1 to the bit at x0, and then flips the value at x0.
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This gate is thus affine, thus cannot be universal. We are left with only the choices e57

and e99.
Let us show that e57 is universal, i.e., 〈e57, σ 〉 = G. By Theorem 2, it is enough to

show that e57 and σ generate c0, as then

e57 = c0 ◦ σ ◦ f001,011 ◦ σ−1 �⇒ f001,011 = σ−1c0e57σ

and Theorem 2 shows that G is generated by {c0, f001,011, σ }.
Writing a = σ ◦ e57 ◦ σ−1, b = e57, c = σ−1 ◦ e57 ◦ σ and omitting ◦ from the

notation, it is easy to verify (for example by computer) that

c0 = abcabcbababacbabababcbcabacbabcbcbcbcabcbcbabacbcb.

Python code for checking the above identity is included, see Appendix 3.
We have e99 = Re57R, so e99 is also universal since R〈σ 〉R = 〈σ 〉 and RGR = G.

��
Translating the proof to concrete expressions for the standard gates leads to rather

long compositions of shifts of e57. A straight-line (context-free) grammar for gener-
ating such expressions is given in Appendix 1, and we provide the strings themselves
in Appendix 2.

Note that though one gate can be universal, one element of G cannot generate it,
since G is not abelian, thus not cyclic.

Theminimal number 3 of shift-conjugates that needed to be consideredwas checked
by GAP, and the expression itself was found by a naive Python search, by computing
the ball of radius 25 and finding g, h such that gh is the flip (according to the author’s
program, 49 generators do not suffice).

By Theorem 1, this also solves Conjecture 5.10 in [7], also asked in [13].

Corollary 1 For all n ≥ 4, Gn = 〈e57n , σn〉 = 〈e99n , σn〉.
Proof This is known for ring sizes up to 8 [7] (and checked up to 10 in [13]). Theorem 1
(more precisely its proof) kicks in at ring size 5. ��

As stated, the concrete implementations we give in the appendix work starting only
from n = 8 (as, written out, the implementation of the Toffoli gate sees 8 different
coordinates), but actually the formulas happen to work already for n = 4.

9 Questions and future work

We do not know what the general conditions are under which a single gate, together
with the shift, is universal, but this is semidecidable by Lemma 9 and Theorem 3.
More generally, the set of finite sets of gates which are universal for G is a 	0

1 set. We
do not know whether non-universality is semidecidable, and do not know whether the
problem is 	0

1-complete.
Given a finite set of gates F , it is not clear whether it is semidecidable in either

direction whether Fn together with the shift σn generates Gn for all large enough
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n. Without some additional argument, universal gate sets only form a 	0
2 set in this

context.
Note also that e57 is the composition of a word swap and the flip. We do not have a

characterization ofword swapswhose compositionwith the flip is a singleton universal
gate set. A related question is whether a random inert gate in Sym({0, 1}n), together
with the shift, generates G with high probability (as n → ∞).

We asked a related question also in [10], namely whether such a gate could even be
universal as a gate on [0, n− 1], when we are not allowed to apply it over the borders.
We do not know any gates that are universal in this stronger sense; the gate e57 is not
universal in this sense.

We do not know whether G is finitely presented. A presentation for the groupoid
of reversible gates is also not known [11].

In [1] the analog of Post’s lattice for all reversible bit operations is fully described.
Since they allowancilla bits (bits containing someprescribed value, andwhich neednot
return to their initial value in the end), it is not immediately clear that this classification
implies something in our framework. A full description of the lattice of subgroups ofG
containing the shift and the swap would amount to classifying the lattice of reversible
transformations implementable using borrowed bits, in the terminology of [14]; we do
not know if there is a known classification. We have not checked whether the variated
Toffoli gate of [14] is a universal singleton gate set in our sense.

We note that, unlike the lattice of [1] and Post’s lattice, the lattice of subgroups
of G containing the shift (but not necessarily the swap) is uncountable—it is easy to
embed, for example, the infinite direct sum

⊕
n∈N Z2, which has uncountably many

subgroups.
There are obvious generalizations of G which seem interesting. It is a standard

direction of generalization in the theory of reversible gates to change the binary alpha-
bet to a higher-arity one, and sometimes the qualitative properties change, e.g., the
parity of the finitely generated part of the group of reversible gates depends on the
parity of the alphabet [3,4,11]. Here, the fact we have a geometry for the arrangement
of the wires allows us to do much more: we can change the geometry to an arbitrary
group, and instead of just increasing the size of the alphabet, we can replace the set
of legal configurations by a subshift. This leads to interesting issues, which we plan
to study in a follow-up paper.
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Straight-line grammar for the standard generators

We give a context-free grammar, obtained directly from the proof, that describes the
standardgenerators for the swap s, theflip c0, theCNOTs c1, Rc1R, and theToffoli gate
c2, more precisely the grammar generates a single string over the alphabet {1, 2, ..., 6}
whose letters indicate the cell of [0, n] (n ≥ 7) where the e57 gate should be applied.
The grammar generates the standard gates in cell 4 ∈ [0, n] when the start symbol is
varied.

In the grammar we use an extension of the NCT naming scheme: Ni applies c0 at
i (i.e., it applies σ−i ◦ c0 ◦ σ i ), Ci corresponds to σ−i ◦ c1 ◦ σ i and Ti corresponds
to σ−i ◦ c2 ◦ σ i . The swap of cells i and i + 1 is Si , and σ−i ◦ R ◦ c1 ◦ R ◦ σ i is Di .
The terminal symbol i ∈ {1, ..., 6} is interpreted as σ−i ◦ e57 ◦ σ i .

The grammar is G = (V , 	, R, S′), where the start symbol is the element of
{N3,C3, T3, D3, S3} we want to generate,

V = {N3,C3, T3, D3, S3} ∪ {N2, N4, N5, D4, Ē3, Ē4},
	 = {1, 2, 3, 4, 5, 6},

and R contains the following rewrite rules:

T3 → S3N3 Ē4N3S3
S3 → C3D4C3

C3 → Ē3N2 Ē3N2

D3 → N2 Ē3N4 Ē3N2N4

D4 → N3 Ē4N5 Ē4N3N5

Ē3 → N33

Ē4 → N44

N2 → 12312321212132121212323121321232323231232321213232

N3 → 23423432323243232323434232432343434342343432324343

N4 → 34534543434354343434545343543454545453454543435454

N5 → 45645654545465454545656454654565656564565654546565

The standard gates

We list the strings generated by the straight-line grammar from Sect. 1 from start
symbols N3,C3, T3, D3, S3, i.e., implementations of standard gates as shifts of e57.

N3 → 23423432323243232323434232432343434342343432324343
C3 → 123123212121321212123231213212323232312323212132323234
234323232432323234342324323434343423434323243431231232
121213212121232312132123232323123232121323232342343232
3243232323434232432343434342343432324343
T3 → 12312321212132121212323121321232323231232321213232323423
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432323243232323434232432343434342343432324343123123212121
321212123231213212323232312323212132323234234323232432323
234342324323434343423434323243434564565454546545454565645
465456565656456565454656523423432323243232323434232432343
434342343432324343434534543434354343434545343543454545453
454543435454456456545454654545456564546545656565645656545
465654345345434343543434345453435434545454534545434354542
3423432323243232323434232432343434342343432324343123123212
1213212121232312132123232323123232121323232342343232324323
2323434232432343434342343432324343123123212121321212123231
2132123232323123232121323232342343232324323232343423243234
3434342343432324343234234323232432323234342324323434343423
4343232434343453454343435434343454534354345454545345454343
5454234234323232432323234342324323434343423434323243431231
2321212132121212323121321232323231232321213232323423432323
2432323234342324323434343423434323243431231232121213212121
2323121321232323231232321213232323423432323243232323434232
4323434343423434323243434564565454546545454565645465456565
6564565654546565234234323232432323234342324323434343423434
3232434343453454343435434343454534354345454545345454343545
4456456545454654545456564546545656565645656545465654345345
4343435434343454534354345454545345454343545423423432323243
2323234342324323434343423434323243431231232121213212121232
3121321232323231232321213232323423432323243232323434232432
3434343423434323243431231232121213212121232312132123232323
1232321213232323423432323243232323434232432343434342343432
324343
D3 → 3453454343435434343454534354345454545345454343545412312321
2121321212123231213212323232312323212132323234234323232432
3232343423243234343434234343232434334534543434354343434545
3435434545454534545434354543234234323232432323234342324323
4343434234343232434312312321212132121212323121321232323231
232321213232
S3 → 1231232121213212121232312132123232323123232121323232342343
2323243232323434232432343434342343432324343123123212121321
2121232312132123232323123232121323232342343232324323232343
4232432343434342343432324343456456545454654545456564546545
6565656456565454656523423432323243232323434232432343434342
3434323243434345345434343543434345453435434545454534545434
3545445645654545465454545656454654565656564565654546565434
5345434343543434345453435434545454534545434354542342343232
3243232323434232432343434342343432324343123123212121321212
1232312132123232323123232121323232342343232324323232343423
2432343434342343432324343123123212121321212123231213212323
2323123232121323232342343232324323232343423243234343434234
3432324343
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Checking the identity in Theorem 3

def a( l ) :
i f l [0] == 0 and l [2] == 1:

return l
return [ l [0] , 1−l [1] , l [2] , l [3] , l [4]]

def b( l ) :
i f l [1] == 0 and l [3] == 1:

return l
return [ l [0] , l [1] , 1−l [2] , l [3] , l [4]]

def c( l ) :
i f l [2] == 0 and l [4] == 1:

return l
return [ l [0] , l [1] , l [2] , 1−l [3] , l [4]]

def center_flipped ( l , s ) :
orl = l
for i in s :

i f i == "a" :
l = a( l )

i f i == "b" :
l = b( l )

i f i == "c" :
l = c( l )

center_is_flipped = orl [2] != l [2]
others_are_not = orl [:2] + orl [3:] == l [:2] + l [3:]
return center_is_flipped and others_are_not

def binw(n) :
i f n == 0:

yield []
else :

for i in [0 ,1]:
for b in binw(n−1):

yield [ i ] + b

s = "abcabcbababacbabababcbcabacbabcbcbcbcabcbcbabacbcb"

for l in binw(5):
i f not center_flipped ( l , reversed(s ) ) :

print (" I t is not the fl ip !")
break

else :
print (" I t is the fl ip . ")
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