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Abstract
We consider the following question: If a simplicial complex � has d-homology, then
does the corresponding d-cycle always induce cycles of smaller dimension that are
not boundaries? We provide an answer to this question in a fixed dimension. We use
the breaking of homology to show the subadditivity property for the maximal degrees
of syzygies of monomial ideals in a fixed homological degree.
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1 Introduction

The motivation for this paper is the subadditivity property for the maximal degrees of
syzygies of monomial ideals in polynomial rings. Let I be a homogeneous ideal in
the polynomials ring S = k[x1, . . . , xn] over a field k. Let ta denoted the maximum
value of j such that the graded Betti number βa, j (S/I ) �= 0. The ideal I satisfies the
subadditivity property on the maximal degrees of its syzygies if

ta+b ≤ ta + tb (1)

where a + b is not more than the projective dimension of the ideal.
The inequality in (1) arisesmost naturally in the context of (Castelnuovo–Mumford)

regularity, which, for the ideal I , can be described as the maximum value of ta − a,
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for all positive integers a. It has been shown to fail in general by Avramov, Conca and
Iyengar [2], even if one restricts to Cohen–Macaulay or even Gorenstein settings (see
[22] for examples and for a general survey on the topic). However, many special cases
are known: certain algebraswith codimension≤ 1 (Eisenbud,Huneke andUlrich [11]),
certain classes of Koszul rings (Avramov, Conca and Iyengar [2]), certain homological
degrees for Gorenstein algebras (El Khoury and Srinivasan [12]), among others.

Avramov, Conca and Iyengar [2] conjectured that the subadditivity property holds
for Kozul rings and for all monomial ideals (it is also open for toric ideals [22]). In the
case of monomial ideals, there are special cases for which (1) has been verified: when
a = 1 (Herzog and Srinivasan [19]), when a = 1, 2, 3 and I is generated in degree 2
(Fernández-Ramos and Gimenez [15], Abedelfatah and Nevo [3]), Cohen—Macaulay
ideals generated by monomials of degree 2 when the base field has characteristic 0 [2],
facet ideals of simplicial forests (Faridi [13]), ideals whose Betti diagram has a special
“shape” (Bigdeli and Herzog [5]), several classes of edge ideals of graphs and path
ideals of rooted trees (Jayanthan andKumar [20]), and for awhere the Stanley–Reisner
complex of I has dimension bounded by ta − a (Abedelfatah [1]).

In the case of monomial ideals, the syzygies can be characterized as dimensions
of homology modules of topological objects. This is one of the central themes of
Stanley–Reisner Theory, connecting Commutative Algebra to Discrete Geometry and
Topology. We refer the reader to the books [6,24] for more details on these rich
connections.

By viewing the subadditivity property as a geometric one, the inequality in (1) can
be shown to follow from the following general type of question:

Does a topological object with d-homology break into sub-objects that have
a-homology and b-homology, where a and b are related to d?

This approach was taken by the first author in [13], where the topological objects
were atomic lattices (lcm lattices of monomial ideals); see Question 2.1 and Ques-
tion 2.2 below. In this paper, using Hochster’s formula (Equation (2)), we examine this
problem from the point of view of the Stanley–Reisner complex, and we can provide
a positive answer to the general question above for a fixed value of d. As a result, we
show that subadditivity holds in a fixed homological degree for all monomial ideals.
The last section interprets the square-free results of the paper for general monomial
ideals.

2 Setup

2.1 The subadditivity property

Throughout the paper, let S = k[x1, . . . , xn] be a polynomial ring over a field k. If I
is a graded ideal of S with minimal free resolution

0 → ⊕ j∈NS(− j)βp, j → ⊕ j∈NS(− j)βp−1, j → · · · → ⊕ j∈NS(− j)β1, j → S,
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then for each i and j , the rank βi, j (S/I ) of the free S-modules appearing above are
called the graded Betti numbers of the S-module S/I .

If we let

ta = max{ j : βa, j (S/I ) �= 0},

a question is whether the ta satisfy the subadditivity property: ta+b ≤ ta + tb?
The answer is known to be negative for a general homogeneous ideal [2], and

unknown in the case of monomial ideals. For the case of monomial ideals, there are
special cases that are known [1,3,5,13,15,19].

In the case of monomial ideals, Betti numbers can be interpreted as the homology of
objects in discrete topology: simplicial complexes, order complexes of lattices, etc.;
see, for example, [24] for a survey of this approach. As a result, the subadditivity
question can be viewed as a question of breaking up homology in these objects. This
idea was explored in [13] by the first author, where the subadditivity problem was
solved for facet ideals of simplicial forests using homology of lattices.

By a method called polarization [16] (see Section. 5 for the definition), one can
reduce questions regarding Betti numbers of monomial ideals to the class of square-
free monomial ideals.

If u ⊂ [n] = {1, . . . , n}, then we define

mu = �i∈uxi

to be the square-free monomial with support u.
For our purposes it is useful to consider a finer grading of the Betti numbers by

indexing the Betti numbers with monomials of the polynomial ring S. A multigraded
Betti number of S/I is of the form βi,m(S/I ) where m is a monomial in S and

βi, j (S/I ) =
∑

u⊆[n] and |u|= j

βi,mu (S/I ).

2.2 Simplicial complexes

A simplicial complex � on a set W is a set of subsets of W with the property that if
F ∈ � then for every subset G ⊆ F we have G ∈ �. Every element of � is called a
face, the maximal faces under inclusion are called facets, and a simplicial complex
contained in � is called a subcomplex of �. The set of all v ∈ W such that {v} ∈ � is
called the vertex set of �, and is denoted by V (�). The set of facets of � is denoted
by Facets(�). If Facets(�) = {F1, . . . , Fq}, then we denote � by

� = 〈F1, . . . , Fq〉.

If A ⊂ V (�), then the induced subcomplex �A is defined as

�A = {F ∈ � : F ⊆ A}.
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The Alexander dual �∨ of �, if we set Fc = V (�) \ F , is defined as

�∨ = {F ⊆ V (�) : Fc /∈ �} = {V (�) \ F : F /∈ �}.

The link of a face F of � is

lk �(F) = {G ∈ � : F ∩ G = ∅ and F ∪ G ∈ �}.

If I is a square-free monomial ideal in S, it corresponds uniquely to a simplicial
complex

N (I ) = {u ⊂ [n] : mu /∈ I }

called the Stanley–Reisner complex of I . Conversely, if � is a simplicial complex
whose vertices are labelled with x1, . . . , xn , then one can associate to it its unique
Stanley–Reisner ideal

N (�) = {mu : u ⊂ [n] and u /∈ �}.

The uniqueness of the Stanley–Reisner correspondence implies that

N (�) = I ⇐⇒ N (I ) = �.

2.3 The LCM lattice

A lattice is a partially ordered set where every two elements have a greatest lower
bound called their meet and a lowest upper bound called their join. A bounded lattice
has an upper and a lower bound denoted by 1̂ and 0̂, respectively.

If L is a lattice with r elements, then the order complex of L is the simplicial
complex on r vertices, where the elements of each chain in L form a face.

If I is a monomial ideal, then the lcm lattice of I , denoted by LCM(I ), is a bounded
lattice ordered by divisibility, whose elements are the generators of I and their least
common multiples, and the meet of two elements is their least common multiple.

Two elements of a lattice are called complements if their join is 1̂ and their meet is
0̂. If the lattice is LCM(I ), then it was shown in [13] that two monomials in LCM(I )
are complements if their gcd is not in I and their lcm is the lcm of all the generators
of I .

Gasharov, Peeva andWelker [17,24] showed that multigraded Betti numbers of S/I
can be calculated from the homology of (the order complex of) the lattice LCM(I ):
Ifm is a monomial in L = LCM(I ), then

βi,m(S/I ) = dimk H̃i−2 ((1,m)L ; k)

where (1,m)L refers to the subcomplex of the order complex consisting of all non-
trivial monomials in L strictly dividing m.
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On the other hand, in a 1977 paper, Baclawski [4] showed that if L is a finite lattice
whose proper part has nonzero homology, then every element of L has a complement.

The following question was raised in [13] as a potential way to answer the subad-
ditivity question.

Question 2.1 If I is a square-free monomial ideal in variables x1, . . . , xn , and
βi,n(S/I ) �= 0, a, b > 0 and i = a + b, are there complementsm andm′ in LCM(I )
with βa,m(S/I ) �= 0 and βb,m′(S/I ) �= 0?

Considering that it is enough to study the “top degree” Betti numbers (those of
degree n, in this case) [9,13], a positive answer to Question 2.1 will establish the
subadditivity property for all monomial ideals, since

ta + tb ≥ deg(m) + deg(m′) ≥ n = ti .

Question 2.1 can be written more generally as a question about the homology of
the lcm lattice, or in fact, any finite lattice.

Question 2.2 If L = LCM(I ) and H̃i−2 ((1, x1 · · · xn)L ; k) �= 0, a, b > 0 and i =
a + b, are there complements m andm′ in LCM(I ) with H̃a−2 ((1,m)L ; k) �= 0 and
H̃b−2

(
(1,m′)L ; k) �= 0?

With the same idea, one could translate Question 2.1 into breaking up simplicial
homology using Hochster’s formula.

2.3.1 Hochster’s formula

Let I = (m1, . . . ,mq) be a square-free monomial ideal in the polynomial ring S =
k[x1, . . . , xn]. Hochster’s formula (see for example [18, Cor. 8.1.4 and Prop. 5.1.8])
states that if I = N (�) and mu a monomial, then

βi,mu (S/I ) = dimk H̃i−2(lk �∨(uc), k) = dimk H̃|u|−i−1(�u, k) (2)

where uc = [n]\u is the set complement of u. We would now like to reinterpret Ques-
tion 2.1 in the language of Hochster’s formula. To begin with, since we are dealing
with square-free monomials, we can consider a monomial mu equivalent to the set u
and use intersections for gcd, unions for lcm, and mc

u for uc.
Suppose

βi,x1...xn (S/I ) = dimk H̃i−2(lk �∨(∅), k) = dimk H̃i−2(�
∨, k) �= 0

and i = a + b where a, b > 0. We would like to know if there are complements
m,m′ ∈ LCM(I ) such that

βa,m(S/I ) �= 0 and βb,m′(S/I ) �= 0.

First observe that, �∨ = 〈mc
1, . . . ,m

c
q〉 (e.g. [18] or [14, Prop. 2.4]).
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We have

m ∈ LCM(I )

⇐⇒ m = mi1 ∪ mi2 ∪ · · · ∪ mis for some 1 ≤ i1 < i2 < · · · < is ≤ q

⇐⇒ mc = mc
i1 ∩ mc

i2 ∩ · · · ∩ mc
is for some 1 ≤ i1 < i2 < · · · < is ≤ q

⇐⇒ mc is the intersection of some facets of �∨.

Moreover, ifm,m′ ∈ LCM(I ), then

m,m′are complements ⇐⇒ m ∪ m′ = [n] and m ∩ m′ /∈ I

⇐⇒ mc ∩ m′c = ∅ and m ∩ m′ ∈ �

⇐⇒ mc ∩ m′c = ∅ and (m ∩ m′)c /∈ �∨

⇐⇒ mc ∩ m′c = ∅ and mc ∪ m′c /∈ �∨.

So we are looking for subsets A, B ⊆ [q] such that

1. mc = ⋂
j∈A m

c
j and m′c = ⋂

j∈B mc
j

2. mc ∩ m′c = ∅
3. mc ∪ m′c /∈ �∨
4. H̃a−2(lk �∨(mc), k) �= 0 and H̃b−2(lk �∨(m′c), k) �= 0.

Now we can state Question 2.1 in the following form.

Question 2.3 If � = 〈F1, . . . , Fq〉 is a simplicial complex with H̃i−2(�, k) �= 0 and
i = a + b where a, b > 0, can we find subsets A, B ⊆ [q] such that
1. F = ⋂

j∈A Fj and G = ⋂
j∈B Fj

2. F ∩ G = ∅
3. F ∪ G /∈ �

4. H̃a−2(lk �(F), k) �= 0 and H̃b−2(lk �(G), k) �= 0?

Example 2.4 If N (I )∨ = � = 〈xzu, xzv, xuv, yzu, yzv, yuv, xy〉,
x

y

z u

v

123

Journal of Algebraic Combinatorics (2022) 55:277–295282



then I = (xz, yz, xu, yu, xv, yv, zuv) has Betti table

0 1 2 3 4
total : 1 7 11 6 1

0 : 1 . . . .

1 : . 6 9 5 1
2 : . 1 2 1 .

So βi,xyzuv �= 0 when i = 3, 4, which corresponds to nonvanishing of homology
of links of faces of � in dimensions 1, 2. We consider each case separately:

1. i = 3, a = 1, b = 2. Then H̃1(�, k) �= 0. Let F = xy andG = xuv∩ yuv = uv,
then F ∩ G = ∅, F ∪ G = xyuv /∈ �, and

H̃a−2(lk �(F), k) = H̃−1(〈∅〉, k) �= 0

and H̃b−2(lk �(G), k) = H̃0(〈x, y〉, k) �= 0.

2. i = 4, a = 1, b = 3. Then H̃2(�, k) �= 0. Let F = yzu and G = xzu ∩ xuv ∩
xzv ∩ xy = x , then F ∩ G = ∅, F ∪ G = xyzu /∈ �, and

H̃a−2(lk �(F), k) = H̃−1(〈∅〉, k) �= 0

and H̃b−2(lk �(G), k) = H̃1(〈zu, uv, zv, y〉, k) �= 0.

3. i = 4, a = 2, b = 2. Then H̃2(�, k) �= 0. Let F = yzu ∩ yuv = yu and
G = xzu ∩ xzv = xz, then F ∩ G = ∅, F ∪ G = xyzu /∈ �, and

H̃a−2(lk �(F), k) = H̃0(〈z, v〉, k) �= 0

and H̃b−2(lk �(G), k) = H̃0(〈u, v〉, k) �= 0.

A dual version of Question 2.3 can be stated as follows (see Corollary 3.6 for the
justification).

Question 2.5 If � is a simplicial complex on the vertex set {x1, . . . , xn}, and
H̃i−2(�, k) �= 0, and n − i + 1 = a + b, where a and b are positive integers, are there
nonempty subsets C, D ⊆ {x1, . . . , xn} such that
1. C ∪ D = {x1, . . . , xn}
2. C ∩ D ∈ �

3. H̃|C|−a−1(�C , k) �= 0 and H̃|D|−b−1(�D, k) �= 0?

Example 2.6 Let N (I ) = � = 〈zwx, vwx, uvx, zux, zuy, uvy, vwy, zwy〉.
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z u

vw

x

y

u

w x

y z u

vw

� �C �D

Then I = (xy, zv, uw) has Betti table

0 1 2 3
total : 1 3 3 1

0 : 1 . . .

1 : . 3 . .

2 : . . 3 .

3 : . . . 1

So β3,xyzuvw(S/I ) �= 0 which corresponds to nonvanishing homology of � in
dimension 2 (i.e., H̃2(�, k) �= 0). Let a = 1 and b = 2. Choose C = {x, y} and
D = {z, u, v, w}. Then C ∪ D = {x, y, z, u, v, w}, C ∩ D = ∅ ∈ � and

H̃|C|−a−1(�C , k) = H̃0(〈x, y〉, k) �= 0 and
H̃|D|−b−1(�D, k) = H̃1(〈zu, uv, vw, zw〉, k) �= 0.

A positive answer to either Questions 2.3 or 2.5 would settle the subadditivity
question for syzygies.

3 Main results

The following lemma is an easy exercise.

Lemma 3.1 � simplicial complex and A ∈ � and B ∈ lk �(A), then

lk lk �(A)(B) = lk �(A ∪ B).

In a simplicial complex � we say a d-cycle � is supported on faces F1, . . . , Fq
if � = a1F1 + · · · + aq Fq for nonzero scalars a1, . . . , aq ∈ k. We say that � is a
face-minimal cycle orminimally supported on F1, . . . , Fq if additionally no proper
subset of F1, . . . , Fq is the support of a d-cycle. If � is supported on F1 . . . , Fq , we
call the simplicial complex 〈F1, . . . , Fq〉 the support complex of �.

Example 3.3 can guide the reader through the statement of the theorem below, a
variation of which appears as Theorem 4.2 of Theorem [25].
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Theorem 3.2 Let k be a field, � a d-dimensional simplicial complex, and

� = a1F1 + · · · + aq Fq , a1, . . . , aq ∈ k

a d-cycle in� supported on F1, . . . , Fq, which is not a boundary so that H̃d (�, k) �= 0.
Suppose A is a face of the support complex of � such that for some s ≤ q we have

A ⊆ F1 ∩ . . . ∩ Fs, and A � Fj if j > s

and 0 ≤ |A| ≤ d + 1. Then

1. there are εi ∈ {±1} for i = 1, . . . , s such that

�A = ε1a1(F1 \ A) + · · · + εsas(Fs \ A)

is a (d − |A|)-cycle in lk �(A) that is not a boundary in lk �(A);
2. H̃d−|A|(lk �(A), k) �= 0;
3. A = F1 ∩ . . . ∩ Fs.

Proof The case |A| = d + 1 will result in lk �(A) = {∅} which has (−1)-homology.
So we can assume that 0 ≤ |A| ≤ d. To prove Statement 1, we will proceed using
induction on a = |A|. If a = 0, then lk �(A) = �, �A = � and there is nothing to
prove.

Suppose a > 0, A = {v1, . . . , va}, A′ = {v1, . . . , va−1} (or A′ = ∅ when a = 1)
and �′ = lk �(A′), and suppose without loss of generality

A′ ⊆ F1 ∩ . . . ∩ Ft and A′ � Fj for j > t ≥ s.

By the induction hypothesis, for some ε′
i ∈ {±1} there is a (d − (a − 1))-cycle

�A′ = a1ε
′
1(F1 \ A′) + · · · + atε

′
t (Ft \ A′)

in �′ that is not a boundary in �′ and H̃d−(a−1)(�
′, k) �= 0. In particular, we must

have t �= s as otherwise the support complex of �A′ would be a cone with every facet
containing va , a contradiction.

We know that va ∈ (Fi \ A′) if and only if i ≤ s. Depending on the orientation of
the faces of the complex �′, for some ε′′

i ∈ {±1}, we can write

0 = ∂(�A′)

= ε′
1a1∂(F1 \ A′) + · · · + ε′

t at∂(Ft \ A′)

= ε′′
1 ε′

1a1(F1 \ A) + · · · + ε′′
s ε′

sas(Fs \ A) + U

+∂(ε′
s+1as+1Fs+1 \ A′ + · · · + ε′

t at Ft \ A′)
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where U consists of all the summands above which contain the vertex va , and hence

U =
s∑

j=1

ε′
j a j

(
∂(Fj \ A′) − ε′′

j Fj \ A
)

= 0.

If we set εi = ε′′
i ε′

i and �A = ε1a1(F1 \ A) + · · · + εsas(Fs \ A) it follows that

�A = −∂(ε′
s+1as+1(Fs+1 \ A′) + · · · + ε′

t at (Ft \ A′))

and

∂(�A) = −∂2(ε′
s+1as+1(Fs+1 \ A′) + · · · + ε′

t at (Ft \ A′)) = 0.

So �A is a (d − a)-cycle in lk �′(va) = lk �(A) by Lemma 3.1 (and since va ∈ �′).
Since dim(lk �(A)) = d − |A|, the (d − |A|)-cycle �A is not a boundary in lk �(A).
Therefore, H̃d−|A|(�, k) �= 0, proving Statement 2.

To see Statement 3, note that if F1 . . . , Fs all contain a vertex outside A, then the
support complex of �A would be a cone contradicting Statement 2. ��
Example 3.3 Let � = 〈xy, zu, zv, uv〉, which is the Alexander dual of the simplicial
complex � in Example 2.4.

x

y

z u

v

As stated in Theorem 3.2, � is a 1-dimensional simplicial complex and has � =
uz + zv + vu as a 1-cycle so that H̃1(�, k) �= 0. Taking A = {z}, then �A = u − v is
a 0-cycle in lk �(A) = 〈u, v〉 with H̃0(lk �(A), k) �= 0.

Corollary 3.4 Let k be a field, � a d-dimensional simplicial complex with H̃d(�, k) �=
0, and let � be a d-cycle in � which is not a boundary. Let A be a face of the support
complex of �, and suppose F1 . . . , Fq are the facets of � that contain A. Then

A =
q⋂

j=1

Fj .

Proof Since lk �(A) = 〈F1 \ A, . . . , Fq \ A〉, if there is a vertex of
q⋂

j=1

Fj which

is not in A, then lk �(A) would be a cone and would therefore have no homology,
contradicting Theorem 3.2. ��
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Theorem 3.5 below is a formal statement on breaking homological cycles. We refer
the reader to parts (2) and (3) of Example 2.4 where we demonstrated the theorem’s
statement. Note also that the case in part (1) of Example 2.4 follows the same pattern,
though a proof is not known yet.

Theorem 3.5 (Breaking up cycles on links). Let k be a field and � = 〈F1, . . . , Fr 〉 be
a d-dimensional simplicial complex such that

H̃d(�, k) �= 0 and d + 2 = a + b for some a, b > 0.

Suppose � contains a d-dimensional cycle

� =
q∑

j=1

a j Fj

supported on the facets F1, . . . , Fq of �, and � is not a boundary in �. Then there
are subsets A, B ⊆ [q] ⊆ [r ] with

F =
⋂

j∈A

Fj and G =
⋂

j∈B
Fj

such that

1. F ∩ G = ∅;
2. F ∪ G /∈ �;
3. H̃a−2(lk �(F), k) �= 0 and H̃b−2(lk �(G), k) �= 0.

Moreover, if a, b > 1, F and G and ε j , δ j ∈ {±1} could be chosen to additionally
satisfy:

4. |F | = b and |G| = a;
5. �F =

∑

j∈A

ε j a j
(
Fj \ F

)
is an (a − 2)-cycle in lk �(F) which is not a boundary ;

6. �G =
∑

j∈B
δ j a j

(
Fj \ G

)
is a (b − 2)-cycle in lk �(G) which is not a boundary.

Proof Set i = d + 2. We first consider the case b = 1 and a = i − 1. If a = 1,
then d = 0 and � is disconnected. Let F and G be two facets each belonging to a
distinct connected component of �. Then we clearly have F ∩G = ∅ and F ∪G /∈ �.
Moreover, lk �(F) = lk �(G) = {∅} and so

H̃a−2(lk �(F), k) = H̃b−2(lk �(G), k) = H̃−1({∅}, k) �= 0

as desired.
If b = 1 and a = i − 1 > 1, then d = a + b − 2 > 0. By Theorem 3.2, if we take

a vertex v in the support complex of �, then H̃i−3(lk �(v), k) �= 0.
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Since � is a cycle, not all of F1, . . . , Fq contain v. Let G be one of the facets
F1, . . . , Fq that does not contain v. Then F ∩G = ∅ and F ∪G /∈ � (as G is a facet),
and moreover

H̃a−2(lk �(F), k) = H̃i−3(lk �(v), k) �= 0

and H̃b−2(lk �(G), k) = H̃−1({∅}, k) �= 0.

Now suppose a, b ≥ 2 and a = i−b. Suppose F1 = {w1, v1, . . . , vi−2}. Then since
F1 is in the support of the (i − 2)-cycle �, {w1, v2, . . . , vi−2} must appear in another
one of the Fj in the support of �, say F2. Suppose F2 = {w1, w2, v2, . . . , vi−2}.
Considering that a = i − b ≤ i − 2, let

G = {v1, . . . , va} and F = {va+1, . . . , vi−2, w1, w2}.

Then |G| = a and |F | = i −2+2−a = b. Moreover F ∩G = ∅ by construction,
and if i − 2 = d, then F ∪G /∈ � since |F ∪G| = d + 2 which is larger than the size
of any face of �.

By Theorem 3.2, and noting that i − 2− |G| = b− 2 and i − 2− |F | = a − 2, we
have

H̃a−2(lk �(F), k) �= 0 and H̃b−2(lk �(G), k) �= 0,

conditions 5 and 6 are satisfied, and if

A = { j ∈ [q] : F ⊂ Fj } and B = { j ∈ [q] : G ⊂ Fj }

then

F =
⋂

j∈A

Fj and G =
⋂

j∈B
Fj .

��
Another version of Theorem 3.5 below is onewhich gives lower-dimensional cycles

in induced subcomplexes.

Corollary 3.6 (Breaking up cycles). Let � be a simplicial complex on the vertex set
{x1, . . . , xn}, and suppose H̃d−2(�, k) �= 0, where d is the smallest possible size of a
nonface of �. Suppose n − d + 1 = a + b, where a and b are positive integers. Then
there are nonempty subsets C, D ⊆ {x1, . . . , xn} such that

1. C ∪ D = {x1, . . . , xn};
2. C ∩ D ∈ �;
3. H̃|C|−a−1(�C , k) �= 0 and H̃|D|−b−1(�D, k) �= 0.

Proof ByAlexander duality—seeProp. 5.1.10 and thediscussionprecedingProp. 5.1.8
in [18]—we have that H̃n−d−1(�

∨, k) �= 0. Now d is the smallest possible size of a
nonface of �, so by the definition of Alexander duals, dim(�∨) = n − d − 1.

123

Journal of Algebraic Combinatorics (2022) 55:277–295288



Suppose �∨ = 〈F1, . . . , Fr 〉. If n − d + 1 = a + b, then, by Theorem 3.5, there
are subsets A and B of [r ] such that

F =
⋂

j∈A

Fj and G =
⋂

j∈B
Fj

and

(i) F ∩ G = ∅;
(ii) F ∪ G /∈ �∨;
(iii) H̃a−2(lk �∨(F), k) �= 0 and H̃b−2(lk �∨(G), k) �= 0.

Now let

C = Fc =
⋃

j∈A

Fc
j and D = Gc =

⋃

j∈B
Fc
j .

Then by (i), C ∪ D = (F ∩ G)c = {x1, . . . , xn}. By (ii), (C ∩ D)c = F ∪ G /∈
�∨ so C ∩ D ∈ �. Finally by (iii) and Equation (2), H̃|C|−a−1(�C , k) �= 0 and
H̃|D|−b−1(�D, k) �= 0. ��
Theorem 3.7 (Subadditivity of syzygies of square-free monomial ideals). If I is a
square-free monomial ideal in the polynomial ring S = k[x1, . . . , xn] where k is a
field, and d is the smallest possible degree of a generator of I . Suppose i = n−d +1,
βi,n(S/I ) �= 0 and i = a + b, for some positive integers a and b. Then ti ≤ ta + tb.

Proof By Hochster’s formula (Equation (2)), if � = N (I ), then

βn−d+1,n(S/I ) = βn−d+1,x1···xn (S/I ) = dimk H̃d−2(�, k) �= 0.

If n − d + 1 = a + b, then by Corollary 3.6, there are nonempty subsets C, D ⊆
{x1, . . . , xn} such that

C ∪ D = {x1, . . . , xn} and C ∩ D ∈ �,

and

H̃|C|−a−1(�C , k) �= 0 and H̃|D|−b−1(�D, k) �= 0.

By Equation (2), this means that

βa,|C|(S/I ) �= 0 and βb,|D|(S/I ) �= 0,

so that ta ≥ |C | and tb ≥ |D|. Putting this all together, we get

ta + tb ≥ |C | + |D| ≥ n = ti ,

which settles our claim. ��
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Discussion 3.8 Given a square-free monomial ideal I if we are looking for top degree
Betti numbers, by Hochster’s formula (Equation (2))

βn−i−1,n(S/I ) = dimk H̃i (�, k).

Now if d is the smallest possible degree of a generator of I , then all monomials of
degree ≤ d − 1 are not in I , which means all possible faces of dimension ≤ d − 2 are
in � = N (I ). This means that the smallest index i with H̃i (�, k) �= 0 is d − 2, that is

H̃i (�, k) = 0 for i < d − 2

and hence

β j,n(S/I ) = 0 for j = n − i − 1 > n − d + 1.

So n−d+1 is the maximum homological degree where we could have a nonvanishing
top degreeBetti number.Wedo not have an example of our settingwhere n−d+1 is not
the projective dimension. After comparing with bounds on the projective dimension of
S/I given by Dao and Schweig [8, Theorem 3.2, Remark 3.4] in terms of dominance
parameters of clutters, we concluded that n − d + 1 is often either the projective
dimension of S/I or very close to it, though we were not able to determine how close.

Example 3.9 Let I = (xyz, xzv, xuv, yzu, yuv) be an ideal of S = k[x, y, z, u, v] in
5 variables. Here the smallest degree of a generator of I is d = 3, so n − d + 1 = 3,
so we pick a = 1 and b = 2. According to Macaulay2 [23], the Betti table of S/I is

0 1 2 3
total : 1 5 5 1

0 : 1 . . .

1 : . . . .

2 : . 5 5 1

which verifies that

t3 = 5, t2 = 4, t1 = 3 �⇒ t3 < t1 + t2 = 7.

Example 3.10 In Example 2.4, I = (xz, yz, xu, yu, xv, yv, zuv) is a square-free
monomial ideal in 5 variables where d = 2 and n − d + 1 = 4. According to
the Betti table of I , t4 = 5, t3 = 5, t2 = 4 and t1 = 3. Here t4 < t1 + t3 = 8 and
t4 < 2t2 = 8. Note that we also have β3,5(S/I ) �= 0 where 3 < 4 = n − d + 1 while
still we have t3 < t1 + t2 = 7.

4 Special cases of breaking up simplicial homology

In this section, we consider breaking up special classes of cycles, wherewe can provide
a combinatorial description for the lower-dimensional cycles.
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4.1 The case of a disconnected simplicial complex

We begin with an example.

Example 4.1 Let N (I ) = � = 〈uv, xy, yz, xz〉 be a simplicial complex on n = 5
vertices.

x

y z

u v

Here H̃0(�, k) �= 0 and hence β4,uvxyz(S/I ) �= 0. If 4 = a + b, then using
Corollary 3.6 we have the following two cases to consider.

1. a = 1 and b = 3. Let C = {u, x} and D = {u, v, y, z}. Then C ∪ D =
{u, v, x, y, z}, C ∩ D = {u} ∈ � and

H̃|C|−a−1(�C , k) = H̃0(〈u, x〉, k) �= 0

and H̃|D|−b−1(�D, k) = H̃0(〈uv, yz〉, k) �= 0.

2. a = b = 2. Let C = {u, x, v} and D = {u, y, z}. Then C ∪ D = {u, v, x, y, z},
C ∩ D = {u} ∈ � and

H̃|C|−a−1(�C , k) = H̃0(〈uv, x〉, k) �= 0

and H̃|D|−b−1(�D, k) = H̃0(〈u, yz〉, k) �= 0.

In general, if � is a disconnected complex on n vertices with Stanley–Reisner ideal
I , then βn−1,n(S/I ) �= 0, and if n− 1 = a+ b for some a, b > 0, then we can always
find disconnected induced subcomplexes�C and�D whereC = a+1 and D = b+1,
as in the example above. Below we demonstrate how this can be done.

If � is disconnected, then it has the form

� = �1 ∪ · · · ∪ �t

where �1, . . . , �t are connected components and t > 1. In this case, |V (�i )| ≥ 1
for all 1 ≤ i ≤ t , V (�) = V (�1) ∪ · · · ∪ V (�t ) and V (�k) ∩ V (�l) = ∅ for all
1 ≤ k < l ≤ t .

Without loss of generality and up to renaming the variables, we can assume the
following:

• |V (�1)| ≤ |V (�2)| ≤ · · · ≤ |V (�t )|,
• xk ∈ V (�k) for 1 ≤ k ≤ t ,
• V (�1) = {x1, xt+1, . . . , xt+|V (�1)|−1}
• V (�k) = {xk, x(t+|V (�1)|+···+|V (�k−1)|−k+2), . . . , x(t+|V (�1)|+···+|V (�k )|−k)} for
each 1 < k ≤ t .
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Example 4.2 The simplicial complex � in Example 4.1 can be relabeled and written
as � = �1 ∪ �2 where �1 = 〈x1x3〉 and �2 = 〈x2x4, x4x5, x2x5〉.

x2

x4 x5

x1 x3

For each 1 ≤ a < n − 1, define

C = {x1, x2, . . . , xa+1} and D = {x1, xa+2, . . . , xn}.

Clearly C ∪ D = {x1, . . . , xn}, |C | = a + 1, |D| = n − a and C ∩ D = {x1} ∈ �.
Moreover, it is easy to see that both�C and�D are disconnected induced subcomplexes
of� on the subsets {x1, x2, . . . , xa+1} and {x1, xa+2, . . . , xn}, respectively. Therefore,
if b = n − a − 1

H̃|C|−a−1(�C , k) = H̃0(�C , k) �= 0 and H̃|D|−b−1(�D, k) = H̃0(�D, k) �= 0.

4.2 The case of a graph cycle

Recall that a cycle in a graph G is an ordered list of distinct vertices x1, . . . , xn where
the edges are xi−1xi for 2 ≤ i ≤ n and xnx1. Graph cycles characterize nontrivial
1-homology in simplicial complexes; see, for example, Theorem 3.2 in [7].

Suppose� is a simplicial complex on the set {x1, . . . , xn} that is the support complex
of a face-minimal graph cycle, so that H̃1(�, k) �= 0.Thismeans thatβn−2,n(S/I ) �= 0.
Suppose n − 2 = a + b for some a, b > 0.

Without loss of generality, � can be written in the form

� = 〈x1x2, x2x3, . . . , xn−1xn, xnx1〉.

For 1 ≤ a < n − 2, define

C = {x1, x3, x4, . . . , xa+2} and D = {x2, xa+3, . . . , xn}.

Clearly, C ∪ D = {x1, . . . , xn}, |C | = a+1, |D| = n−a−1 and C ∩ D = ∅ ∈ �.
Moreover, it is easy to see that both �C and �D are disconnected induced subcom-
plexes of � on the subsets {x1, x3, x4, . . . , xa+2} and {x2, xa+3, . . . , xn}, respectively.
Therefore,

H̃|C|−a−1(�C , k) = H̃0(�C , k) �= 0
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and

H̃|D|−b−1(�D, k) = H̃0(�D, k) �= 0

where b = n − a − 2.

Example 4.3 Let N (I ) = � = 〈x1x2, x2x3, x3x4, x4x5, x1x5〉.
x1

x2

x3x4

x5

Then H̃1(�, k) �= 0 and hence β3,x1···x5(S/I ) �= 0. Taking a = 1 and b = 2, set
C = {x1, x3} and D = {x2, x4, x5}. Then

H̃|C|−a−1(�C , k) = H̃0(〈x1, x3〉, k) �= 0 and
H̃|D|−b−1(�D, k) = H̃0(〈x2, x4x5〉, k) �= 0.

5 The case of general monomial ideals

The polarization [16] of a monomial ideal I is a method to transform I to a square-
free monomial ideal, by adding new variables to the polynomial ring. The procedure
is described below.

Definition 5.1 (Polarization). Let I be minimally generated by monomialsm1, . . .mq

in the polynomial ring R = k[x1, . . . , xn]. For i ∈ {1, . . . , n}, let

pi =
{
1 if xi � mu for every u ∈ [q]
max

{
j : x j

i | mu for some u ∈ [q]
}

otherwise.

Let S be the polynomial ring in p = p1 + · · · + pn variables

S = k[xi, j : 1 ≤ i ≤ n, 1 ≤ j ≤ pi ]

and let the polarization of I be the square-free monomial ideal

P(I ) = (P(m1), . . . ,P(mq)
)

where, if m = xa1
b1 · · · xac bc where the ai are distinct integers in {1, . . . , n} and

1 ≤ bi ≤ pi for 1 ≤ i ≤ c, then

P(m) = xa1,1 · · · xa1,b1xa2,1 · · · xa2,b2 · · · xac,1 · · · xac,bc .
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Example 5.2 If I = (x2, xy3z2) ⊆ k[x, y, z], then its polarization is the square-free
monomial ideal
P(I ) = (x1x2, x1y1y2y3z1z2) in the polynomial ring k[x1, x2, y1, y2, y3, z1, z2].
Corollary 5.3 (Subadditivity of syzygies of monomial ideals). If I is a monomial ideal
in the polynomial ring R = k[x1, . . . , xn] where k is a field, d is the smallest possible
degree of a generator of I , and p is defined as in Definition 5.1. Suppose i = p−d+1,
βi,p(R/I ) �= 0 and i = a + b, for some positive integers a and b. Then ti ≤ ta + tb.

Proof Let I = (m1, . . . ,mq), whose polarization is the square-free monomial ideal
P(I ) in the polynomial ring S in p variables in Definition 5.1. Since βi,p(R/I ) �= 0,
we must have βi,m(R/I ) �= 0 for some m ∈ LCM(I ). On the other hand, p is the
largest possible degree for a monomial in LCM(I ), and so m = lcm(m1, . . . ,mq),
the top monomial in the lcm lattice of I .

Now the two lcm lattices LCM(I ) and LCM(P(I )) are isomorphic ([17]), and
the degree p square-free monomial P(m) sits on top of the lattice LCM(P(I )), and
so βi,p(S/P(I )) �= 0. Now since deg(mi ) = deg(P(mi )) for all 1 ≤ i ≤ q, the
conditions for Theorem 3.7 hold, and therefore ti ≤ ta + tb holds for the ideal P(I ).
But as the graded Betti numbers of I and P(I ) are equal, the inequality also holds for
I , and we are done. ��
Example 5.4 Let I = (xy2, xyz, y3, y2z) be an ideal of R = k[x, y, z]. Here p = 5
and the smallest degree of a generator is d = 3, so p− d + 1 = 3. We pick a = 1 and
b = 2. According to Macaulay2 [23] the Betti table of R/I is

0 1 2 3
total : 1 4 4 1

0 : 1 . . .

1 : . . . .

2 : . 4 4 1

which verifies that

t3 = 5, t2 = 4, t1 = 3 �⇒ t3 < t1 + t2 = 7.

6 Final remarks

Questions 2.1, 2.2, 2.3, and 2.5 are all equivalent, though their different settings allow
the application of different (inductive) tools.All of themare open in their full generality
as far as we know, though each can be answered positively for certain classes of ideals
or combinatorial objects. A positive answer to either would settle the subadditivity
question for monomial ideals in a polynomial ring.
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