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Abstract
Richardson varieties are obtained as intersections of Schubert and opposite Schubert
varieties. We provide a new family of toric degenerations of Richardson varieties
inside Grassmannians by studying Gröbner degenerations of their corresponding ide-
als. These degenerations are parametrised by block diagonal matching fields in the
sense of Sturmfels [33]. We associate a weight vector to each block diagonal matching
field and study its corresponding initial ideal. In particular, we characterise when such
ideals are toric, hence providing a family of toric degenerations for Richardson vari-
eties. Given a Richardson variety Xv

w and a weight vector w� arising from a matching
field, we consider two ideals: an ideal Gk,n,�|vw obtained by restricting the initial of the
Plücker ideal to a smaller polynomial ring, and a toric ideal defined as the kernel of a
monomial map φ�|vw. We first characterise the monomial-free ideals of form Gk,n,�|vw.
Thenwe construct a family of tableaux in bijectionwith semi–standardYoung tableaux
which leads to a monomial basis for the corresponding quotient ring. Finally, we prove
that when Gk,n,�|vw is monomial-free and the initial ideal inw�

(I (Xv
w)) is quadratically

generated, then all three ideals inw�
(I (Xv

w)), Gk,n,�|vw and ker(φ�|vw) coincide, and
provide a toric degeneration of Xv

w.
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1 Introduction

Toric degenerations are a particularly useful tool for describing algebraic properties of
varieties in terms of combinatorics of polytopes and polyhedral fans, see [2]. The goal
of this paper is to construct a family of toric degenerations for Richardson varieties
inside theGrassmannian.Todo this,wewill consider a family ofmatchingfields,which
were originally introduced by Sturmfels and Zelevinsky for studying certain Newton
polytopes [33]. We study Gröbner degenerations of the Plücker ideals associated to
matching fields.

Toric degenerations of Grassmannians and Schubert varieties have been extensively
studied in the literature, see e.g. [3,6,16,18,30,32]. In particular, most of these degen-
erations can be realised as Gröbner degenerations, even though, this is not true in
general, see e.g. [22]. More recently, Kaveh and Manon [23] used tools from tropical
geometry to study toric degenerations of ideals. The main idea is that the initial ideals
associated to the points in the top-dimensional facets of tropicalizations of ideals are
good candidates for toric degenerations. A similar approach has been taken in studying
toric degenerations of Grassmannians and Schubert varieties in [5,11,24,28,31].

Let k ≤ n be positive integers and let Ik,n = {I ⊆ [n] : |I | = k} be the set
of k-subsets of [n] := {1, . . . , n}. The Grassmannian Gr(k, n) is the collection of
k-dimensional linear subspaces of K

n . By the Plücker embedding, Gr(k, n) is viewed
as a projective subvariety of P(nk)−1 whose ideal is denoted by Gk,n ⊆ K[PI ]I∈Ik,n .
The intersection of Schubert and opposite Schubert varieties in Gr(k, n) give rise to
Richardson varieties which are indexed by pairs of subsets v,w ∈ Ik,n where v ≤ w.
An explicit description of the ideal of a Richardson variety is given by Kreiman and
Lakshmibai [25]. We view this ideal as the restriction of Gk,n to the variables PI
where I is in the set T v

w = {I ∈ Ik,n : v ≤ I ≤ w}. More specifically, the ideal of the
Richardson variety Xv

w is defined as

I (Xv
w) := Gk,n|T v

w
= (

Gk,n + 〈PI : I ∈ Ik,n\T v
w〉) ∩ K[PI ]I∈T v

w
.

Our goal is to find toric degenerations of the Richardson variety Xv
w by studying its

Gröbner degenerations. We consider a collection of weight vectors w� ∈ R(nk) associ-
ated to so-called block diagonal matching fields, see Definition 2.4 and Remark 2.10.
In [11], it is shown that each ideal inw�

(Gk,n) is toric and equal to the kernel of amono-
mial map φ�, see Eq. (2.4) and Theorem 3.1. In particular, each vectorw� gives rise to
a flat family overA

1 whose fiber over 0 is given by the initial ideal inw�
(Gk,n), see e.g.

[14, Theorem 15.17]. Here, for the Richardson variety we project the weight vector
w� to the coordinates corresponding to the variables in the polynomial ringK[PI ]I∈T v

w

and study the following question. Note that this is related to theDegeneration Problem
posed by Caldero [6] for Schubert varieties.

Question 1.1 When are the initial ideals inw‘(I (X
v
w)) toric (binomial and prime)?
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We have summarised our approach to this question in the following diagram.

Gk,n
initial ideal

restriction

inw�
(Gk,n)

restriction

(3.1)
ker(φ�) ⊆ K[PI : I ∈ Ik,n] φ�−−→ K[xi, j ]

restriction of φ�

I (Xv
w)

initial ideal
Gk,n,�|vw ?

ker(φ�|vw) ⊆ K[PI : I ∈ T v
w] φ�|vw−−−→ K[xi, j ]

(1.1)

A typical approach to study the ideal inw‘(I (X
v
w)) is to search for a Gröbner basis

which can be viewed as understanding the horizontal arrows in the above diagram.
By [11], we have a clear description of the ideals in the first row of the diagram
and their interrelations, namely inw‘(Gk,n) = ker(φ�). To find toric initial ideals
inw‘(I (X

v
w)) we will determine when the left-hand square is commutative and when

‘?’ is an equality. To do so, we first study the ideals Gk,n,�|vw obtained by restricting
inw�

(Gk,n) to the variables PI , where I ∈ T v
w . We characterise such monomial-free

ideals and show that in this case, inw‘(I (X
v
w)) is equal to Gk,n,�|vw. Here, K[xi, j ] is

the polynomial ring in the indeterminates xi, j for i ∈ [k] and j ∈ [n].
Theorem (Theorem 5.2) Let w‘ be the weight vector induced by a block diagonal
matching field for Gr(k, n). If the ideal Gk,n,�|vw is monomial-free and inw‘(I (X

v
w))

is generated by degree two polynomials, then Diagram (1.1) commutes. Explicitly
the ideals inw‘(I (X

v
w)), Gk,n,�|vw and ker(φ�|vw) are all equal and provide a toric

degeneration for the Richardson variety Xv
w.

Our strategy for the proof is to consider the following inclusions which always hold:

ker(φ�|vw) Gk,n,�|vw inw�
(I (Xv

w)) . (1.2)

We proceed by classifying the restricted idealsGk,n,�|vw which are monomial-free. For
each block diagonalmatchingfield B�, we give combinatorial conditions on the permu-
tations v and w for which Gk,n,�|vw is monomial-free, see Theorem 3.3. Surprisingly,
the conditions on v and w are independent and the ideal Gk,n,�|vw is monomial-free if
and only if the ideals of the corresponding Schubert and opposite Schubert varieties
are monomial-free.

Our main tool to prove the equality of inw‘(I (X
v
w)) and ker(φ�|vw) is to

apply the above classification to describe a monomial basis for the quotient ring
K[PI ]I∈T v

w
/ ker(φ�|vw). We use the Hodge’s description [21] for standard monomial

basis of K[PI ]I∈Ik,n/Gk,n which is in terms of semi-standard Young tableaux. We
note that this basis is compatible with any Richardson variety Xv

w, i.e. the basis ele-
ments that remain non-zero after restricting to Xv

w form a basis for the coordinate ring
associated of Xv

w. More specifically, we first prove that:

Theorem (Proposition 4.5 and Theorem 4.6) If Gk,n,�|vw is monomial-free, then the
size of a monomial basis in degree two of ker(φ�|vw) is equal to the number of semi-
standard Young tableaux with two columns I , J such that v ≤ I , J ≤ w.
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Then, we show that whenGk,n,�|vw is monomial-free and inw�
(I (Xv

w)) is quadratically
generated, then the number of standard monomials for K[PI ]I∈T v

w
/ ker(φ�|vw) equals

to the number of semi-standard Young tableaux. In particular, the dimensions of the
quotient rings of inw‘(I (X

v
w)) and ker(φ�|vw) are equal in each degree. This together

with the inclusion in (1.2) implies that these ideals are equal.
We note that the assumption that inw�

(I (Xv
w)) is quadratically generated is crucial

for our proof. However, we expect that whenever Gk,n,�|vw is monomial-free then the
ideal inw‘(I (X

v
w)) is quadratically generated and we may remove this assumption.

Conjecture 1.2 If Gk,n,�|vw is monomial-free then inw‘(I (X
v
w)) is quadratically gen-

erated.

In general, showing that an ideal is quadratically generated is a challenging task, see
e.g. [13,15,20,29] for specific families of ideals arising from graphs, and [11,28] for
similar families of initial ideals associated tomatching fields.We prove Conjecture 1.2
for � = 0 in Theorem 5.3 and provide computational evidence for general � > 0 in
Remark 5.4 and [8].
Outline of the paper In Sect. 2wefix our notation and recall the definitions of themain
objects under study such as Richardson varieties, matching fields and their associated
ideals. Section 3 contains our main results characterising monomial-free ideals of
form Gk,n,�|vw, see Theorem 3.3. In Sect. 4 we study monomial bases of Richardson
varieties, see Theorem 4.6. Section 5 contains the proofs of our main results stated in
the introduction, see Theorem 5.2.

2 Preliminaries

Throughout we fix an algebraically closed field K. We let [n] be the set {1, . . . , n},
Ik,n be the collection of k-subsets of [n] and K[xi, j ] be the polynomial ring on the
variables xi, j with i ∈ [k] and j ∈ [n]. We first recall Richardson varieties and their
corresponding standard monomial bases. Then, we define matching fields and their
associated ideals in Sects. 2.5 and 2.6.

2.1 Grassmannian varieties

The Grassmannian Gr(k, n) is the collection of all k-dimensional linear subspaces of
K

n , which is embedded into a projective space as follows. Any point in the Grassman-
nian is the rowspan of some k × n matrix and two k × n matrices and have the same
rowspan if and only if they have the same sequence of maximal minors up to a scalar.
And so we obtain an embedding of Gr(k, n) into a projective space

Gr(k, n) → P
(nk)−1 with X = (xi, j ) 	→ (det(XI )), (2.1)

where XI is the submatrix of X with columns indexed by I . The Plücker embedding
gives rise to a defining ideal for the Grassmannian. Consider the map

ϕn : K[PI ]I∈Ik,n → K[xi, j ] with PI 	→ det(XI ) (2.2)
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where XI is the submatrix of X = (xi, j ) with columns indexed by I . The kernel of
the map ϕn is called the Plücker ideal of Gr(k, n) and we denote it by Gk,n .

2.2 Schubert and opposite Schubert varieties

Schubert and opposite Schubert varieties are families of closed subvarieties of the
Grassmannian Gr(k, n)which are indexed by Ik,n . Note that there are a few equivalent
ways to define Schubert varieties, see e.g. [26]. We consider the classical construction
for these varieties as follows. Fix a basis {e1, . . . , en} ⊆ K

n and for each i ∈ [k] define
the subspaces Wi = 〈e1, . . . , ei 〉 and Wi = 〈en, . . . , en−i+1〉. For sets v = {v1 <

· · · < vk} and w = {w1 < · · · < wk} ∈ Ik,n we define the corresponding Schubert
variety Xw and opposite Schubert variety Xv to be

Xw = {
V ∈ Gr(k, n) : dim(V ∩ Ww j ) ≥ j for all j ∈ [k]} , and

Xv =
{
V ∈ Gr(k, n) : dim(V ∩ Wn−v(k− j+1)+1) ≥ j for all j ∈ [k]

}
.

Note that the sets Xw and Xv are closed subvarieties of Gr(k, n). There is a natural
partial order on Ik,n given by {v1 < · · · < vk} ≤ {w1 < · · · < wk} if and only if
v1 ≤ w1, . . . , vk ≤ wk . This partial order allows us to see a number of properties of
Schubert varieties.

Remark 2.1 (Remark 5.3.4 and Corollary 5.3.5 [26]) Fix v,w ∈ Ik,n with v = {v1 <

· · · < vk}. Let Xv and Xw be Schubert subvarieties of Gr(k, n). Then the following
hold:

1. 〈ev1 , . . . , evk 〉 ∈ Xw if and only if v ≤ w.
2. Xv ⊆ Xw if and only if v ≤ w.
3. For all I ∈ Ik,n , the function PI |Xw is non-zero if and only if I ≤ w.

Moreover, the Schubert variety Xw ⊆ P(nk)−1 is precisely the zero set of the polyno-
mials in the ideal Gk,n + 〈PI : I � w〉. It is often convenient to think of the ideal of
the Schubert variety as a subset of the ring K[PI ]I≤w.

Analogous statements hold for the opposite Schubert variety Xv whose ideal is
given by Gk,n +〈PI : I � v〉. Similarly, we think of the ideal of Xv as a subset of the
ring K[PI ]I≥v .

2.3 Richardson varieties

Fix k ≤ n positive integers and let v,w ∈ Ik,n . The Richardson variety Xv
w associated

to v,w is defined as Xw ∩ Xv . We recall that Xv
w �= ∅ if and only if v ≤ w, see [25,

Corollary 2.1.2]. To fix our notation we define the set

T v
w = {I ∈ Ik,n : v ≤ I ≤ w}.

The associated ideal of Xv
w is the restriction of Gk,n to the ring K [PI ]I∈T v

w
or equiva-

lently it is the sum of the ideals of the corresponding Schubert and opposite Schubert
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varieties:

I (Xv
w) = Gk,n|T v

w
:= (Gk,n + 〈PI : I ∈ Ik,n\T v

w〉) ∩ K[PI ]I∈T v
w

= (I (Xw) + I (Xv)) ∩ K[PI ]I∈T v
w
.

Schubert and opposite Schubert varieties are special examples of Richardson varieties,
namely Xw = Xid

w and Xv = Xv
w0

wherew0 = {n−k+1, . . . , n−1, n} is the largest
element of Ik,n .

Remark 2.2 Richardson varieties are defined more generally for quotients of semi-
simple algebraic groups G by parabolic subgroups P ⊆ G in [27]. When G is of
type An , they are indexed by permutations v,w ∈ Sn . In the classical formulation
above for the Grassmannian, the parabolic subgroups are maximal. In this case, the
permutations v,w giving rise to distinct Richardson varieties can be taken to be pairs
of Grassmann permutations, which are left coset representatives of Sn/(Sk × Sn−k).
These coset representatives can be identified with subsets I ∈ Ik,n . We can think of I
as a permutation which sends [k] to I .

2.4 Standardmonomial basis

The Plücker algebra of the Grassmannian Gr(k, n) is the quotient of the polynomial
ring K[PI ]I∈Ik,n by the Plücker ideal Gk,n . In [21], Hodge provided a combinatorial
rule to choose a monomial basis for the Plücker algebra in terms of semi-standard
Young tableaux. A monomial P = PI1 PI2 . . . PId is called standard if I1 ≤ · · · ≤ Id .
The monomial P is called standard for Xv

w if P is standard and v ≤ Ii ≤ w for all
i ∈ [d]. It is convenient to write monomials as rectangular tableaux whose columns
correspond to factors of the monomial. For example, the corresponding tableau of the
monomial PI PJ with I = {i1 < · · · < ik} and J = { j1 < · · · < jk} is the following:

I J
i1 j1
i2 j2
...

...

ik jk

The tableaux corresponding to standard monomials are known as semi-standard
Young tableaux. These tableaux are defined by the property that the entries in each
column are strictly increasing and the entries in each row are weakly increasing. We
recall that:

Theorem 2.3 (Theorem 3.3.2 [25]) The standard monomials for Xv
w give a monomial

basis for the associated algebra of the Richardson variety K[PI ]I∈T v
w
/I (Xv

w).
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2.5 Matching fields

A matching field is a combinatorial object that encodes a weight vector for the poly-
nomial ring K[PJ ]I∈Ik,n which is induced from a weight vector for the polynomial
ring K[xi, j ]. Here, we recall block diagonal matching fields from [11,28].

Definition 2.4 Given integers k, n and 0 ≤ � ≤ n, we fix the k × n matrix M� with
entries:

M�(i, j) =

⎧
⎪⎨

⎪⎩

(i − 1)(n − j + 1) if i �= 2,

� − j + 1 if i = 2, 1 ≤ j ≤ �,

n − j + � + 1 if i = 2, � < j ≤ n.

(2.3)

Recall that X = (xi, j ) is a k × n matrix of indeterminates. For each k-subset J of [n],
the initial term of the Plücker form ϕn(PJ ) ∈ K[xi, j ] denoted by inM�

(PJ ) is the sum
of all terms in ϕn(PJ ) of the lowest weight, where the weight of a monomialm is the
sum of entries in M� corresponding to the variables in m. We write M�(m) for the
weight of m. We prove below that inM�

(PJ ) is a monomial for each subset J ⊆ [n].
The weight of each variable PJ is defined as the weight of each term of inM�

(PJ )with
respect to M�, and it is called the weight induced by M�. We write w� for the weight
vector induced by M�.

Lemma 2.5 Let M = (mi, j ) and M ′ = (m′
i, j ) be k × n weight matrices. Suppose

there exists p ∈ {1, . . . , n} such that mi, j = m′
i, j for all i ∈ [k] and j ∈ [n]\p.

Suppose that there exists c ∈ R such that m′
i,p = mi,p + c for all i ∈ {1, . . . , k}. Then

the initial terms of the Plücker forms are the same with respect to M and M ′.

Proof Let J be a k-subset of [n]. If J does not contain p then the submatrices ofM and
M ′ with columns indexed by J coincide, hence the initial terms of the Plücker form
ϕn(PJ )with respect to M and M ′ are the same. On the other hand, if J contains p then
consider each monomial x in the Plücker form ϕn(PJ ). The monomial is squarefree
and contains a unique variable of the form xi,p for some i ∈ {1, . . . , k}. Therefore,
M ′(x) = M(x) + c. Therefore, the initial term of ϕn(PJ ) is the same with respect to
M and M ′. ��

By the same method, one can prove an analogous result for weight matrices which
differ by a constant in a particular row.

Proposition 2.6 Let M = M0 be the k × n weight matrix and J be a k-subset. Then
the initial term inM (PJ ) is the leading diagonal term, in particular, it is a monomial.

Proof We show that the leading diagonal term of the Plücker form ϕn(PJ )

i.e. x1, j1x2, j2 · · · xk, jk where j1 < j2 < · · · < jk equals to inM (PJ ). We proceed
by induction on k. For k = 1 the result holds trivially. So assume k > 1. We have

ϕn(PJ ) =
∑

σ∈Sk
x1, jσ(1) · · · xk, jσ(k) .
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For each σ ∈ Sk such that x1, jσ(1) · · · xk, jσ(k) has minimum weight with respect to
M , consider the value σ(k) ∈ [k]. Suppose σ(k) = p for some p ∈ [k]. Then, by
induction, we have that the leading term of the ϕn(PJ\ jp ) is the leading diagonal
term. So σ(1) = 1, . . . , σ (p − 1) = p − 1, σ (p) = p + 1, . . . , σ (k − 1) = k and
σ(k) = p, therefore, the weight of the monomial is

M(x1, jσ(1) · · · xk, jσ(k) ) =
p−1∑

i=1

(i − 1)(n − ji + 1)

+
k∑

i=p+1

(i − 2)(n − ji + 1) + (k − 1)(n − jp + 1)

=
k∑

i=1

(i − 1)(n − ji + 1) −
k∑

i=p+1

(n − ji + 1) + (k − p)(n − jp + 1)

=M(x1, j1 · · · xk, jk ) +
k∑

i=p+1

ji − (k − p) jp.

Note that jp < jp+1 < · · · < jk . So
∑k

i=p+1 ji − (k − p) jp > 0. If σ(k) < k then
the weight M(x1, jσ(1) · · · xk, jσ(k) ) is not minimum. So σ(k) = k and we are done by
induction. ��
Proposition 2.7 Let � ∈ {1, . . . , n − 1}, k ≥ 2, M = M�, the k × n weight matrix,
and J = { j1 < · · · < jk} ⊂ [n]. Then the initial term of the Plücker form ϕn(PJ ) is
given by

inM (PJ ) =
{
x1, j1x2, j2x3, j3 . . . xk, jk if j1 > � or j2 ≤ �,

x1, j2x2, j1x3, j3 . . . xk, jk otherwise.

In particular, the leading term inM (PJ ) is a monomial.

Proof Suppose that j1 > �. By definition, the weight matrices M� and M0 differ only
in the second row. The entries of the second row are

(M0) : [n n − 1 . . . 1],
(M�) : [� � − 1 . . . 1 n n − 1 . . . � + 1].

Consider the submatrices ofM0 andM� consisting of the columns indexed by J . Since
j1 > � the second row entries differ by exactly � in each respective position. And so
by the row-version of Lemma 2.5, the leading term of the Plücker form ϕn(PJ ) is the
same with respect to M0 and M�. By Proposition 2.6, the initial term is inM (PJ ) =
x1, j1x2, j2x3, j3 . . . xk, jk .

Suppose that j1 ≤ �. Wewill prove the result by induction on k. For the case k = 2,

M� =
[
0 0 . . . 0 0 0 . . . 0
� � − 1 . . . 1 n n − 1 . . . � + 1

]
.
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If j1 > � or j2 ≤ � then the leading term of the Plücker form ϕn(PJ ) is the leading
diagonal term, i.e. inM (PJ ) = x1, j1x2, j2 . Otherwisewe have j1 ≤ � and j2 > �, and so
the leading termof the Plücker form is the antidiagonal term, i.e. inM (PJ ) = x1, j2x2, j1 .

Suppose k > 2. For each σ ∈ Sk such that x1, jσ(1) . . . xk, jσ(k) has minimum weight
with respect to M�, consider the value p = σ(k) ∈ [k]. Let J ′ = J\ jp = { j ′1 < j ′2 <

· · · < j ′k−1}. There are two cases for J ′, either j ′2 ≤ � or j ′2 > �.
Case 1 Assume j ′2 ≤ �. By induction we have inM (PJ ′) = x1, j ′1x2, j ′2 . . . xk−1, j ′k−1

.
And so we have σ(1) = 1, . . . , σ (p − 1) = p − 1, σ (p) = p + 1, . . . , σ (k − 1) =
k, σ (k) = p. Suppose by contradiction that p ≤ k − 1, then we have

M�(x1, jσ(1) . . . xk, jσ(k) ) − M�(x1, j1 . . . xk, jk ) =
k∑

i=p

(
M�(xi, jσ(i) ) − M�(xi, ji )

)

=
k∑

i=p

(i − 1)( ji − jσ(i))

=
⎛

⎝
k−1∑

i=p

(i − 1)( ji − ji+1)

⎞

⎠ + (k − 1)( jk − jp)

=
k∑

i=p+1

( ji − jp) > 0.

But by assumption x1, jσ(1) . . . xk, jσ(k) has minimum weight, a contradiction. And so
we have p = k hence inM (PJ ) = x1, j1x2, j2 . . . xk, jk .

Case 2 Assume j ′2 > �. Either we have j ′1 ≤ � or j ′1 > �. In this case assume
further that j ′1 ≤ �, we will show that j ′1 > � is impossible in Case 3. By induction we
have inM (PJ ′) = x1, j ′2x2, j ′1x3, j ′3 . . . xk−1, j ′k−1

. Assume by contradiction that k �= p.
We proceed by taking cases on p, either p = 1, p = 2 or 3 ≤ p ≤ k − 1.

Case 2.1 Assume p = 1. So we have σ(1) = 3, σ (2) = 2, σ (3) = 4, . . . , σ (k −
1) = k, σ (k) = 1. Since jp < j ′1 ≤ �, we have

M�(x1, jσ(1) . . . xk, jσ(k) ) − M�(x1, j1 . . . xk, jk ) =
(

k∑

i=4

( ji − j1)

)

+ 2( j3 − j1) > 0.

But by assumption x1, jσ(1) . . . xk, jσ(k) has minimum weight, a contradiction.
Case 2.2 Assume p = 2. So we have σ(1) = 3, σ (2) = 1, σ (3) = 4, . . . , σ (k −

1) = k, σ (k) = 2. Since jp < j ′1 ≤ �, we have

M�(x1, jσ(1) . . . xk, jσ(k) ) − M�(x1, j1 . . . xk, jk ) =
(

k∑

i=4

( ji − j2)

)

+ ( j3 − j2) + ( j3 − j1) > 0.

But by assumption x1, jσ(1) . . . xk, jσ(k) has minimum weight, a contradiction.
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Case 2.3 Assume 3 ≤ p ≤ k − 1. And so we have σ(1) = 2, σ (2) = 1, σ (3) =
3, . . . , σ (p − 1) = p − 1, σ (p) = p + 1, . . . , σ (k − 1) = k, σ (k) = p. Therefore,

M�(x1, jσ(1) . . . xk, jσ(k) ) − M�(x1, j2x2, j1x3, j3 . . . xk, jk ) =
k∑

i=p+1

( ji − jp) > 0.

But by assumption x1, jσ(1) . . . xk, jσ(k) has minimum weight, a contradiction.
Case3Assume j ′1, j ′2 > �. By induction,wehave inM (PJ ′) = x1, j ′1x2, j ′2 . . . xk−1, j ′k−1

.

Since j1 ≤ � we must have j ′1 = j2, . . . j ′k−1 = jk and so σ(1) = 2, σ(2) = 3, . . . ,
σ (k − 1) = k and σ(k) = 1. Therefore,

M�(x1, jσ(1) . . . xk, jσ(k) ) − M�(x1, j2x2, j1x3, j3 . . . xk, jk ) =
(∑k

i=3( ji − j1)
)

+ j3 +
n > 0.
But by assumption x1, jσ(1) . . . xk, jσ(k) has minimum weight, a contradiction. ��
Definition 2.8 Given integers k, n and 0 ≤ � ≤ n, M� leads to a permutation for each
subset J = {i1, . . . , ik} ⊂ [n]. More precisely, we think of J as being identified with
the Plücker form ϕn(PJ ) andwe consider the set to be ordered by J = {i1 < · · · < ik}.
Since inM�

(PJ ) is a unique term in the corresponding minor of X = (xi, j ), we
have inM�

(PJ ) = x1,iσ(1) · · · xk,iσ(k) for some σ ∈ Sk , which we call the permutation
associated to M�. We represent the variable inM�

(PJ ) as a k × 1 tableau where the
entry of ( j, 1) is iσ( j) for each j ∈ [k]. We can think of M� as inducing a new ordering
on the elements of J which can be read from the tableau.

Remark 2.9 By Propositions 2.6 and 2.7 the initial term inM�
(PJ ) is a monomial for

each Plücker form ϕn(PJ ) where J = { j1 < · · · < jk} ⊂ [n]. These propositions
give a precise description of the initial terms and the induced weight on the Plücker
variable PJ as follows.

w�(PJ ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if k = 1,
(n + � + 1 − j2) + ∑k

i=3(i − 1)(n + 1 − ji ) if k ≥ 1 and |J ∩ {1, . . . , �}| = 0,
(� + 1 − j1) + ∑k

i=3(i − 1)(n + 1 − ji ) if k ≥ 1 and |J ∩ {1, . . . , �}| = 1,
(� + 1 − j2) + ∑k

i=3(i − 1)(n + 1 − ji ) if |J ∩ {1, . . . , �}| ≥ 2.

Notation 2.1 For each α = (αJ )J inZ
(nk)≥0 we fix the notationP denoting themonomial

∏
J PαJ

J . We denote inw�
(Gk,n) for the initial ideal of Gk,n with respect to w�. This is

defined as the ideal generated by polynomials inw�
( f ) for all polynomials f ∈ Gk,n ,

where

inw�
( f ) =

∑

α j ·w�=d

c jP j for f =
t∑

i=1

ciPi and d = min{αi · w� : i = 1, . . . , t}.

Remark 2.10 Propositions 2.6 and 2.7 show that the permutation given by M� and
associated to J , which defines the matching field, is given by:

B�(J ) =
{
id if k = 1 or |J ∩ {1, . . . , �}| �= 1,
(12) otherwise,
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where (12) is the transposition interchanging 1 and 2. The functions B� are called
2-block diagonal matching fields in [28]. Note that � = 0 or n gives rise to the choice
of the diagonal terms in each submatrix as in Example 2.11. Such matching fields are
called diagonal. See, e.g. [33, Example 1.3]. Given a block diagonal matching field
B� we define B�,1 = {1, . . . , �} and B�,2 = {� + 1, . . . , n}.
Example 2.11 Let k = 3, n = 5 and � = 0, so the matching field B� is the diagonal
matching field, with B�,1 = ∅ and B�,2 = {1, 2, 3, 4, 5}. We have

M0 =
⎡

⎣
0 0 0 0 0
5 4 3 2 1
10 8 6 4 2

⎤

⎦ a weight matrix for X =
⎡

⎣
x11 x12 x13 x14 x15
x21 x22 x23 x24 x25
x31 x32 x33 x34 x35

⎤

⎦ .

The corresponding weight vector on P123, P124, . . . , P345 is w0 =
(10, 8, 6, 7, 5, 4, 7, 5, 4, 4). Thus, for each J = {i < j < k} ⊆ [5] we have that
inM0(PJ ) = x1i x2 j x3k . Therefore, the corresponding tableaux for PJ are:

1
2
3

,

1
2
4

,

1
2
5

,

1
3
4

,

1
3
5

,

1
4
5

,

2
3
4

,

2
3
5

,

2
4
5

,

3
4
5

.

Note that each initial term inM0(PJ ) is the leading diagonal term of the Plücker form
ϕn(PJ ). Let us consider a block diagonal matching field which is not diagonal.

Example 2.12 Let k = 3, n = 5 and � = 3. Then B�,1 = {1, 2, 3}, B�,2 = {4, 5} and

M2 =
⎡

⎣
0 0 0 0 0
3 2 1 5 4
10 8 6 4 2

⎤

⎦ .

Comparing this matrix with M0, the weight matrix for the diagonal case, we see that
the only differences are in the second row. The entries of the second row are obtained
by permuting the entries in the second row of M0. The corresponding weight vector
on the Plücker variables P123, P124, . . . , P345 is w2 = (8, 6, 4, 5, 3, 5, 5, 3, 4, 3). For
each J = {i, j, k} we have the corresponding tableaux for PJ which are

1
2
3

,

1
2
4

,

1
2
5

,

1
3
4

,

1
3
5

,

4
1
5

,

2
3
4

,

2
3
5

,

4
2
5

,

4
3
5

.

2.6 Matching field ideals

A matching field also admits the data of a monomial map K[PJ ] → K[xi, j ] which
takes each PJ to a term of the Plücker form ϕn(PJ ) = det(X J ) ∈ K[xi, j ]. We define
the matching field ideal of B� to be the kernel of the monomial map

φ� : K[PI ]I∈Ik,n → K[xi, j ] with PJ 	→ inM�
(PJ ) (2.4)
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where M� is the matrix in (2.3). We will show in Theorem 1 that whenever a B� gives
rise to a toric initial ideal, then the corresponding toric ideal is equal to the matching
field ideal.

Notation 2.2 Fix a Richardson variety Xv
w. We write φ�|vw for the restriction of the

map (2.4) to the variables PJ with J ∈ T v
w and ker(φ�|vw) for the associated matching

field ideal.

3 Monomial-free ideals arising frommatching fields

Here, we define the ideals Gk,n,�|vw and characterise when they are monomial-free,
see Theorem 3.3. Our main results in this paper precisely apply when these ideals are
monomial-free.We first summarise some of the important properties of matching field
ideals from [11].

Theorem 3.1 [Theorems 4.1, 4.3 and Corollary 4.7 [11]] The initial ideal inw�
(Gk,n)

is toric and it is generated by quadratic binomials. Moreover, for the matching field
ideal ker(φ�),

inw�
(Gk,n) = ker(φ�). (3.1)

The following notation will simplify the description of the ideals throughout this note.

Notation 3.1 LetG ⊂ K[PI ]I∈Ik,n be a collection of polynomials and T be a collection
of subsets of [n]. We identify T with the characteristic vector of T c that is TJ = 1 if
J /∈ T otherwise TJ = 0. For each g ∈ G we write g = ∑

α cαPα and define

ĝ =
∑

T ·α=0

cαPα and G|T = {ĝ : g ∈ G} ⊆ K[PI ]I∈T .

We call 〈G|T 〉 the restriction of the ideal 〈G〉 to T . With the notation above we have:

Lemma 3.2 [Lemma 6.3 in [10]] 〈G|T 〉 = 〈G ∪ {PJ : J /∈ T }〉 ∩ K[PI ]I∈T .
It is useful to think of G|T as the set obtained from G by setting the variables

{PJ : J /∈ T } to zero. We say that the variable PJ vanishes in the ideal 〈G|T 〉 if
J /∈ T . Similarly, we say that a polynomial g vanishes in the restricted ideal 〈G|T 〉
if g ∈ 〈PJ : J /∈ T 〉. The ideal 〈G|T 〉 can be computed in Macaulay2 [19] as an
elimination ideal using the command

eliminate(〈G〉 + 〈PJ : J /∈ T 〉, {PJ : J ∈ T }).

Notation 3.2 Let w = {w1, . . . , wk} and v = {v1, . . . , vk} ∈ Ik,n with v ≤ w, and
recall our notation from Sect.2.3. We denote the restricted ideals of inw�

(Gk,n) as
follows.

123



Journal of Algebraic Combinatorics (2021) 54:1159–1183 1171

Gk,n,�|w := inw�
(Gk,n)|T id

w
, Gk,n,�|v := inw�

(Gk,n)|T v
w0

and Gk,n,�|vw := inw�
(Gk,n)|T v

w
.

(3.2)

Note that by Theorem 3.1 the ideal inw�
(Gk,n) is generated by a set of quadratic

binomials whose restrictions to the set T v
w generate the above ideals by Lemma 3.2.

Weare nowready to completely characterisemonomial-free ideals of formGk,n,�|vw.
Theorem 3.3 Fix k < n and v,w ∈ Ik,n with v ≤ w.

• If � = 0 or � > n − k + 1 then the ideals Gk,n,�|vw,Gk,n,�|w and Gk,n,�|v are
monomial-free.

• Let � ∈ {1, . . . , n − k + 1}, then the following hold:

(i) The ideal Gk,n,�|w is monomial-free if and only if w ∈ Tk,n,� which is the set
of {w1 < · · · < wk} ∈ Ik,n such that at least one of the following hold:
– w1 ∈ {1, �, n − k + 1},
– w2 ∈ {1, . . . , �, w1 + 1}.

(ii) The ideal Gk,n,�|v is monomial-free if and only if v ∈ T opp
k,n,� which is the set

of {v1 < · · · < vk} ∈ Ik,n such that at least one of the following hold:
– v1 ∈ {� + 1, . . . , n},
– v2 ∈ {v1 + 1, � + 1}.

(iii) The ideal Gk,n,�|vw is monomial-free if and only if w ∈ Tk,n,� and v ∈ T opp
k,n,�.

Proof Suppose that � = 0 or � > n − k + 1. By [11, Theorem 5.7] we have that
Gk,n,�|w is monomial-free. By Lemma 3.5 we have that Gk,n,�|v is monomial-free.
The proof that Gk,n,�|vw is monomial-free follows from part (iii) of this proof.

(i) This part follows immediately from [11, Theorem 5.7].
(ii) Wewill show thatGk,n,�|v contains a monomial if and only if both v1 ∈ {1, . . . , �}

and v2 ∈ {v1 + 2, . . . , n} \ {� + 1}.
Take v /∈ T opp

k,n,�. We begin by showing that Gk,n,�|v contains a monomial by taking
cases on v2. Note that v2 �= � + 1.

Case 1 Let v2 ≤ �. Consider the following sets which we write in the true order
according to the matching field. Let

I = {� + 1, v2 − 1, n − k + 3, n − k + 4, . . . , n − 1, n},
J = {v1, v2, n − k + 3, n − k + 4, . . . , n − 1, n},
I ′ = {v1, v2 − 1, n − k + 3, n − k + 4, . . . , n − 1, n} and
J ′ = {� + 1, v2, n − k + 3, n − k + 4, . . . , n − 1, n}.

By construction we have that PI PJ − PI ′ PJ ′ is a binomial in inw�
(Gk,n). We

have that I ′ �≥ v hence PI ′ vanishes in Gk,n,�|v . However, I ≥ v and J ≥ v

hence PI PJ appears as a monomial in Gk,n,�|v .
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Case 2 Let v2 ≥ �+2. We now prove that v2 + k−1 ≤ n. Suppose by contradiction
that v2 + k−1 > n then it follows that v3 = v2 +1, v4 = v3 +1, …, vk = n.
Nowwe have thatw0v = (1, 2, . . . , k−1, n−v1+1) ∈ Zk,n . By Lemma 3.5,
Gk,n,�|v is zero, a contradiction. Therefore, v2+k−1 ≤ n. It follows that there
exists j ∈ {2, . . . , k} such that v j +1 ≤ n and v j +1 /∈ {v j+1, v j+2, . . . , vk}.
Consider the following sets which we write in the true order according to the
matching field. Let

I = {v2, v1, v3, . . . , vk},
J = {� + 1, v2 + 1, v3 + 1, . . . , v j−1 + 1, v j + 1, v j+1, v j+2, . . . , vk},
I ′ = {� + 1, v1, v3, . . . , vk} and
J ′ = {v2, v2 + 1, v3 + 1, . . . , v j−1 + 1, v j + 1, v j+1, v j+2, . . . , vk}.

By construction we have that PI PJ − PI ′ PJ ′ is a binomial in inw�
(Gk,n).

Since v2 ≥ � + 2, we have that I ′ < v hence PI ′ vanishes in Gk,n,�|v .
However, I ≥ v and J ≥ v hence PI PJ appears as a monomial in Gk,n,�|v .

For the converse we assume that Gk,n,�|v contains a monomial. If � > n − k + 1
or � = 0 then by Lemma 3.5 we have that Gk,n,�|v is monomial-free, a contradiction.
So we may assume that � ≤ n − k + 1. Suppose by contradiction that v1 /∈ B�,1 then
v1 ≥ �+1. Suppose PI PJ is amonomial appearing inGk,n,�|v . In particular, PI and PJ

do not vanish so we have that I , J ≥ v. We deduce that I ∩B�,1 = ∅ and J ∩B�,1 = ∅.
Suppose that the monomial PI PJ is obtained from the binomial PI PJ − PI ′ PJ ′ in
inw�

(Gk,n). Then we have that I ′ ∩ B�,1 = ∅ and J ′ ∩ B�,1 = ∅. Therefore, the
true ordering on all indices I , I ′, J , J ′ is the diagonal order. It follows that the same
monomial must appear in the ideal Gk,n,0|v . However, by Lemma 3.5, Gk,n,0|v is
monomial-free, a contradiction. So we may assume that v1 ∈ B�,1. It remains to
show that if Gk,n,�|v contains a monomial then v2 ∈ {v1 + 2, . . . , n}\{� + 1}. By the
above argument, we may assume that 1 ≤ � ≤ n − k + 1 and v1 ∈ B�,1. Assume
by contradiction that v2 /∈ {v1 + 2, . . . , n}\{� + 1}. Then there are two cases, either
v2 = v1 + 1 or v2 = � + 1.

Case 1 Let v2 = v1 + 1 and PI PJ be a monomial in Gk,n,�|v arising from a
binomial PI PJ − PI ′ PJ ′ in inw�

(Gk,n). Let us write I = {i1 < · · · < ik} and
J = { j1 < · · · < jk}. By assumption we have I , J ≥ v so in particular, i1, j1 ≥ v1
and i2, j2 ≥ v2. It is easy to see that B�(I ) �= B�(J ) otherwise it follows that PI ′ PJ ′
does not vanish in Gk,n,�|v . So without loss of generality, assume that B�(I ) = id and
B�(J ) = (12). So, in tableau form, the binomial PI PJ − PI ′ PJ ′ is given by

I J
i1 j2
i2 j1
...

...

−
I ′ J ′
i1 j2
j1 i2
...

...

.
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Note, we must have the first two rows of these two tableaux are different, otherwise
PI ′ PJ ′ does not vanish inGk,n,�|v . By assumption we have i2, j2 ≥ v2 hence PJ ′ does
not vanish in Gk,n,�|v . Hence PI ′ must vanish. We take cases on B�(I ′).

Case 1.1 Let B�(I ′) = id. Then we have i1 < j1. Since PI ′ vanishes, we must
have j1 < v2 = v1 + 1. Therefore, i1 < v1, a contradiction.

Case 1.2 Let B�(I ′) = (12). Then we have j1 < i1. Since PI ′ vanishes we must
have i1 < v2 = v1 + 1, and so j1 < v1 which is a contradiction.

Case 2 Let v2 = �+1. Let PI PJ be a monomial inGk,n,�|v arising from a binomial
PI PJ − PI ′ PJ ′ in inw�

(Gk,n) and write I = {i1 < · · · < ik} and J = { j1 < · · · < jk}.
By assumption we have I , J ≥ v so in particular, i1, j1 ≥ v1 and i2, j2 ≥ v2. It is
easy to see that B�(I ) �= B�(J ) otherwise it follows that PI ′ PJ ′ does not vanish in
Gk,n,�|v . So without loss of generality, assume that B�(I ) = id and B�(J ) = (12).
So, in tableau form, the binomial PI PJ − PI ′ PJ ′ is given by

I J
i1 j2
i2 j1
...

...

−
I ′ J ′
i1 j2
j1 i2
...

...

.

Note that the first two rows of these tableaux must be different, otherwise PI ′ PJ ′ does
not vanish in Gk,n,�|v . By assumption we have i2, j2 ≥ v2 = �+1 hence PJ ′ does not
vanish in Gk,n,�|v . Hence PI ′ must vanish. Since j1 ∈ B�,1, we must have i1 < v2.
Since B�(I ) = id and i2 ≥ v2 = �+1 ∈ B�,2, we must have i1 ∈ B�,2. So i1 ≥ �+1,
a contradiction. So we have shown that v2 ∈ {v1 + 2, . . . , n}\{� + 1}. Thus v satisfies
all desired conditions.

(iii) Given parts (i) and (ii), this part is equivalent to showing that Gk,n,�|vw is
monomial-free if and only if both Gk,n,�|w and Gk,n,�|v are monomial-free. By defi-
nition we have

Gk,n,�|vw = (inw�
(Gk,n) + 〈PI : I ∈ Ik,n\T v

w〉) ∩ K[PI ]I∈T v
w

= (inw�
(Gk,n) + 〈PI : I � w〉 + 〈PI : I � v〉) ∩ K[PI ]I∈T v

w

= (
(inw�

(Gk,n) + 〈PI : I � w〉) ∩ K[PI ]I∈T v
w

)

+ (
(inw�

(Gk,n) + 〈PI : I � v〉) ∩ K[PI ]I∈T v
w

)

= Gk,n,�|w + Gk,n,�|v ⊆ K[PI ]I∈T v
w
.

In the above we consider Gk,n,�|w and Gk,n,�|v as ideals of the ring K[PI ]I∈T v
w
by

inclusion of their generators. On the one hand if Gk,n,�|v or Gk,n,�|w contain a mono-
mial then the same monomial appears in Gk,n,�|vw. On the other hand suppose that
Gk,n,�|vw contains a monomial PI PJ then v ≤ I , J ≤ w. Also there exists I ′, J ′ such
that PI PJ − PI ′ PJ ′ is a binomial in inw�

(Gk,n) and either I ′, J ′ �≥ v or I ′, J ′ �≤ w.
If I ′, J ′ �≥ v then PI PJ is a monomial in Gk,n,�|v . If I ′, J ′ �≤ w then PI PJ is a
monomial in Gk,n,�|w. ��

The proofs above rely on Lemma 3.5 which follows from the following key but
straightforward observation.
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Lemma 3.4 [Key Lemma] Let I , J ∈ Ik,n. Then I ≤ J if and only if w0 I ≥ w0 J .

The consequence of this observation is the following lemma which characterises
the zero and monomial-free ideals for the opposite Schubert variety in the diagonal
case, i.e. � = 0.

Lemma 3.5 We have the following:

(i) The ideal Gk,n,�|w is zero if and only if w ∈ Zk,n, where

Zk,n = {(1, 2, . . . , k − 1, i) : k ≤ i ≤ n} ∪ {(1, . . . , î, . . . , k, k + 1) : 1 ≤ i ≤ k − 1}.

(ii) The ideal Gk,n,0|v is zero if and only if w0v ∈ Zk,n,
(iii) If � = 0 or � > n − k + 1, then the ideal Gk,n,�|v is monomial-free.

Proof (i) This statement follows directly from [11, Theorem 5.7].
(ii) For the first statement, note that Gk,n,0|v is non-zero if and only if there exists

a binomial PI PJ − PI ′ PJ ′ in inw0(Gk,n) such that I , J ≥ v. By Lemma 3.4,
I , J ≥ v if and only if w0 I , w0 J ≤ w0v. Observe that Pw0 I Pw0 J − Pw0 I ′ Pw0 J ′ is
also a binomial in inw0(Gk,n) and all binomials can be written in this form since
w2
0 = id. Therefore, Gk,n,0|v is non-zero if and only if Gk,n,0|w0v is non-zero.

(iii) This statement is a consequence of part (i) and the bijection between binomials
described above. IfGk,n,�|v contains amonomial PI PJ then there exists a binomial
PI PJ − PI ′ PJ ′ in inw0(Gk,n) such that I , J ≥ v and I ′, J ′ < v. By Lemma 3.4,
w0 I , w0 J ≤ w0v andw0 I ′, w0 J ′ > w0v. Since Pw0 I Pw0 J − Pw0 I ′ Pw0 J ′ is also a
binomial in inw0(Gk,n), therefore, Pw0 I Pw0 J is a monomial in Gk,n,�|w0v , which
contradicts part (i).

��

4 Standardmonomials for Richardson varieties

In this section, we provide a bijection between the semi-standard Young tableaux with
two columns and the set of standard monomials for K[PI ]I∈T v

w
/ ker(φ�|vw) of degree

two.

Definition 4.1 Let T be a semi-standard Young tableau with two columns and k rows
whose entries lie in [n], see sect.2.4. For each � ∈ {1, . . . , n − 1} we define the map
�� : T 	→ T ′ where T ′ is a tableau whose columns are ordered according to the
matching field B�. Suppose that the entries of the columns of T are I = {i1 < i2 <

· · · < ik} and J = { j1 < j2 < · · · < jk}. Since T is in a semi-standard form, we
assume that is ≤ js for each s ∈ [k]. We define T ′ as the tableau whose columns
are I ′ and J ′ as sets and are ordered by the matching field B�. The sets I ′ and J ′ are
defined as follows.

• If i1, i2, j1 ∈ {1, . . . , �}, j2 ∈ {� + 1, . . . , n} and i1 < j1 < i2 then we define
I ′ = { j1 < i2 < i3 < · · · < ik} and J ′ = {i1 < j2 < j3 < · · · < jk}.

• If i1 ∈ {1, . . . , �}, i2, j1, j2 ∈ {� + 1, . . . , n} and j1 < i2 < j2 then we define
I ′ = { j1 < i2 < i3 < · · · < ik} and J ′ = {i1 < j2 < j3 < · · · < jk}
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• Otherwise we define I ′ = I and J ′ = J .

Lemma 4.2 Let T1 and T2 be semi-standard Young tableaux. If ��(T1) and ��(T2) are
row-wise equal then T1 and T2 are equal.

Proof We begin by noting that all rows except possibly the first two rows of a tableau
are fixed by��. So it remains to show that if the first two rows of��(T1) and��(T2) are
row-wise equal then so are thefirst two rowsofT1 andT2.Wealsonote that�� preserves
the entries of a tableau, thought of as a multi-set. Let us assume by contradiction that
T1 and T2 are not row-wise equal. By the above facts we may assume without loss of
generality that

T1 =
i1 j1
i2 j2
...

...

, T2 =
i1 i2
j1 j2
...

...

and j1 < i2. We proceed by taking cases on s = |{i1, i2, j1, j2} ∩ {1, . . . , �}|.
Case 1 Assume s = 0 or 4. It follows that �� fixes T1 and T2. By row-wise equality

of the second row of ��(T1) and ��(T2)we have that j1 = i2, a contradiction.
Case 2 Assume s = 1. It follows that i1 ∈ {1, . . . , �} and i2, j1, j2 ∈ {�+ 1, . . . , n}.

Since j1 < i2 we have

��(T1) =
j1 j2
i2 i1
...

...

, ��(T2) =
j1 i2
i1 j2
...

...

.

By row-wise equality of the second row, we have that j2 = i2. However, in
the tableau T2, we have that i2 < j2, a contradiction.

Case 3 Assume s = 2. Since j1 < i2, it follows that i1, j1 ∈ {1, . . . , �} and i2, j2 ∈
{� + 1, . . . , n}. And so we have

��(T1) =
i2 j2
i1 j1
...

...

, ��(T2) =
i1 i2
j1 j2
...

...

.

By row-wise equality of the second row the tableau we have that i1 = j2, a
contradiction since i1 ∈ {1, . . . , �} and j2 ∈ {� + 1, . . . , n}.

Case 4 Assume that s = 3. It follows that i1, i2, j1 ∈ {1, . . . , �} and j2 ∈ {� +
1, . . . , n}. And so we have

��(T1) =
j1 j2
i2 i1
...

...

, ��(T2) =
i1 j2
j1 i2
...

...

.
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By row-wise equality of the second row, we have that i1 = j1. However, in
T2, we have that i1 < j1, a contradiction.

��
Lemma 4.3 Let T be any tableau whose columns are valid for the block diagonal
matching field B�. Then there exists a semi-standard Young tableau T ′ such that
��(T ′) and T are row-wise equal.

Proof Let T be the tableau with entries {i1, i2 < i3 < · · · < ik} and { j1, j2 < j3 <

· · · < jk},

T =
i1 j1
i2 j2
...

...

ik jk

.

Without loss of generality we may assume that is ≤ js for all s ≥ 3. We proceed by
taking cases on s = |{i1, i2, j1, j2} ∩ {1, . . . , �}|.

Case 1 Assume s = 0 or 4. We have that i1 < i2 and j1 < j2. So we may order the
entries in row to obtain T ′. Note that in this case �� fixes T ′.

Case 2 Assume s = 1. Without loss of generality we assume j2 ∈ {1, . . . , �}.
• If j1 > i2 then

��

⎛

⎜
⎝

j2 i1
i2 j1
...

...

⎞

⎟
⎠ =

i1 j1
i2 j2
...

...

.

• If j1 ≤ i2 then

��

⎛

⎜
⎝

j2 i1
j1 i2
...

...

⎞

⎟
⎠ =

j1 i1
j2 i2
...

...

.

The tableau on the right is row-wise equal to T .

Case 3 Assume s = 2.

• If i1, i2 ∈ {1, . . . , �} then �� fixes each column of T , which is a semi-standard
Young tableau.

• If i2, j2 ∈ {1, . . . , �} then without loss of generality assume i2 ≤ j2 and i1 ≤ j1.
We have

��

⎛

⎜
⎝

i2 j2
i1 j1
...

...

⎞

⎟
⎠ =

i1 j1
i2 j2
...

...

.
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Case 4 Assume s = 3. Without loss of generality we may assume j1 ∈ {� +
1, . . . , n}.
• If j2 < i1 then

��

⎛

⎜
⎝

j2 i1
i2 j1
...

...

⎞

⎟
⎠ =

i1 j1
i2 j2
...

...

.

Note that in this case we have j2 < i1 < i2 and so the tableau on the left is a
semi-standard Young tableau.

• If j2 ≥ i1 then

��

⎛

⎜
⎝

i1 j2
i2 j1
...

...

⎞

⎟
⎠ =

i1 j1
i2 j2
...

...

.

This completes the proof. ��
Lemma 4.4 Let v,w ∈ Ik,n with v ≤ w. A semi-standard Young tableau T vanishes
in Gk,n,0|vw if and only if ��(T ) vanishes in Gk,n,�|vw.
Proof Let I , J be the columns of T and I ′, J ′ be the columns of ��(T ). The result
follows from the fact that {min(I ),min(J )} = {min(I ′),min(J ′)} and similarly for
the second smallest of elements of I , J , I ′ and J ′. ��

By the results ofKreimanandLakshmibai in [25], the semi-standardYoung tableaux
whose columns I satisfy v ≤ I ≤ w are a monomial basis for the Richardson variety
Xv

w.

Proposition 4.5 If Gk,n,�|vw is monomial-free then the set

Im(��)|vw = {��(T ) : T a two column semi-standard Young tableau for Xv
w}

is a monomial basis for K[PI ]I∈T v
w
/ ker(φ�|vw) in degree two.

Proof We prove the contrapositive, i.e. if Im(��)|vw is not a monomial basis for
K[PI ]I∈T v

w
/ ker(φ�|vw) then Gk,n,�|vw contains a monomial. Let T be a matching field

tableau for B� representing a monomial in K[PI ]I∈T v
w
/Gk,n,�|vw which does not lie in

the span of Im(��)|vw. Since Im(��) is a basis for Gk,n,�, it follows that T is row-wise
equal to ��(T ′) for some semi-standard Young tableau T ′ which vanishes in Gk,n,�|vw.
We write I , J for the columns of T and I ′, J ′ for the columns of ��(T ′). Since T and
��(T ′) are row-wise equal we may assume that all their entries below the second row
are in semi-standard form. So we write

T =
I J
i1 j1
i2 j2
...

...

, ��(T
′) =

I ′ J ′
i1 j1
j2 i2
...

...

.
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Throughout the proofwewritev = {v1 < · · · < vk} andw = {w1 < · · · < wk} for the
Grassmannian permutations. We now take cases on s = |{i1, i2, j1, j2} ∩ {1, . . . , �}|.

Case 1Assume s = 0 or 4. It follows that ��(T ′) is a semi-standard Young tableau
and so ��(T ′) does not vanish, a contradiction.

Case 2 Assume s = 1. Without loss of generality assume that j2 ∈ {1, . . . , �} and
note that in this case we may possibly have that I ′ and J ′ are swapped in ��(T ′).
Since T does not vanish we have v ≤ I , J ≤ w. So by ordering the entries of I , J in
increasing order and comparing them with v and w, we have

v1 ≤ {i1, j2} ≤ w1, v2 ≤ {i2, j1} ≤ w2.

Since ��(T ′) vanishes we must have that either I ′ or J ′ vanishes. Let us take cases.
Case 2.1 Assume I ′ = {i1, j2, . . . } vanishes. We have

v1 ≤ j2 ≤ w1, i1 ≤ w1 < w2

and so I ′ ≤ w. Since I ′ vanishes, we must have I ′ �≥ v and so i1 < v2. We have the
following

• v1 ∈ {1, . . . , �} because v1 ≤ j2,
• v2 ∈ {� + 2, . . . , n} because v2 > i1 ∈ {� + 1, . . . , n}.

By Theorems 3.3 we have that Gk,n,�|vw contains a monomial.
Case 2.2 Assume J ′ = { j1, i2, . . . } vanishes. We have

v1 < v2 ≤ j1, v2 ≤ i2 ≤ w2.

Hence J ′ ≥ v. Since J ′ vanishes we have J �≤ w and so j1 > w1. We have the
following

• wi ∈ {� + 1, . . . , n} for all i ≥ 2 because w2 ≥ i2 ∈ {� + 1, . . . , n},
• w2 �= w1 + 1 because w1 < j1 < i2 ≤ w2,
• w1 ≤ n − k because w1 < j1 = min(J ′) ≥ n − k + 1,
• w1 ≥ � + 1 because w1 ≥ i1 ∈ {� + 1, . . . , n}.

And so by Theorem 3.3 we have that Gk,n,�|vw contains a monomial.
Case 3 Assume s = 2. If i1, i2 ∈ {1, . . . , �} then ��(T ′) is not a valid tableau with

respect to the matching field B�. It follows that i2, j2,∈ {1, . . . , �}. However, it easily
follows that ��(T ′) does not vanish in Gk,n,�|vw, a contradiction.

Case 4 Assume s = 3. Without loss of generality assume that j1 ∈ {� + 1, . . . , n}.
Note that in this case we may possibly have that I ′ and J ′ are swapped in ��(T ′).
Since T does not vanish we have v ≤ I , J ≤ w. So by ordering the entries of I , J in
increasing order and comparing them with v and w, we have

v1 ≤ {i1, j2} ≤ w1, v2 ≤ {i2, j1} ≤ w2.

Since ��(T ′) vanishes we must have that either I ′ or J ′ vanishes. We proceed by
taking cases.
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Case 4.1 Assume that I ′ = {i1, j2, . . . } vanishes. We have

v1 ≤ i1 ≤ w1, j2 ≤ w1 < w2

and so I ′ ≤ w. Since I ′ vanishes we must have I ′ �≥ v and we deduce that j2 < v2.
We have the following

• v1 ∈ {1, . . . , �} because v1 ≤ i1 ∈ {1, . . . , �},
• v2 > v1 + 1 because v1 ≤ i1 < j2 < v2,
• v2 �= � + 1 because v2 ≤ i2 ∈ {1, . . . , �}.

By Theorems 3.3 we have that Gk,n,�|vw contains a monomial.
Case 4.2 Assume that J ′ = { j1, i2, . . . } vanishes. We have

v1 < v2 ≤ i2, v2 ≤ j1 ≤ w2

and so J ′ ≥ v. Since J ′ vanishes we must have J ′ �≤ w and we deduce that i2 > w1.
We have:

• wi ∈ {� + 1, . . . , n} for all i ≥ 2 because w2 ≥ j1 ∈ {� + 1, . . . , n},
• w2 �= w1 + 1 because w1 < i2 < j1 ≤ w2,
• w1 ≤ n − k because w1 < i2 = min(J ′) ≥ n − k + 1
• w1 �= � because w1 < i2 ∈ {1, . . . , �},
• w1 ≥ 2 because, by column I ′, we have i1 < j2 ≤ w1.

And so by Theorem 3.3 we have that Gk,n,�|vw contains a monomial. ��
Theorem 4.6 If Gk,n,�|vw is monomial-free, then the size of Im(��)|vw is equal to the
number of semi-standard Young tableaux with two columns I , J such that v ≤ I , J ≤
w.

Proof First note that a collection of standard monomials for K[PI ]I∈T v
w
/Gk,n,0|vw in

degree two is given by semi-standard Young tableaux with two columns such that
each column I satisfies v ≤ I ≤ w. The map �� from Definition 4.1 takes each semi-
standard Young tableau with two columns to a degree two monomial in K[PI ]I∈Ik,n .
By Lemma 4.4 we have that the restriction of �� to the standard monomials for Xv

w

gives a well-defined map to monomials in the quotient ring K[PI ]I∈T v
w
/ ker(φ�|vw).

By Lemma 4.2 and Proposition 4.5 we have that the restriction of �� to the standard
monomials of Xv

w is a bijection between standard monomials for Xv
w and a monomial

basis for K[PI ]I∈T v
w
/ ker(φ�|vw). ��

5 Toric degenerations of Richardson varieties

We are now ready to answer Question 1.1 and prove our main results, given the com-
plete characterisation of monomial-free ideals Gk,n,�|vw in Sect.3 and the description
of a monomial basis for K[PI ]I∈T v

w
/ ker(φ�|vw) in Sect.4. In particular, we will show

that whenGk,n,�|vw is monomial-free and inw‘(I (X
v
w)) is quadratically generated, then

inw‘(I (X
v
w)) provides a toric degeneration of the Richardson variety Xv

w. We expect
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that inw‘(I (X
v
w)) is always quadratically generated, see Conjecture 1.2, Theorem 5.3

and [8]. Hence, assuming that Conjecture 1.2 holds, all the pairs (v,w) classified in
Theorem 3.3 lead to toric degenerations of Xv

w.
The first step to prove our main results is to show that the inclusions in (1.2) hold.

Lemma 5.1 We have the following:

(i) The ideals Gk,n,�|vw and ker(φ�|vw) coincide if and only if Gk,n,�|vw is monomial-
free.

(ii) Gk,n,�|vw ⊆ inw�
(I (Xv

w)).

Proof Wefirst note that byTheorem3.1 the ideal inw�
(Gk,n) is quadratically generated.

We let G be a quadratic binomial generating set for inw�
(Gk,n).

(i) Note that φn|vw is a monomial map, hence its kernel does not contain any monomi-
als. So, if the ideal Gk,n,�|vw contains a monomial then it is not equal to ker (φ�|vw).
Now assume that the ideal Gk,n,�|vw does not contain any monomials. By defini-
tion, we haveGk,n,�|vw = 〈G|T v

w
〉 = 〈G∪{PJ : J ∈ Ik,n\T v

w}〉∩K[PI ]I∈T v
w
. Since

the ideal Gk,n,�|vw is monomial-free, the set G|T v
w
does not contain any monomi-

als. Moreover, since all binomials m1 − m2 ∈ G|T v
w
lie in the ideal inw�

(Gk,n)

and contain only the non-vanishing Plücker variables PJ for J ∈ T v
w , therefore,

m1 − m2 ∈ ker (φ�|vw). Thus Gk,n,�|vw ⊆ ker (φ�|vw) and this completes the proof
of (i).

(ii) Since Gk,n,�|vw = 〈G|T v
w
〉, we take ĝ ∈ G|T v

w
. We have that g ∈ G ⊆ inw�

(Gk,n)

and so there exists f ∈ Gk,n such that inw�
( f ) = g. The terms of ĝ are precisely the

non-vanishing terms of the initial terms of f . Thus ĝ = inw( f̂ ) ∈ inw�
(I (Xv

w)),
as desired.

��
Wenowuse thedescriptionof amonomial basis for the algebraK[PI ]I∈T v

w
/ ker(φ�|vw)

to show that the containment in Lemma 5.1(ii) is indeed an equality.

Theorem 5.2 If Gk,n,�|vw is monomial-free and inw‘(I (X
v
w)) is quadratically gener-

ated, then the ideals inw‘(I (X
v
w)), Gk,n,�|vw and ker(φ�|vw) are all equal.

Proof By Lemma 5.1 we have that Gk,n,�|vw = ker(φ�|vw) ⊆ inw�
(I (Xv

w)). In particu-
lar, the inclusion ker(φ�|vw) ⊆ inw�

(I (Xv
w)) implies that for any collection of mono-

mials M ⊆ K[PI ]I∈T v
w
, if M is linearly independent in K[PI ]I∈T v

w
/inw�

(I (Xv
w))

then M is linearly independent in K[PI ]I∈T v
w
/ ker(φ�|vw). So any standard mono-

mial basis of degree d for K[PI ]I∈T v
w
/inw�

(I (Xv
w)) is linearly independent in

K[PI ]I∈T v
w
/ ker(φ�|vw). Note that a Gröbner degeneration gives rise to a flat fam-

ily, and so the Hilbert polynomials of all fibers are identical. So by Theorem 2.3,
the dimension of degree d part of K[PI ]I∈T v

w
/inw�

(I (Xv
w)) is equal to the num-

ber of standard monomials for Xv
w of the degree d. By Proposition 4.5 we have

that K[PI ]I∈T v
w
/inw�

(I (Xv
w)) and K[PI ]I∈T v

w
/ ker(φ�|vw) have the same number of

standard monomials in degree two. Since ker(φ�|vw) ⊆ inw�
(I (Xv

w)) it follows that
Im(��)|vw is a collection of standard monomials for K[PI ]I∈T v

w
/inw�

(I (Xv
w)) and

Gk,n,�|vw. Since Gk,n,�|vw, inw�
(I (Xv

w)) and ker(φ�|vw) are all generated in degree two,
it follows that they are equal. ��
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Theorem 5.3 For � = 0, the ideals Gk,n,0|vw, inw0(I (X
v
w)) and ker(φ0|vw) are all equal.

In particular, they are all quadratically generated toric ideals.

Proof First note that by Theorem 3.3 each ideal Gk,n,0|vw is monomial-free. By
Theorem 2.3 the standard monomials for the Plücker algebra of the Richardson
variety are in bijection with the rectangular semi-standard Young tableaux with
columns J such that v ≤ J ≤ w. To see that these tableaux form a monomial
basis for K[PI ]I∈T v

w
/ ker(φ0|vw), observe that any two monomials in this algebra are

equal if and only if their corresponding tableaux are row-wise equal. Also, for any
tableau, there is a unique semi-standard Young tableau which is row-wise equal to
it. It follows that the dimension of the degree d part of K[PI ]I∈T v

w
/ ker(φ0|vw) and

K[PI ]I∈T v
w
/ inw0(I (X

v
w)) are equal for all d. Moreover, by Lemma 5.1 we have that

ker(φ0|vw) = Gk,n,0|vw ⊆ inw0(I (X
v
w)). Hence, these ideals are all equal and, in par-

ticular, they are quadratically generated. ��
Remark 5.4 In [8], usingMacaulay2wehave calculated the initial ideals inw�

(I (Xv
w))

for all Richardson varieties inside Gk,n where n ≤ 7 and k ≤ n−2.We have observed
that they are all quadratically generated. This confirms that Conjecture 1.2 holds for
n ≤ 7.

We proceed by comparing our results to previous results in the literature. We high-
light possible connections to other areas and future research directions.

Remark 5.5 In [4], the authors study the degenerations of Schubert varieties inside the
full flag variety built upon on the flat degeneration given by Feigin [17]. They give a
number of sufficient conditions on the permutation w ∈ Sn such that the restriction
of the degeneration to the Schubert variety Xw is reducible. Similarly to our methods,
this is done by showing that the corresponding initial ideals contain monomials. In
[7], we use the results of [12] to study the degenerations of Richardson varieties inside
the flag variety.

Remark 5.6 In [9], the authors showed that the polytopes associated to toric degener-
ations of the Grassmannian arising from matching fields, are related to each other by
sequences of combinatorial mutations in the sense of [1]. We expect that the polytopes
of toric degenerations of Richardson varieties provided here to have similar properties.
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