
Journal of Algebraic Combinatorics (2021) 54:1119–1135
https://doi.org/10.1007/s10801-021-01040-y

Partial duality for ribbon graphs, III: a Gray code algorithm
for enumeration

Jonathan L. Gross1 · Toufik Mansour2 · Thomas W. Tucker3

Received: 8 November 2020 / Accepted: 18 March 2021 / Published online: 2 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Partially Poincaré-dualizing an embedded graphG on an arbitrary subset of edges was
defined geometrically by Chmutov, using ribbon graphs. Part I of this series of papers
introduced the partial-duality polynomial, which enumerates all the possible partial
duals of the graph G, according to their Euler-genus, which can change according to
the selection of the edge subset on which to dualize. Ellis-Monaghan andMoffatt have
expanded the partial-duality concept to include thePetrie dual, theWilson dual, and the
two triality operators. Abrams and Ellis-Monaghan have given the five operators the
collective name twualities. Part II of this series of papers derived formulas for partial-
twuality polynomials corresponding to several fundamental sequences of embedded
graphs. Here in Part III, we present an algorithm to calculate the partial-twuality
polynomial of a ribbon graph G, for all twualities, which involves organizing the edge
subsets of G into a hypercube and traversing that hypercube via a Gray code.
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This third paper on ribbon graphs, after [10] and [11], presents an algorithm to
enumerate their partial duals according to Euler-genus. This algorithm applies to
several partial dualities and trialities, not just to partial Poincaré duality. We assume
some familiarity with the fundamentals of graph embeddings beyond planarity issues,
as presented, for instance, by [13] or [22], and also with ribbon graphs, as described by
[9]. Prior familiarity with flags and monodromy would be helpful, but is not assumed.

The algorithm has three principal procedures:

• The initialization procedure has as input parameters the number N of edges of
a ribbon graph G and a uni-rotation system W for G. A uni-rotation is roughly
describable as a cycle of quarter-edges (or equivalently, of flags) incident at a
vertex. From this information, the procedure constructs what we call an extended
monodromy module comprising the monodromy and some additional information
about the embedding it represents.

• Themain procedure examines all the partial duals ofG, conceptualized as the nodes
of a hypercube. At each node, it updates the current module, so that it specifies the
next partial dual along a Gray code, and it passes some data to a procedure that
calculates the Euler-genus into a running count of the occurrences of Euler-genus
values.

• The Euler-genus procedure has as input parameters the number of edges of G and
the bi-rotations for vertices and faces of the current partial dual. A bi-rotation is
roughly described as a pair of cycles, each ofwhich represents a direction of traversal
of a set of edges.

In Sect. 1, we review the definitions of graphs, graph embeddings, rotation systems
and ribbon graphs. Section 2 briefly reviews flags and the monodromy paradigm for
specifying a graph embedding and resolves their relation to ribbon graphs. In Sect. 3,
we review the duality and triality operators on a graph embedding. Section 4 describes
the corresponding partial operators and the polynomials that enumerate the partial
duals. Section 5 presents the algorithm for calculating the polynomials. We have
used a Maple® implementation of our algorithm as an experimental research aid in
developing the content of [10] and [11].

Italics on various technical terms indicates that their definitions or relevant descrip-
tions appear later, usually along with some developmental detail.

1 Introduction

In general, we allow a graph to have loops and multi-edges. Each edge is construed
to have two half-edges (that meet midway along the length of the edge). We label the
edges of a graph by the integers 1, 2, . . . , n. A direction of traversal of an edge may
be given by specifying the half-edge that is traversed last (where a traversal in that
direction terminates). If we are specifying graph embeddings by traditional rotation
systems or by ribbon graphs, we may denote the half-edges of edge j by j+ and j−.
However, if specification involves monodromy, then a half-edge corresponds to the
two flags incident on that half-edge. A graph is taken to be connected, unless it is
evident from context that we mean otherwise.

123



Journal of Algebraic Combinatorics (2021) 54:1119–1135 1121

All embeddings are cellular, so that the interior of every region is homeomorphic to
an open disk. The genus of an orientable surface S is denoted by γ (S). The orientable
surface of genus j is denoted S j and the non-orientable surface of crosscap number
k is denoted Nk.

The word map is a synonym for “graph embedding”. Writing Map(G) is simply
an explicit way to emphasize the embedding, rather than the underlying graph.

Rotation systems and monodromy are the two forms of combinatorial specification
of a graph embedding that are used within our algorithm for calculating partial-dual
polynomials. In this section, we briefly review rotation systems and ribbon graphs.
In the next section, we explain why our algorithm uses both rotation systems and
monodromy.
Notational Conventions. For any two permutations α and β of the same set of objects,
the notation αβ indicates the composition in which α is applied before β. Also, we
use |α| to denote the number of cycles in a permutation α.

1.1 Rotation systems

For an oriented embedding of a graphG, the induced rotation at a vertex v, commonly
denoted by ρv , is a cyclic permutation of the half-edges incident at v, in the order
consistent with the orientation of the surface. In the context of rotations, we define the
permutation λ on the half-edges of a graph G to be the involution that transposes a
half-edge of an edge ewith the other half-edge of e. The composition ρ = �v∈V (G)ρv

is called the induced rotation system for G. It is commonly denoted by ρ. Within the
monodromy paradigm, the meanings of the notations λ and ρ are a little different.

Conversely, given a graph G, we might specify at every vertex v an arbitrary cyclic
permutation ρv of the half-edges incident at v, and then call ρ = �v∈V (G)ρv an
assigned rotation system. It is well-known that an assigned rotation system induces
an oriented embedding of G, in which the cycles of the permutation ρλ trace the
face-boundary walks of an oriented embedding of G. This is constructed by fitting a
polygon with the appropriate number of sides to each of those cycles. We have the
following immediate implication:

Proposition 1.1 The total number of oriented embeddings of a graph G equals

∏

v∈V (G)

(δ(v) − 1)! (1.1)

where V (G) is the vertex set of G and δ(v) is its valence (or degree). ��

1.2 Ribbon graphs

A ribbon graph can be specified as a set of disks called vertex disks and a set of
rectangular strips called ribbons (or sometimes, “edges”), such that each of the two
ends of each ribbon is attached to a vertex disk along an arc; no two of these arcs meet.
The same mathematical object was previously called a band decomposition by [13].
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We implicitly associate to a ribbon graph a set of polygonal disks called face disks, one
for each boundary component, and we envision the boundary circuit of each face disk
as pasted homeomorphically to the corresponding boundary component. The visually
evocative terminology “ribbon graph” appears to have originated with [19].

Figure 1 shows a ribbon graph with two vertex disks and five ribbons. It has become
customary to label the ribbons with consecutive positive integers, as illustrated in this
figure.

Like some of our predecessors in the investigation of partial duals, we sometimes
leave it to the reader to infer whether a particular occurrence of the phrase “ribbon
graph” includes the face disks or not. For instance, the faces disks are absent (at least,
momentarily) when we give a ribbon an extra half-twist. However, when we refer
to the “Euler-genus of a ribbon graph”, we include the face disks. By tracing along
the boundary of the ribbon graph in Fig. 1, we see that there is only one boundary
component. Thus, saying that its Euler-genus is four means that the embedding surface
has Euler-genus four.

Our present objective is to facilitate calculation of the Euler-genus of the partial
duals of a ribbon graph, continuing the approach of [10] and [11]. We present a Gray
code algorithm to calculate the partial-dual polynomials that provide an inventory of
the partial duals of a ribbon graph, according to Euler-genus, for each of the duality
operators: Poincaré duality (∗), Petrie duality (×), and Wilson duality (∗×∗). Our
algorithm is loopless, with execution time θ(2n) for an n-edge graph.

Example 1.2 Let G be the 5-edge ribbon graph of Fig. 1. The Poincaré, Petrie, and
Wilson partial-dual polynomials are, respectively,

∂E∗
G(z) = 2z2 + 6z3 + 16z4 + 8z5,

∂E×
G(z) = 5z2 + 15z3 + 12z4, and

∂E∗×∗
G (z) = 2z3 + 13z4 + 17z5.

These partial-duality polynomials were calculated by computer. An effort to calculate
any of them by hand indicates the benefit of automated calculation, even for such a
small ribbon graph. In [10] and [11], we have used analytic methodsinvolving symme-

Fig. 1 A ribbon graph with two
vertex disks and five ribbons
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tries and recursions to derive partial-duality polynomials for ladder graphs, bouquets,
dipoles, and cycle graphs.

2 Quarter-ribbons, flags, andmonodromy

In this section, we describe a scheme for assigning flag labels. We see subsequently
how this flag-labeling scheme simplifies calculations based on the monodromy.

2.1 Flags and quarter-ribbons, andmonodromy

Figure 2 illustrates the decomposition of Map(G) into flags in the vicinity of an edge
that has been designated as edge k. There are several steps to this decomposition.

Given an n-ribbon graph G, we construct the barycentric subdivision of Map(G),
as described in [11]. Each face of Bary(G) is called a flag. The four flags incident on
ribbon k induce a decomposition into four quarter-ribbons, to which we assign the
canonical labels

4k−3, 4k−2, 4k−1, and 4k,

as illustrated in Fig. 2, for k = 1, 2, . . . , n. In turn, assigning to each flag the same
label as its quarter-ribbon is called the canonical labeling of the flags.

The monodromy of a ribbon graph G consists of three full involutions r0, r1, and
r2, which are usually said to act on the flags of Map(G). We will say, equivalently,
that they act on the quarter-ribbons.

Fig. 2 The four quarter-ribbons of ribbon k, labeled as shown, along with four adjacent flags p, q, r , s
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r0 transposes any two quarter-ribbons on the same side of an edge.

In Fig. 2, r0 includes the 2-cycles (4k−3, 4k−2) and (4k−1, 4k). (2.1)

r1 transposes any two quarter-ribbons in the same corner of Map(G).

including (p, 4k−3), (q, 4k−2), (r , 4k−1), and (s, 4k). (2.2)

r2 transposes any two quarter-ribbons that share a half-ribbon of G.

In Fig. 2, r2 includes the 2-cycles (4k−3, 4k) and (4k−2, 4k−1). (2.3)

When r0 and r2 correspond to a canonical quarter-ribbon labeling, the triple 〈r0, r1, r2〉
is called a canonical monodromy. We observe that the involutions r0 and r2 commute.
A convenient accessory to the monodromy of a ribbon graph is the composite involu-
tion lambda λ = r0r2.

Remark 2.1 In the context of rotation systems, the notation λ designates an involution
that transposes the half-edges of each edge. In the context of monodromy, it designates
an involution that transposes two pairs of quarter-ribbons for each edge.

Two of the involutions for the monodromy of any embedded graph G whose map
has the canonical flag labeling are always of the same form. For the ribbon graph of
Fig. 1 with five edges, or for any other graph with five edges, we have

r0 = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20). (2.4)

r2 = (1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19). (2.5)

Since λ = r0r2, we also have

λ = (1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20). (2.6)

Example 2.2 Towrite the involution r1 for Fig. 1,we draw itwith quarter-edge labeling,
as shown in Fig. 3. From the corners of either the ribbon graph (left) or of its rotation
projection (right), as defined by [13, §3.2.5], we read the involution

r1 = (1 12)(2 6)(3 16)(4 13)(5 20)(7 9)(8 11)(10 18)(14 17)(15 19). (2.7)

2.2 Face bi-rotations and vertex bi-rotations

Tracing along the boundary of the ribbon graph in Fig. 3, we can record the following
cyclic sequence of quarter-ribbons encountered as the traversal (starting clockwise at
quarter-edge 1) reaches the end of a ribbon:

1, 11, 7, 10, 17, 13, 3, 15, 20, 6. (2.8)

Since the traversal (2.8) traces both sides of each of the five ribbons, this must be the
boundary walk of the only face of the embedding. Since there are two vertices and
five edges, we can now calculate the Euler characteristic of the embedding as
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Fig. 3 (left) Quarter-ribbon labeling on the ribbon graph of Fig. 1. (right) A rotation projection of that
ribbon graph

χ = 2 − 5 + 1 = −2.

Since the embedding is non-orientable, we recognize the surface as N4, the surface
with four crosscaps. An alternative way to calculate this face-boundary walk is via the
composition r1r0, using (2.4) and (2.7).

r1r0 = (1 11 7 10 17 13 3 15 20 6)(2 5 19 16 4 14 18 9 8 12) (2.9)

We see that the second 10-cycle of ribbons traversed corresponds to the first 10-cycle in
reverse order, and we call these two cycles reverse face-boundary walks, or in context,
inverse cycles. We call (2.9) a face bi-rotation, and we denote the composition r1r0
by φ.

In a dual sense, tracing clockwise around the boundaries of the vertex disks u and v,
we record these cyclic sequences of quarter-ribbons that are encountered:

u. 1, 9, 6, 3, 13 (2.10)

v. 5, 17, 15, 18, 11 (2.11)

These cyclic sequences are a flag-based representation of what are traditionally called
rotations. An alternative way to calculate these rotations employs the composition
r1r2, using (2.7) and (2.5).

r1r2 = (1 9 6 3 13)(2 7 12 4 16)(5 17 15 18 11)(8 10 19 14 20) (2.12)

We observe that this composition includes two additional 5-cycles, which correspond
to quarter-ribbon cycles (2.10) and (2.11) in the opposite direction.We call the compo-
sition of the cycles (2.10) and (2.11) a vertex uni-rotation. We call the quarter-ribbon
permutation (2.12) a vertex bi-rotation, and we denote it by ρ.

Remark 2.3 An n-vertex ribbon graph G has 2n possible choices of a vertex uni-
rotation, each of which corresponds to the choice of a spanning tree. We could draw
a (rotation-preserving) planar projection of G so that each ribbon of the spanning tree
is drawn flat, that is, with no twist. However, what simplifies the use of our algorithm
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is that, no matter which of these 2n possible uni-rotations we supply as input data, the
initialization procedure (Algorithm 5.2) will construct the same bi-rotation.

Proposition 2.4 Let ψ be a vertex uni-rotation consistent with the canonical mon-
odromy 〈r0, r1, r2〉 for a ribbon graph G. Then

(a) ρ = ψ(r2ψr2)−1 is the corresponding vertex bi-rotation.
(b) φ = ρλ is the corresponding face bi-rotation.
(c) r1 = ρr2.

Proof This is straightforward.

(a) (r2ψr2)−1 is evidently the composition of the cycles that are inverses to the cycles
of ψ .

(b) Since λ = r2r0 and ρ = r1r2, we can employ this sequence of substitutions:

φ = r1r0 = r1(r2λ) = (r1r2)λ = ρλ.

(c) Since ρ = r1r2, we have ρr2 = r1.

��
It is sometime convenient to use the phrase extended monodromy to refer to a col-

lection of permutations that, in addition to r0, r1, and r2, also includes some additional
permutations, such as λ, ρ ,and φ.

2.3 Why we use two forms of embedding specification

In Sects. 4 and 5, we show how to change the extended monodromy of any partial dual
of an embedded graph G to the extended monodromy of the next partial dual in the
Gray code, by applying permutation compositions in Table 1. This is easier than trying
to make the change with rotation systems alone. On the other hand, it is half as much
effort to specify the initial embedding with a uni-rotation, which involves mentioning
only half the quarter-edges, than to specify an involution of the monodromy, which
requires writing all the quarter-edges (twice the effort, even though, using a canonical
monodromy, specifying only r1 is sufficient.)

3 Ribbon graphs and their dualities

Given an embedding (called the primal embedding) of a graph in a surface, we form
a Poincaré dual of G and its embedding as follows:

(1) place a dual vertex in the interior of each region of the primal embedding;
(2) through each primal edge e (i.e., of the graph G), draw a dual edge e∗ that joins

the dual vertex on one side of e to the dual vertex on its other side. If a single face
of the primal embedding is incident on both sides of edge e, then the dual edge e∗
is a loop.
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Table 1 Effect of partial-duality operators on the monodromy

G•|A (r0, r2, λ)•|A r
•|A
0 r

•|A
2 ρ•|A λ•|A φ•|A

= r0s|A = r2t |A = r1r
•|A
2 = r

•|A
0 r

•|A
2 = r1r

•|A
0

G (r0, r2, λ) r0 = r0 r2 = r2 ρ λ φ

G∗|A (r2, r0, λ) r
∗|A
0 = r0λ|A r

∗|A
2 = r2λ|A ρλ|A λ φλ|A

G×|A (λ, r2, r0) r
×|A
0 = r0r2|A r

×|A
2 = r2 ρ λr2|A φr2|A

G∗×|A (λ, r0, r2) r
∗×|A
0 = r0r2|A r

∗×|A
2 = r2λ|A ρλ|A λr0|A φr2|A

G×∗|A (r2, λ, r0) r
×∗|A
0 = r0λ|A r

×∗|A
2 = r2r0|A ρr0|A λr2|A φλ|A

G∗×∗|A (r0, λ, r2) r
∗×∗|A
0 = r0 r

∗×∗|A
2 = r2r0|A ρr0|A λr0|A φ

According to [2], knowledge of the duality between the cube and the octahedron, and
between the dodecahedron and the icosahedron goes back to the “fifteenth book of
Euclid”, which [2] estimates as having originated in the sixth century C.E. Poincaré
developed algebraic consequences of a generalization of this topological form of dual-
ity to higher dimensions.

Corollary 3.1 The rotation system for the Poincaré dual of an embedding with rotation
system ρ is given by the composition ρλ. ��

We recall that the full Poincarè dual G∗ of an embedded graph G (referred to as
the “primal” graph) is constructed as follows:

(1) Into the interior of each primal face, a dual vertex is inserted.
(2) Through each primal edge, a dual edge is drawn that joins the dual vertex on one

side of that primal edge to the dual vertex on the other side. If both sides of the
primal edge lie on the same primal face, then the dual vertex in that face is joined
to itself.

A completely topological definition of a Poincaré partial dual on an edge subset A,
here denoted by G∗|A , was given by Chmutov [5] (see also [9]), and is not reproduced
here. Here, as in [11], we represent the Poincaré dual and partial dual by combinatorial
operations on the monodromy.

ThePetrie dual G× of a ribbon graphG is constructed by detaching one end of each
ribbon at the arc where it meets a vertex disk, giving that ribbon an extra half-twist,
and then reattaching the end at the same vertex disk arc. For any set A of ribbons of
G, there is a topological construction of the partial Petrie dual on A, denoted G×|A
by applying that half-twist operation only to the ribbons in A. Here we represent the
Petrie dual and partial dual by combinatorial operations on the monodromy.

Wilson [23] showed that under composition, the duality operators ∗ and × form a
group of order six, now called the Wilson group, with the presentation

G = 〈∗,× | ∗2, ×2, (∗×)3〉

and is abstractly isomorphic to the symmetric group 
3. Since its order is three, the
composite operator∗× is called a triality. It is easily proved that the composite operator
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×∗ is also a triality and that (∗×)2 = ×∗. The operator ∗×∗ is of order two and is
often called the Wilson dual or the Wilsonian.

Abrams and Ellis-Monaghan [1] have introduced the word twualities to refer to the
three dualities and the two trialities collectively.

4 Partial-twuality polynomials

The Euler-genus of a ribbon graph G is given by the formula

e(G) = 2 − (|V (G)| − |E(G)| + |F(G)|), (4.1)

where V (G) is the set of vertex disks, E(G) is the set of ribbons (edges), and F(G)

is the set of face disks. Every partial dual of a ribbon graph G has the same number
of ribbons as G itself. Thus, to calculate the Euler-genus of some partial dual of G, it
is sufficient, in view of Proposition 2.4, to know the monodromy of that partial dual,
since

|V (G)| = |r1r2|
2

and |F(G)| = |r1r0|
2

. (4.2)

Table 1 (reproduced from [11, Table 3.1]) is our guideline to calculating the partial
dual of any ribbon graph for any twuality. The symbols s and t in the labels for columns
r•|A
0 and r•|A

2 are generic names for the various right multipliers of r0 and r2 that appear
to the right of the equals sign in the entries within those respective columns.

The partial-duality polynomial of the ribbon graph G for each of the twualities
is the polynomial for which the coefficient of zr is the number of partial duals of G
whose Euler-genus is r . It follows that if G has n ribbons, then, since the number of
subsets of ribbons is 2n , it follows that the sum of those coefficients is 2n . The five
partial-duality polynomials of G are denoted

∂E∗
G(z), ∂E×

G(z), ∂E∗×
G (z), ∂E×∗

G (z), and ∂E∗×∗
G (z).

Example 4.1 As an example of a monodromy-based calculation, we calculate the
Euler-genus of the Petrie partial dual on ribbons 1 and 3 of the quarter-ribbon labeled
ribbon graph G in Fig. 4.
We can see immediately that there is one vertex and that there are three ribbons. For
this very small example, we could easily draw the designated Petrie partial dual by
twisting ribbon 1 and untwisting ribbon 3 and then doing face-tracing by hand to

Fig. 4 A ribbon graph with
quarter-ribbon labeling

11211 10 9 87 6 5 432
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determine that there is only one face. Thus, we now know that e(G×|A) = 3, that is,
the Euler-genus of the partial dual is three.

The ribbon graph G has as a vertex uni-rotation the cyclic permutation

(1 10 6 9 3 5),

to which an automated procedure could apply Proposition 2.4, thereby to obtain the
vertex bi-rotation and the face bi-rotation

ρ = (1 10 6 9 3 5)(2 12 7 11 4 8)

φ = (1 12 5 3 7 9)(2 10 8 4 6 11),

and the (extended) monodromy

r0 = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)

r2 = (1 4)(2 3)(5 8)(6 7)(9 12)(10 11)

r1 = (1 11)(2 9)(3 8)(4 5)(6 12)(7 10)

λ = (1 3)(2 4)(5 7)(6 8)(9 11)(10 12).

To obtain the face bi-rotation for G×|{1,3} , for instance, we evaluate Table 1 entry in
Row G×|A , Column φr•|A

2 for A = {1, 3}.

φr2|{1,3} = (1 9 4 6 10 8)(2 11 3 7 12 5)

Since the face bi-rotation has two cycles, the number of faces is one.

5 Algorithm for partial-twuality polynomials

For a given partial-twuality operator •, in order to use (4.2) to calculate the partial-
duality polynomial ∂E•

G , we need to calculate the vertex bi-rotation ρ•|A and face
bi-rotation φ•|A of the partial dual G•|A , for every ribbon subset A ⊆ E(G). To
accomplish this, we conceptually identify the ribbon subsets with the nodes of the
standard Boolean lattice of subsets of {1, 2, . . . , n}, where |E(G)| = n. Each ribbon e
ofG is identified with one of the n ordered bits. This identifies each node of the n-cube
with some integer from 0 to 2n − 1, as well as with a ribbon subset. With that in mind,
calculating the inventory of partial duals is a straightforward matter of traversing the
n-cube, while doing the following at each node:

(1) update the monodromy for the partial dual represented by the node just encoun-
tered;

(2) calculate the numbers of vertex disks and face disks for the ribbon graph specified
by that monodromy;

(3) calculate the Euler-genus of the corresponding embedding, and increment the
corresponding counter.
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We modularize our algorithm, so that initialization and the calculation of Euler-genus
are given as separate procedures.
Pseudocode Conventions.We specify algorithms in an informal pseudocode, which
somewhat resembles Maple®.

• By default, program variables (not including input and output parameters) are local.
Their data types (e.g., integer, character string, permutation, array) are usually
inferred from context.

• The index of a subscripted variable is understood as a coordinate in an array. The
default base coordinate of an array is zero.

• For emphasis, we sometimes write instructions that assign a variable its default
value.

• Boldface is used for clarity; no other meaning is intended.
• In the pseudocode, for any two permutation-valued variables α and β of the same
set of objects, the notation α ·β indicates the composition in which α is applied
before β. This is opposite to the meaning of juxtaposition in prose.

5.1 Gray code traversal of the n-cube

A Gray code for the n-cube is a permutation of the non-negative integers 1, 2, . . . ,
2n−1, such that the binary representations of the Gray codes gray(k) and gray(k+1)
of two successive integers differ in only one bit. For a ribbon graph G with ribbons
labeled 1, 2, . . . , n, each number

k ∈ {0, 1, . . . , 2n−1}
stands for a subset of ribbons. The j th bit in the binary representation of gray(k)
corresponds to ribbon j , and the number k corresponds to the subset of E(G) in
which ribbon j is a member if and only if the j th bit of gray(k) is 1.

The 0th number in our sequence of integers is gray(0) = 0. To find the next binary
numeral after the binary numeral gray(k), we calculate lowbit(k) to be the lowest
order 1-bit of the binary representation of k + 1, and we change that bit in the binary
numeral gray(k).

Algorithm 5.1 (lowest bit of binary representation of number n)

(1) lowbit :=procedure(n)

(2) j = 0 :
(3) if n = 0 then return (0) : end if :
(4) while n mod 2 j = 0 do
(5) j := j + 1 : end do :
(6) return( j) : end proc :

Example 5.1 The following table presents the values of lowbit(k + 1) and gray(k)
for k = 0, 1, . . . , 9.

k 0 1 2 3 4 5 6 7 8 9 · · ·
lowbit(k + 1) 1 2 1 4 1 2 1 8 1 2 · · ·

gray(k) 0 1 3 2 6 7 5 4 12 13 · · ·
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5.2 Initialization procedure

The input parameters of our initialization procedure are the number of ribbons of the
ribbon graphG and the vertex uni-rotation relative to a given spanning tree. The output
parameter is an extended monodromy for G. The pound sign symbol “#” indicates a
comment. The presumption of the last few lines is that everything is returned as a single
module representing an extendedmonodromy. The composition of permutationsα and
β is denoted by α ·β.
Algorithm 5.2 (transform a uni-rotation into an extended monodromy)

(1) ExtMono:=procedure(N ,W )

(2) ## parameter N is number of ribbons of graph G, i.e., N = |E(G)|
(3) ## parameter W is uni-rotation for G
(4) #
(5) ##canonical involutionr0[1..N ] = (1, 2)(3, 4) . . . (4N−3, 4N−2)(4N−1, 4N )

(6) r00:=( ) : # initialization
(7) for j from 1 to N do # use canonical flag labels
(8) r0 j :=(4 j−3, 4 j−2)(4 j−1, 4 j) : end do:
(9) #

(10) ##canonical involutionr2[1..N ] = (1, 4)(2, 3) . . . (4N−3, 4N )(4N−2, 4N−1)
(11) r20:=( ) : # initialization
(12) for j from 1 to N do # use canonical flag labels
(13) r2 j :=(4 j−3, 4 j)(4 j−2, 4 j−1) : end do:
(14) #
(15) ## canonical involution λ[1..N ] = (1, 3)(2, 4) . . . (4N−3, 4N−1)(4N−2, 4N )

(16) L AM :=( ) : # initialization
(17) for j from 1 to N do
(18) λ j :=r0 j ·r2 j :
(19) L AM :=L AM ·λ j : end do:
(20) #
(21) ## construct initial vertex bi-rotsys ρ and initial face bi-rotsys φ via Prop 2.4
(22) UR:=W :
(23) for j from 1 to N do ## loop installs co-rotsys labels in U R
(24) UR:=r2 j ·UR ·r2 j : end do:
(25) ρ:=W ·UR−1 : # ρ is now vertex bi-rotsys
(26) φ:=ρ ·L AM : # φ is now face bi-rotsys
(27) #
(28) ## construct extended monodromy module M and return
(29) M1:=r0 : M2:=r2 : M3:=λ : M4:=ρ : M5:=φ :
(30) return(M) : end proc:

5.3 Euler-genus of a ribbon graph

The input parameters of our procedure for calculating the Euler-genus of a ribbon
graph G are the number of ribbons, the vertex bi-rotation, and the face bi-rotation of
G. The output parameter is the Euler-genus.
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Algorithm 5.3 (calculate the Euler-genus)

(1) EulerGenus:=procedure(N , ρ, φ)

(2) ## input parameter N is number of ribbons of graph G, i.e., N = |E(G)|
(3) ## input parameters ρ and φ are vertex bi-rotation, face bi-rotation
(4) #
(5) v:=|ρ|/2 : # number of cycles of ρ = twice number of vertices
(6) f :=|φ|/2 : # number of cycles of φ = twice number of faces
(7) χ :=v − N + f : # Euler characteristic
(8) ε:=2 − χ : # Euler-genus for CONNECTED ribbon graph
(9) return(ε) : end proc :

5.4 A loopless algorithm for the partial-duality polynomial

A loopless algorithm is an imperative algorithm that generates an initial object in
constant time, and then successive combinatorial objects, in linear time in the size of
the input [7,15]. It is clear that Algorithm 5.4 is loopless. The main loop traverses a
Gray code in the hypercube of ribbon subsets of the ribbon graph G received as input.

The input parameters are the number N of ribbons ofG, a vertex uni-rotation forG,
and the duality operation • of interest. Within the loop at the node j representing the
ribbon subset A, it executes the following steps:

(1) calculate the monodromy of the partial dual G•|A represented by node j from
the monodromy of the previous node, based on the permutation compositions
indicated in Table 1;

(2) calculate the Euler-genus e(G•|A) of the ribbon graph corresponding to node j ;
(3) increment the counter for the coefficient of ze(G

•|A ).

Algorithm 5.4 (partial-twuality polynomial for ribbon graph G)

(1) PTwuPoly :=procedure(N ,W , TC)

(2) ## input parameter N is number of edges of G, i.e., N = |E(G)|
(3) ## input parameter W is uni-rotation for G
(4) ## input parameter TC is code for operation ∗, ×, ∗×∗, ∗×, or ×∗
(5) #
(6) ### INITIALIZE
(7) M:= ExtMono(N,W): # transform uni-rot W into extended monodromy M
(8) r0:=M1 : r2:=M2 : λ:=M3 : ρ:=M4 : φ:=M5 :
(9) coeff:= vector(0..N, 0): # initialize coeffs of partial dual poly at zero

(10) Gray:= vector(1..N, 0): # kludge used only for trialities ∗× and ×∗
(11) #
(12) ### MAIN LOOP: ACCUMULATE EULER-GENUS COUNTS

while TRAVERSING GRAY CODE
(13) for j :=0 to 2N − 1 do
(14) if TC = ∗ then ρ:=ρ ·λlowbit( j) : φ:=φ ·λlowbit( j)

r0save:=r0lowbit( j) : r0lowbit( j):=r2lowbit( j) : r2lowbit( j):=r0save :
(15) elif TC = × then φ:=φ ·r2lowbit( j) :

r0save:=r0lowbit( j) : r0lowbit( j):=λlowbit( j) : λlowbit( j):=r0save :
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(16) elif TC = ∗×∗ then
ρ:=ρ ·r0lowbit( j):
r2save:=r2lowbit( j) : r2lowbit( j):=λlowbit( j) : λlowbit( j):=r2save :

(17) elif TC = ∗× then
(18) if j > 0andGraylowbit( j) = 0then

ρ:=ρ ·λlowbit( j) : φ:=φ ·r2lowbit( j) : r0save:=r0lowbit( j) :
r0lowbit( j):=λlowbit( j) : λlowbit( j):=r2lowbit( j) : r2lowbit( j):=r0save :

(19) else
ρ:=ρ ·r0lowbit( j) : φ:=φ ·λlowbit( j) : r0save:=r0lowbit( j) :
r0lowbit( j):=r2lowbit( j) : r2lowbit( j):=λlowbit( j) : λlowbit( j):=r0save :
end if

(20) elif TC = × ∗ then
(21) if j > 0andGraylowbit( j) = 0then

ρ:=ρ ·r0lowbit( j) : φ:=φ ·λlowbit( j) : r0save:=r0lowbit( j) :
r0lowbit( j):=r2lowbit( j) : r2lowbit( j):=λlowbit( j) : λlowbit( j):=r0save :

(22) else
ρ:=ρ ·λlowbit( j) : φ:=φ ·r2lowbit( j) : r0save:=r0lowbit( j) :
r0lowbit( j):=λlowbit( j) : λlowbit( j):=r2lowbit( j) : r2lowbit( j):=r0save :
end if

(23) else print(“INVALID DUALITY CODE”); return; # execution halts
end if

(24) ## the vector Gray is a kludge used only for trialities ∗× and ×∗
(25) if j > 0thenGraylowbit( j):=(Graylowbit( j) + 1)mod2 : end if:
(26) ## CALCULATE and RECORD EULER-GENUS
(27) ε:=EulerGenus(N , ρ, φ):
(28) coeffε:=coeffε + 1:
(29) end do ## END of MAIN LOOP
(30) #
(31) ### BUILD and PRINT PARTIAL-TWUALITY POLYNOMIAL
(32) pol y:=0: # initialize polynomial
(33) for j :=0 to N do
(34) poly:=poly + coF[ j] ∗ z j : od:
(35) print(poly) :
(36) endproc:

Example 5.2 We reproduce the ribbon graph of Fig. 4. To calculate the Poincaré-dual
polynomial to that ribbon graph, we supply to Algorithm 5.4, the partial-twuality
polynomial algorithm, the input parameters:

Fig. 5 Reproduction of Fig. 4

11211 10 9 87 6 5 432

123



1134 Journal of Algebraic Combinatorics (2021) 54:1119–1135

N = 3

W = (1 10 6 9 3 5)

TC = ∗

The procedure Algorithm 5.2 returns the extended monodromy:

r0[1, 2, 3] = (1 2)(3 4), (5 6)(7 8), (9 10)(11 12)

r2[1, 2, 3] = (1 4)(2 3), (5 8)(6 7), (9 12)(10 11)

λ[1, 2, 3] = (1 3)(2 4), (5 7)(6 8), (9 11)(10 12)

ρ = (1 10 6 9 3 5)(2 12 7 11 4 8)

φ = (1 9 4 6 10 8)(2 11 3 7 12 5)

We trace the values of the procedure variables j (node number), Gray( j) (its Gray
code), A j (the corresponding ribbon subset), e(GAj ) (the Euler-genus for the corre-
sponding partial dual), and the vector coeff (whose coordinates record the number of
times that each Euler-genus occurs).

j Gray( j) A j e(GA j ) coeff[0, 1, 2, 3]

0 0 ∅ 3 [0, 0, 0, 1]
1 1 {1} 1 [0, 1, 0, 1]
2 3 {1, 2} 3 [0, 1, 0, 2]
3 2 {2} 2 [0, 1, 1, 2]
4 6 {2, 3} 1 [0, 2, 1, 2]
5 7 {1, 2, 3} 3 [0, 2, 1, 3]
6 5 {1, 3} 2 [0, 2, 2, 3]
7 4 {3} 3 [0, 2, 2, 4]

Accordingly, the graph of Fig. 4 has the Poincaré partial-duality polynomial

2z + 2z2 + 4z3.

Thus, like the polynomial (4.3) of [11], it is unimodal but not log-concave.

References

1. Abrams, L., Ellis-Monaghan, J.: New dualities from old: generating geometric, Petrie, and Wilson
dualities and trialities of ribbon graphs, arXiv:1901.03739v2 [math.CO], 9 Aug (2019)

2. Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory 1736–1936. Oxford University Press, Oxford
(1976)

3. Bollobás, B., Riordan, O.: A polynomial invariant of graphs on orientable surfaces. Proc. London
Math. Soc. 83, 513–531 (2001)

4. Bollobás, B., Riordan, O.: A polynomial of graphs on surfaces. Math. Ann. 323, 81–96 (2002)
5. Chmutov, S.: Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial.

J. Combin. Theory Ser. B 99, 617–638 (2009)

123

http://arxiv.org/abs/1901.03739v2


Journal of Algebraic Combinatorics (2021) 54:1119–1135 1135

6. Edmonds, J.R.: A combinatorial representation for polyhedral surfaces (abstract). Notices Amer.Math.
Soc. 7, 646 (1960)

7. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and other combinatorial
configurations. J. ACM 20, 500–513 (1973)

8. Ellis-Monaghan, J., Moffatt, I.: Twisted duality for embedded graphs. Trans. Amer. Math. Soc. 364,
1529–1569 (2012)

9. Ellis-Monaghan, J., Moffatt, I.: Graphs on Surfaces: Dualities, Polynomials, and Knots. Springer,
Heidelberg (2013)

10. Gross, J.L., Mansour, T., Tucker, T.W.: Partial-duality for ribbon graphs, I: Distributions, Europ. J.
COmbin. 86 (2020), article 103084

11. Gross, J.L., Mansour, T., Tucker, T.W.: Partial-duality for ribbon graphs, II: Permutations and Mon-
odromy, Europ. J. COmbin., to appear (2021)

12. Gross, J.L., Robbins, D.P., Tucker, T.W.: Genus distributions for bouquets of circles. J. Combin. Theory
Ser. B 47, 292–306 (1989)

13. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley, 1987 (reprinted by Dover, 2001)
14. Heffter, L.: Über das problem der nachbargebiete. Math. Ann. 38, 477–508 (1891)
15. Knuth, D.E.: The Art of Computer Programming, Vol. 4: Generating all tuples and permutations

addison-Wesley, (2005)
16. Jones, G.A., Singerman, D.: Theory of maps on orientable surfaces. Proc. London Math. Soc. III(37),

273–307 (1978)
17. Moffatt, I.: Partial duality and Bollobás and Riordan’s ribbon graph polynomial. Discrete Math. 310,

174–183 (2010)
18. Moffatt, I.: Separability and the genus of a partial dual. Europ. J. COmbin. 34, 355–378 (2013)
19. Reshetikhin, N., Turaev, V.: Ribbon graphs and their invariants derived from quantum groups. Comm.

Math. Phys. 127, 1–26 (1990)
20. Tutte, W.T.: What is a map?, in NewDirections in the Theory of Graphs, ed. Academic Press, F. Harary

(1973)
21. Tutte, W.T.: Graph Theory, volume 21 of Encyclopedia of Mathematics and its Applications, Addison-

Wesley, (1984)
22. White, A.T.: Graphs of Groups on Surfaces. Elsevier, North-Holland (2001)
23. Wilson, S.: Operators over regular maps. Pacific J. Math. 81, 559–568 (1979)
24. Youngs, J.W.T.: Minimal imbeddings and the genus of a graph. J. Math. andMech. 12, 303–315 (1963)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Partial duality for ribbon graphs, III: a Gray code algorithm for enumeration
	Abstract
	1 Introduction
	1.1 Rotation systems
	1.2 Ribbon graphs

	2 Quarter-ribbons, flags, and monodromy
	2.1 Flags and quarter-ribbons, and monodromy
	2.2 Face bi-rotations and vertex bi-rotations
	2.3 Why we use two forms of embedding specification

	3 Ribbon graphs and their dualities
	4 Partial-twuality polynomials
	5 Algorithm for partial-twuality polynomials
	5.1 Gray code traversal of the n-cube
	5.2 Initialization procedure
	5.3 Euler-genus of a ribbon graph
	5.4 A loopless algorithm for the partial-duality polynomial

	References




