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Abstract
For fixed integers n ≥ 1 andm ≥ 0,we consider theDoob graph D = D(n, m) formed
by taking direct product of n copies of Shrikhande graph and m copies of complete
graph K4. Fix a vertex x of D, and let T = T (x) denote the Terwilliger algebra of D
with respect to x . Let A denote the adjacencymatrix of D. There exists a decomposition
of A into a sum A = L + F + R of elements in T where L , F , and R are the
lowering, flat, and raising matrices, respectively. We call A = L + F + R the quantum
decomposition of A. Hora and Obata (Quantum Probability and Spectral Analysis of
Graphs. Theoretical and Mathematical Physics, Springer, Berlin, 2007) introduced a
semi-simple matrix algebra based on the quantum decomposition of the adjacency
matrix. This algebra is generated by the quantum components of the decomposition
and is called the quantum adjacency algebra of the graph. Let Q = Q(x) denote the
quantum adjacency algebra of D with respect to x . In this paper, we display an action
of the special orthogonal Lie algebra so4 on the standard module for D. We also prove
Q is generated by the center and the homomorphic image of the universal enveloping
algebra U (so4). To do these, we exploit the work of Tanabe (JAC 6: 173–195, 1997)
on irreducible T -modules of D.
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1 Introduction and background

The Terwilliger algebra or subconstituent algebra is a finite-dimensional semi-simple
matrix C-algebra that is noncommutative in general. Since its introduction (see [21],
[22], [23]), the Terwilliger algebra has become a rich area of research in the study of
combinatorial objects such as graphs (e.g., [6], [7], [8]) and association schemes (e.g.,
[3], [14], [17], [19]). Independent of the notion of subconstituent algebra, Hora and
Obata [10] introduced the quantum adjacency algebra of the graph based on a certain
partition of the edge set. This partition is called the quantum decomposition of the
adjacency matrix, and the quantum adjacency algebra is generated by the quantum
components of the decomposition. They used this algebra to explore limiting spectral
distributions of infinite sequences of “growing” graphs. The quantum components
turned out to be elements of the Terwilliger algebra of the graph with respect to a fixed
vertex.

To be able to describe our results, we recall some preliminary concepts (see [1],
[2], [16], [21] for more thorough discussion).

Let X denote a nonempty finite set. Denote byMatX (C) theC-algebra of |X |× |X |
matrices with complex entries whose rows and columns are indexed by X . The C-
vector space of column vectors whose coordinates are indexed by X is denoted by
V = C

X . Observe that MatX (C) acts on V by left multiplication. The vector space
V is called the standard module. For all v, u ∈ V , endow V with Hermitian inner
product 〈v, u〉 = vt ū where vt denotes the transpose of v and ū denotes the complex
conjugate of u.

Let � = (X , R) be a finite, undirected, simple connected graph with vertex set X
and edge set R. The distance ∂(x, y) from x to y is the length of a shortest path from
x to y. By the diameter of �, we mean the scalar D = max{∂(x, y) : x, y ∈ X}. If,
for all integers h, i, j (0 ≤ h, i, j ≤ D) and for all x, y ∈ X with ∂(x, y) = h, the
number

ph
i j :=

∣
∣
∣
∣

{

z ∈ X : ∂(x, z) = i, ∂(y, z) = j

}∣
∣
∣
∣

(2)

is independent of x and y, then � is said to be distance-regular. The scalars (2) are
called the intersection numbers of �. We abbreviate

bi := pi
1i+1 (0 ≤ i ≤ D − 1),

ci := pi
1i−1 (1 ≤ i ≤ D).

For convenience, c0 := 0 and bD := 0. From here on, we assume that � is a distance-
regular graph with diameter D ≥ 1.

We recall the Bose–Mesner algebra of �. For each integer i (0 ≤ i ≤ D), let Ai

denote the matrix in MatX (C) with xy-entry given by

(Ai )xy =
{

1 if ∂(x, y) = i
0 if ∂(x, y) �= i

(x, y ∈ X).
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The matrix Ai is called the i th distance matrix of �. We abbreviate A := A1 and refer
to this as the adjacency matrix of �. We observe

D
∑

i=0

Ai = J ,

A0 = I ,

At
i = Ai (0 ≤ i ≤ D),

Ai = Ai (0 ≤ i ≤ D),

Ai A j =
D

∑

h=0

ph
i j Ah (0 ≤ i, j ≤ D),

where I and J are the identity and the all-ones matrices in MatX (C), respectively.
Since ph

i j = ph
ji , it follows that Ai A j = A j Ai . Note that {Ai }D

i=0 forms a basis for
the commutative subalgebra M of MatX (C) known as the Bose–Mesner algebra of
�. The matrix A generates M by [1, p. 190]. Moreover, by [1, pp. 59, 64], M has a
second basis {Ei }D

i=0 called primitive idempotents of � such that

D
∑

i=0

Ei = I ,

E0 = |X |−1 J ,

Et
i = Ei (0 ≤ i ≤ D),

Ei = Ei (0 ≤ i ≤ D),

Ei E j = δi j Ei (0 ≤ i, j ≤ D).

Since {Ei }D
i=0 forms a basis for M , there are scalars θ0, . . . , θD such that A =

∑D
i=0 θi Ei . Observe AEi = Ei A = θi Ei for each integer i (0 ≤ i ≤ D). By [1,

p. 97], the scalars {θi }D
i=0 are real. Since A generates M , the scalars {θi }D

i=0 are pair-
wise distinct. For each integer i (0 ≤ i ≤ D), θi is the eigenvalue of � associated
with Ei . Then, V decomposes into

V = E0V + E1V + · · · + EDV (orthogonal direct sum).

For each integer i (0 ≤ i ≤ D), Ei V is the eigenspace of A associated to eigenvalue
θi .

We recall the dual Bose–Mesner algebra of �. Fix a vertex x ∈ X and call it base
vertex. For each integer i (0 ≤ i ≤ D), let E∗

i = E∗
i (x) denote the diagonal matrix in

MatX (C) with yy-entry given by

(E∗
i )yy =

{

1 if ∂(x, y) = i
0 if ∂(x, y) �= i

(y ∈ X).
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We call E∗
i the i th dual primitive idempotent of � with respect to the base vertex x .

For convenience, we define E∗
i = 0 whenever i < 0 or i > D. Observe that

D
∑

i=0

E∗
i = I ,

E∗t
i = E∗

i (0 ≤ i ≤ D),

E∗
i = E∗

i (0 ≤ i ≤ D),

E∗
i E∗

j = δi j E∗
i (0 ≤ i, j ≤ D).

Note that
{

E∗
i

}D
i=0 is linearly independent and forms a basis for a commutative subal-

gebra M∗ = M∗(x) of MatX (C) known as the dual Bose–Mesner algebra of � with
respect to x .

We recall Terwilliger algebra of � and its irreducible modules. Let T = T (x)

denote the subalgebra of MatX (C) generated by M and M∗. We call T the Terwilliger
algebra of � with respect to x . Since M is generated by A and M∗ is generated by
{

E∗
i

}D
i=0, it follows that T is generated by A and {E∗

i }D
i=0. Suppose for a moment W

is a subspace of V . For each B ∈ MatX (C), we define

BW = {Bw : w ∈ W } ⊆ V .

We say W is B-invariant whenever BW ⊆ W . If W is B-invariant for all B ∈ T ,
then W is called a T -module. A T -module W is said to be irreducible if W �= 0 and
W contains no other T -modules other than 0 and W . If W is a T -module, then its
orthogonal complement W ⊥ := {v ∈ V : 〈v,w〉 = 0 ∀w ∈ W } is also a T -module.
In fact, if W is a T -module containing another T -module W ′, then W ′⊥ ∩ W is also
a T -module and W = W ′ ⊕ (

W ′⊥ ∩ W
)

. Consequently, any nonzero T -module (e.g.,
the standardmodule V ) is an orthogonal direct sum of irreducible T -modules. Now, let
W denote an irreducible T -module. Define Ws := {i : 0 ≤ i ≤ D, E∗

i W �= 0}. We
call |Ws |−1 and min (Ws) the diameter and endpoint of W , respectively. On the other
hand, define Ws′ := {i : 0 ≤ i ≤ D, Ei W �= 0}. We call |Ws′ |−1 and min (Ws′) the
dual-diameter and dual-endpoint of W , respectively. We say W is thin (resp. dual-
thin) whenever dim(E∗

i W ) ≤ 1 (resp. dim(Ei W ) ≤ 1) for all integers i (0 ≤ i ≤ D).
Let W and W ′ denote T -modules. By a T -module isomorphism from W to W ′, we
mean a vector space isomorphism σ : W → W ′ such that (σ B − Bσ)W = 0 for
all B ∈ T . If such an isomorphism exists, then W and W ′ are said to be isomorphic
T -modules.

Now, we recall the quantum adjacency algebra of �. To describe this algebra, we
define the matrices L = L(x), F = F(x), and R = R(x) by

L =
D

∑

i=0

E∗
i−1AE∗

i , F =
D

∑

i=0

E∗
i AE∗

i , R =
D

∑

i=0

E∗
i+1AE∗

i .
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We call L , F , and R the lowering matrix, flat matrix, and raising matrix, respectively.
Observe that L, F, R ∈ T since A and

{

E∗
i

}D
i=0 are generators of T . Let Q = Q(x)

denote the subalgebra of T generated by L , F , and R.We call Q the quantum adjacency
algebra of � with respect to x . Since E∗

j AE∗
k = 0 if | j − k| > 1, we have

A =
( D

∑

i=0

E∗
i

)

A

( D
∑

j=0

E∗
j

)

=
D

∑

i=0

E∗
i−1AE∗

i +
D

∑

i=0

E∗
i AE∗

i +
D

∑

i=0

E∗
i+1AE∗

i

= L + F + R. (3)

We call (3) the quantum decomposition of the adjacency matrix A with respect to x .
Observe that

L = L, F = F, R = R, Ft = F, Rt = L. (4)

Hence, Q is closed under the conjugate-transpose map and is semi-simple. Moreover,

L E∗
i V ⊆ E∗

i−1V , F E∗
i V ⊆ E∗

i V , and RE∗
i V ⊆ E∗

i+1V . (5)

We define Q-modules, irreducible Q-modules, and Q-module isomorphism analogous
to that of T -modules, irreducible T -modules, and T -module isomorphism, respec-
tively. Observe that every T -module turns into a Q-module by restricting the action
of T to Q.

We compare our results with previous works on Terwilliger algebras of particular
distance-regular graphs. The theory of Terwilliger algebra has been most useful when
it is applied to Q-polynomial distance-regular graphs (see [2, p. 135] for definition).
Hamming graphs and Doob graphs are common examples. Go [8] described the irre-
ducible modules of the Terwilliger algebras of binary Hamming graphs. She showed
implicitly that the Terwilliger algebras in this case are homomorphic images of the
universal enveloping algebra U (sl2) of the complex Lie algebra sl2. Terwilliger [20]
considered general Hamming graphs and showed that Terwilliger algebras of Ham-
ming graphs also contain homomorphic images ofU (sl2) (cf. [14]). Generalizing these
results, Morales and Pascasio [18] considered a Lie algebra in terms of generators and
relations that contains subalgebras that are isomorphic to sl2. This Lie algebra is known
as the tetrahedron algebra �. They showed the Terwilliger algebra of any Hamming
graph or Doob graph is generated by the center and the homomorphic image of the
universal enveloping algebra U (�). In this paper, we consider the special orthogonal
Lie algebra so4 and show that the quantum adjacency algebra of any Doob graph is
generated by the center and homomorphic image of the universal enveloping algebra
U (so4). To do this, we exploit the work of Tanabe [19] on irreducible modules of the
Terwilliger algebras of Doob graphs.

The paper is organized as follows: In Sect. 2, we review important properties of
Doob graphs and their Terwilliger algebras along with Tanabe’s description of irre-
ducible modules. In Sect. 3, we prove several relations among lowering, raising, and
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flat matrices of Doob graphs. We obtain these relations by restricting quantum compo-
nents to an arbitrary irreducible module. In Sect. 4, we recall the classical Lie algebra
so4. We also review the representation theory of finite-dimensional so4-modules from
the point of view of highest weight theory. In Sect. 5, we display an action of so4 on
the standard module for Doob graphs and prove other main results.

2 Doob graphs and their Terwilliger algebras

Let � = (X , R) and �′ = (X ′, R′) be finite, undirected, simple connected graphs.
The direct product ���′ is the graph on vertex set X × X ′ such that (a, a′) and (b, b′)
are adjacent if and only if either ab ∈ R and a′ = b′ or a = b and a′b′ ∈ R′. Let d
denote a positive integer. We write ��d instead of �� · · · �� (d copies). A graph is
complete if every pair of distinct vertices are adjacent. For each integer q ≥ 3, let Kq

denote the complete graph on q vertices. By Hamming graph H(d, q), we mean the
graph K �d

q which is distance-regular with diameter d and has intersection numbers

bi = (q − 1)(d − i),

ci = i,

for integers i (0 ≤ i ≤ d) (see [2, p. 261]). The eigenvalues of H(d, q) are {q(d − i)−
d | for 0 ≤ i ≤ d}. On the other hand, the Shrikhande graph S has vertex set consisting
of all cyclic permutations of the codes 000000, 110000, 010111, and 011011 such that
two vertices are adjacent if and only if they differ in exactly two coordinates. The
graph S is distance-regular and has the same intersection numbers as H(2, 4).

Let n ≥ 1 and m ≥ 0 denote integers. By Doob graph D(n, m), we mean the direct
product of n copies of S and m copies of K4. This graph was first introduced by Doob
in 1972 (see [4]). The graph D(n, m) is distance-regular and has the same intersection
numbers as H(2n + m, 4) (see [5]). We note that H(n, q) and D(n, m) have integral
eigenvalues. In this section, objects in reference to theDoob graph D(n, m) are labeled
with (n, m). For example, Ai (n, m) refers to the i th distance matrix of D(n, m) for
each integer i (0 ≤ i ≤ 2n + m). Fix an integer i (0 ≤ i ≤ 2n + m) and note that

Ai (n, m) =
∑

Ai1(1, 0) ⊗ · · · ⊗ Ain (1, 0) ⊗ A j1(0, 1) ⊗ · · · ⊗ A jm (0, 1)

where the sum ranges to all i1, i2, . . . , in ∈ {0, 1, 2} and j1, j2, . . . , jm ∈ {0, 1} such
that i1 + · · · + in + j1 + · · · + jm = i . The primitive idempotent Ei (n, m) is obtained
similarly. Choose the base vertex x(n, m) of D(n, m) such that

x(n, m) = (x(1, 0), x(1, 0), . . . , x(1, 0)
︸ ︷︷ ︸

n copies

, x(0, 1), x(0, 1), . . . , x(0, 1)
︸ ︷︷ ︸

m copies

).

Then, the i th dual-primitive idempotent E∗
i (n, m) with respect to x(n, m) is given by

E∗
i (n, m) =

∑

E∗
i1(1, 0) ⊗ · · · ⊗ E∗

in
(1, 0) ⊗ E∗

j1(0, 1) ⊗ · · · ⊗ E∗
jm (0, 1)

123
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where the sum ranges to all i1, i2, . . . , in ∈ {0, 1, 2} and j1, j2, . . . , jm ∈ {0, 1}
such that i1 + · · · + in + j1 + · · · + jm = i . Let T (n, m) denote the Terwilliger
algebra of D(n, m) with respect to x(n, m) and let V (n, m) denote the standard
module. Since T (n, m) is semi-simple, V (n, m) decomposes as a direct sum of irre-
ducible T (n, m)-modules.We end this sectionwith Tanabe’s description of irreducible
T (n, m)-modules on the standard module V (n, m) (see [19]).

Proposition 2.1 [19, Proposition 3]
Let n, m, v, d, p, t ∈ Z such that n −1, m, v, d, p ≥ 0. Let W := W (n, m; v, d, p, t)
denote a T (n, m)-module on V (n, m) with endpoint v, diameter d + p, dimension
(d + 1)(p + 1), and basis

{wi j ∈ E∗
v+i+ j (n, m)W : 0 ≤ i ≤ d and 0 ≤ j ≤ p}

satisfying

A1(n, m)wi j = 3(d − i + 1)wi−1, j + (p − j + 1)wi, j−1 + (t + 2(i − j))wi j

+ 3( j + 1)wi, j+1 + (i + 1)wi+1, j , (6)

where wi j := 0 if i /∈ {0, . . . , d} or j /∈ {0, . . . , p}. Then, each of the following holds:

(i) W is an irreducible T (n, m)-module.
(ii)

dim E∗
v+k(n, m)W =

⎧

⎨

⎩

k + 1 if 0 ≤ k ≤ min{d, p},
min{d, p} + 1 if min{d, p} < k ≤ max{d, p},
d + p + 1 − k if max{d, p} < k ≤ d + p.

(iii) W is thin if and only if dp = 0.
(iv) If μ is the dual-endpoint of W , then

μ = 3(2n + m) − t − 3d − p

4
,

dim Eμ+k(n, m)W = dim E∗
v+k(n, m)W .

Moreover, the diameter of W and the dual-diameter of W are equal.
(v) W and W ′ := W (n, m; v′, d ′, p′, t ′) are isomorphic T (n, m)-modules if and

only if (v, d, p, t) = (v′, d ′, p′, t ′).

Proposition 2.2 [19, Proposition 1, Lemma 2, and Proposition 4] With reference to
above notations, we have the following:

(i) The set {U0, U1, U2, U3, U4, U5} forms a complete set of pairwise nonisomorphic
irreducible T (1, 0)-modules on standard module V (1, 0) of D(1, 0) where

U0 ∼= W (1, 0; 0, 2, 0, 0), U1 ∼= W (1, 0; 1, 1, 0,−1), U2 ∼= W (1, 0; 1, 0, 1, 1),
U3 ∼= W (1, 0; 1, 0, 0,−2), U4 ∼= W (1, 0; 2, 0, 0, 2), U5 ∼= W (1, 0; 2, 0, 0,−2).

123
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(ii) The set {V0, V1} forms a complete set of pairwise nonisomorphic irreducible
T (0, 1)-modules on standard module V (0, 1) of D(0, 1) where

V0 ∼= W (0, 1; 0, 1, 0, 0), V1 ∼= W (0, 1; 1, 0, 0,−1).

(iii) V (n, m) is isomorphic to a direct sum of spaces

(

U⊗N0
0 ⊗ U⊗N1

1 ⊗ U⊗N2
2 ⊗ U⊗N3

3 ⊗ U⊗N4
4 ⊗ U⊗N5

5

) ⊗ (

V M0
0 ⊗ V M1

1

)

(7)

where N0, . . . , N5, M0, M1 are nonnegative integers satisfying N0+· · ·+ N5 =
n, and M0 + M1 = m. The space (7) decomposes into irreducible T (n, m)-
modules isomorphic to W (n, m; v, d, p, t) such that

v = r + s − 2N0 − N1 − N2 − N3 − M0 + 2n + m,

d = 2N0 + N1 + M0 − 2r ,

p = N2 − 2s,

t = 2r − 2s + 2N0 + N1 + 3N2 + 4N4 + M0 − 2n − m.

where

{
r = 0, if N0 = 1 and N1 = M0 = 0,
r = 0, 1, . . . , N0 + � N1+M0

2 �, otherwise,

and s = 0, 1, . . . , � N2
2 �.

3 Quantum adjacency algebras of Doob graphs

Asmentioned in Sect. 1, the quantum adjacency algebra of the graph (with respect to a
base vertex) is the algebra generated by the components of the quantum decomposition
of the adjacency matrix. In the case of Doob graphs, the components of our quantum
decompositions are the lowering, flat, and raisingmatrices. In this section, we describe
the quantum adjacency algebras of Doob graphs as well as the relations of the quantum
components. We shall adopt the following assumption:

Assumption 3.1 Fix the integers n ≥ 1 and m ≥ 0 and consider the Doob graph
D = D(n, m). Let A be the adjacency matrix of D. Choose a base vertex x of D and
let E∗

0 , E∗
1 , . . . , E∗

2n+m denote the dual primitive idempotents with respect to x . Let T
(resp. Q) denote the Terwilliger algebra (resp. quantum adjacency algebra) of D with
respect to x . Let L , F , and R denote lowering, flat, and raising matrices with respect to
x , respectively. Define the mapping [ , ] : T × T → T such that [Y , Z ] = Y Z − ZY
for all Y , Z ∈ T . Finally, let V denote the standard module for D.

Lemma 3.2 With reference to Assumption 3.1, let W = W (n, m; v, d, p, t) denote an
irreducible T -module with basis

{

wi j
}

as described in Proposition 2.1. Then,

123
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(i) Lwi j = 3 (d − i + 1) wi−1, j + (p − j + 1) wi, j−1
(ii) Fwi j = (t + 2 (i − j)) wi j ,

(iii) Rwi j = 3 ( j + 1) wi, j+1 + (i + 1) wi+1, j ,

for all integers i (0 ≤ i ≤ d) and for all integers j (0 ≤ j ≤ p).

Proof Follows from Proposition 2.1 and definitions of matrices L , F , and R. ��
Lemma 3.3 With reference to Assumption 3.1, let W = W (n, m; v, d, p, t) denote an
irreducible T -module with basis

{

wi j
}

as described in Proposition 2.1. Then,

(i) [L, R]wi j = 3 (p + d − 2i − 2 j) wi j ,
(ii) [L, F]wi j = 6 (d − i + 1) wi−1, j − 2 (p − j + 1) wi, j−1,

(iii) [R, F]wi j = 6 ( j + 1) wi, j+1 − 2 (i + 1) wi+1, j ,
(iv) [R, [F, L]]wi j = 6 (d − p − 2i + 2 j) wi j ,

for all integers i (0 ≤ i ≤ d) and for all integers j (0 ≤ j ≤ p).

Proof Follows from Lemma 3.2. ��
Lemma 3.4 With reference to Assumption 3.1, the matrices F, [L, R], and [R, [F, L]]
mutually commute on V .

Proof Let W = W (n, m; v, d, p, t) denote an irreducible T -module with basis
{

wi j
}

as described in Proposition 2.1. From Lemma 3.2(ii), Lemma 3.3(i), and Lemma
3.3(iv), these matrices mutually commute on W . Since W is arbitrary and V is a direct
sum of irreducible T -modules, these matrices mutually commute on V . ��
Lemma 3.5 With reference to Assumption 3.1, we have

i) [L, [L, F]] = 0,
ii) [R, [R, F]] = 0,

iii) [F, [F, R]] = 4R,
iv) [F, [F, L]] = 4L,
v) [R, [R, L]] = −6R,

vi) [L, [L, R]] = −6L,
vii) [L, [F, R]] = [R, [F, L]].

Proof Let W = W (n, m; v, d, p, t) denote an irreducible T -module with basis
{

wi j
}

as described in Proposition 2.1. By Lemmas 3.2 and 3.3, the equations are true on W .
Since W is arbitrary and V is a direct sum of irreducible T -modules, these equations
hold on V . ��
Lemma 3.6 With reference to Assumption 3.1, we have

(i) [R, [R, [F, L]]] = − [[R, F] , [L, R]] = −6 [R, F],
(ii) [L, [R, [F, L]]] = [[L, F] , [L, R]] = −6 [L, F],

(iii) [[L, F] , [R, F]] = −4 [L, R],
(iv) [[R, F] , [R, [F, L]]] = −24R,
(v) [[L, F] , [R, [F, L]]] = −24L.
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Proof Similar to the proof of Lemma 3.5. ��
Lemma 3.7 With reference to Assumption 3.1, let W = W (n, m; v, d, p, t) denote
an irreducible T -module with basis

{

wi j
}

as described in Proposition 2.1. Then, the
matrix F + 1

6 [R, [F, L]] acts as the scalar t − p + d on W .

Proof Follows immediately from Lemma 3.2(ii) and Lemma 3.3(iv). ��
Lemma 3.8 With reference to Assumption 3.1, the set

{L, R, [L, R], [L, F], [R, F], [R, [F, L]]} (8)

is linearly independent in Q.

Proof Let W denote an irreducible T -module with basis {wi j } as in Proposition 2.1.
Assume there exists a matrix in (8) that can be expressed as a linear combination of
the remaining matrices. Among the matrices in (8), only [L, R] and [R, [F, L]] leave
invariantCwi j for all i, j ∈ Z. But [L, R] and [R, [F, L]] cannot be linearly dependent
by Lemma 3.3. On the other hand, the matrices L and [L, F] (resp. R and [R, F])
shift the space Cwi j to the space Cwi, j−1 ⊕Cwi−1, j (resp. Cwi, j+1 ⊕Cwi+1, j ) for
all i, j ∈ Z. By Lemma 3.2 and Lemma 3.3, the pair cannot be linearly dependent.
This shows that any matrix cannot be expressed as a linear combination of the others.
Statement holds. ��
Lemma 3.9 With reference to Assumption 3.1, the subspace of Q spanned by the
matrices in (8) is closed under [ , ]. In particular, we have the relations

[ , ] H1 H2 X1 X2 Y1 Y2
H1 0 0 X1 X2 −Y1 −Y2
H2 0 0 X1 −X2 −Y1 Y2
X1 −X1 −X1 0 0 H1 + H2 0
X2 −X2 X2 0 0 0 H1 − H2
Y1 Y1 Y1 −H1 − H2 0 0 0
Y2 Y2 −Y2 0 −H1 + H2 0 0

where H1 = 1
6 [L, R], H2 = 1

12 [R, [F, L]], X1 = 1
12 (2L + [L, F]), X2 =

1
4 (2L − [L, F]), Y1 = 1

4 (2R − [R, F]), and Y2 = 1
12 (2R + [R, F]).

Proof Immediate from Lemmas 3.4, 3.5, and 3.6. ��

4 The special orthogonal Lie algebra so4

By a complex Lie algebra, we mean a vector space g over C together with a bracket
operation [ , ] : g × g → g satisfying the following conditions:

(i) [ , ] is bilinear,
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(ii) [x, y] = −[y, x] for all x, y ∈ g, and
(iii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Let g be a complex Lie algebra. A subalgebra of g is a subspace that is closed under
the operation [ , ]. On the other hand, an ideal i of g is a subspace such that [x, y] ∈ i
for all x ∈ g and for all y ∈ i. We say that g is abelian if [x, y] = 0 for all x, y ∈ g.
We say g is simple if it is a non-abelian complex Lie algebra whose only ideals are 0
and g itself. We say that g is semi-simple if it is a direct sum of simple complex Lie
algebras.

Let g and h be complex Lie algebras. A linear map π : g → h is called a Lie
algebra homomorphism if π([x, y]) = [π(x), π(y)] for all x, y ∈ g. Let V be an
n-dimensional vector space over C. Let gl(V ) denote the complex Lie algebra of all
linear transformations on V together with the bracket operation [x, y] = x ◦ y − y ◦ x
for all x, y ∈ gl(V ) where ◦ means composition. Fixing an ordered basis for V , we
view gl(V ) as the complex Lie algebra gln of square matrices of order n with the
bracket operation [x, y] = xy − yx for all x, y ∈ gln . We say that V is a g-module
if there exists a Lie algebra homomorphism π : g → gl(V ). In this case, the element
x ∈ g acts on V as the image π(x). We say that a g-module V is irreducible if V
contains no other g-modules aside from 0 and V . Two spaces V and V ′ are isomorphic
g-modules if there exists a vector space isomorphism ρ : V → V ′ such that x has the
same action on v and ρ(v) for all x ∈ g and for all v ∈ V .

Let

X =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠

and consider the subalgebra so4 = {

P ∈ gl4 : P X + X Pt = 0
}

of gl4. Note that
so4 is a six-dimensional complex Lie algebra with a basis consisting of

H1 =
⎛

⎝

1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎞

⎠, H2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎞

⎟
⎟
⎠

, X1 =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

,

X2 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

⎞

⎟
⎟
⎠

, Y1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 −1 0 0
1 0 0 0

⎞

⎟
⎟
⎠

, Y2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 −1
0 0 0 0

⎞

⎟
⎟
⎠

.

Observe that the Lie bracket relations of basis matrices of so4 coincide with the Lie
bracket relations in Lemma 3.9. In this section, we focus on the special orthogonal
complex Lie algebra so4 which is semi-simple and is one of the classical Lie algebras.
We recall the representation theory of finite-dimensional so4-modules based on a
theorem of highest weight. This states that every irreducible so4-module has a highest
weight and two irreducible so4-modules with the same highest weight are isomorphic.
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The discussion on the highest weight theory for classical Lie algebras are discussed
in many reference books (e.g., [9] and [11]).

For the rest of the section, suppose V is a finite-dimensional vector space over C
and π : so4 → gl(V ) is a Lie algebra homomorphism (i.e., V is an so4-module).

Definition 4.1 An ordered pair λ = (λ1, λ2) ∈ C
2 is called a weight on V if there

exists a nonzero vector v ∈ V such that

π(H1)v = λ1v,

π(H2)v = λ2v.

In this case, we call v a weight vector corresponding to the weight λ. If λ is a weight,
then the set of all corresponding weight vectors forms a subspace of V is called the
weight space corresponding to the weight λ. The multiplicity of the weight is the
dimension of the corresponding weight space.

Proposition 4.2 If V is a nonzero so4-module, then V has at least one weight.

Proof Since C is algebraically closed, π(H1) has at least one eigenvalue λ1 ∈ C.
Let W ⊆ V be the eigenspace for π(H1) with eigenvalue λ1. Since [H1, H2] = 0,
π(H1) commutes with π(H2) and so W is π(H2)-invariant. The restriction of π(H2)

to W must have at least one eigenvector w with eigenvalue λ2 ∈ C. Therefore, w is a
simultaneous eigenvector for π(H1) and π(H2) with eigenvalues λ1 and λ2. ��
Definition 4.3 An ordered pair α = (a1, a2) ∈ C

2 is called a root if (a1, a2) �= (0, 0)
and there exists a Zα ∈ so4 such that

[H1, Zα] = a1Zα,

[H2, Zα] = a2Zα.

The element Zα is called a root vector corresponding to the root α.

Lemma 4.4 Letα = (a1, a2)denote a root with corresponding root vector Zα . Suppose
λ = (λ1, λ2) is a weight on V with corresponding weight vector v. Then, we have

π(H1)π(Zα)v = (λ1 + a1)π(Zα)v, (9)

π(H2)π(Zα)v = (λ2 + a2)π(Zα)v. (10)

Hence, either π(Zα)v = 0 or π(Zα)v is a weight vector corresponding to the weight
λ + α = (λ1 + a1, λ2 + a2).

Proof Since π is a Lie algebra homomorphism, we have

π(H1)π(Zα)v = [π(H1), π(Zα)]v + π(Zα)π(H1)v

= π ([H1, Zα]) v + π(Zα)π(H1)v

= a1π (Zα) v + λ1π(Zα)v
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= (λ1 + a1)π(Zα)v.

This proves (9). We prove (10) analogously. If π(Zα)v �= 0, then π(Zα)v is a weight
vector corresponding to the weight λ + α. ��

Note that the set of all roots is R = {(1, 1), (1,−1), (−1, 1), (−1,−1)}. Let E
be the vector space R

2 with standard inner product 〈 , 〉E . It can be checked that
(E, R) forms a root system (see [9, Definition 8.1]) which is denoted by A1 × A1.
We shall fix the base � = {(1, 1), (1,−1)} for E . Observe that each root is expressed
as a linear combination of the vectors in � with either all nonnegative coefficients
or all nonpositive coefficients. We say that a root is positive (resp. negative) if these
coefficients are all nonnegative (resp. nonpositive). The table below summarizes the
roots and corresponding root vectors.

Root Root vector Type
(1, 1) X1 Positive

(1,−1) X2 Positive
(−1,−1) Y1 Negative
(−1, 1) Y2 Negative

Definition 4.5 Let λ and λ′ denote weights. We say λ is higher than λ′ (with respect
to the base �) and we write λ � λ′ if there exists nonnegative real numbers c1 and c2
such that

λ − λ′ = c1(1, 1) + c2(1,−1).

A weight λ on V is said to be a highest weight if λ � λ′ for all weights λ′ on V .

Note that the relation � depends on the chosen base � and it forms a partial order
on the set of all weights on V .

Proposition 4.6 If V is an irreducible so4-module, then V is a direct sum of its weight
spaces.

Proof Let V ′ denote the sum of the weight spaces of V . By Proposition 4.2, V ′ �= 0.
SinceV ′ is the sumof allweight spaces,wemay viewV ′ as the span of all simultaneous
eigenvectors of π(H1) and π(H2). It follows that V ′ is invariant under the actions of
H1 and H2. Now, take a root α with corresponding root vector Zα . By Lemma 4.4,
we see that V ′ is invariant under π(Zα). By irreducibility of V , we have V = V ′. The
sum is direct since weight vectors with different weights are linearly independent. ��
Proposition 4.7 If λ = (λ1, λ2) is a weight on V , then λ1+λ2 and λ1−λ2 are integers.
Hence, either λ1 and λ2 are both integers or both half-integers.

Proof Since (λ1, λ2) is a weight on V , there exists a simultaneous eigenvector v such
that π(H1)v = λ1v and π(H2)v = λ2v. By applying π(X1) repeatedly on v, we have

π(H1)π(X1)
kv = (λ1 + k)π(X1)

kv,
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π(H2)π(X1)
kv = (λ2 + k)π(X1)

kv.

for all integer k ≥ 0. Since V is finite-dimensional, there is a nonnegative integer
N such that π(X1)

N v �= 0 but π(X1)
N+1v = 0. By repeatedly applying π(Y1) on

π(X1)
N v, we have

π(H1)π(Y1)
�π(X1)

N v = (λ1 + N − �)π(Y1)
�π(X1)

N v,

π(H2)π(Y1)
�π(X1)

N v = (λ2 + N − �)π(Y1)
�π(X1)

N v.

for all integer � ≥ 0. Since V is finite-dimensional, there is a nonnegative integer M
such that π(Y1)

Mπ(X1)
N v �= 0 but π(Y1)

M+1π(X1)
N v = 0. So, we have

0 = π(X1)π(Y1)
M+1π(X1)

N v

= [π(X1), π(Y1)]π(Y1)
Mπ(X1)

N v + π(Y1)[π(X1), π(Y1)]π(Y1)
M−1π(X1)

N v

+ · · · + π(Y1)
M−1[π(X1), π(Y1)]π(Y1)π(X1)

N v + π(Y1)
M [π(X1), π(Y1)]π(X1)

N v

= π (H1 + H2) π(Y1)
Mπ(X1)

N v + π(Y1)π (H1 + H2) π(Y1)
M−1π(X1)

N v

+ · · · + π(Y1)
M−1π (H1 + H2) π(Y1)π(X1)

N v + π(Y1)
Mπ (H1 + H2) π(X1)

N v

=
(

N
∑

i=N−M

(λ1 + λ2 + 2i)

)

π(Y1)
Mπ(X1)

N v.

Since π(Y1)
Mπ(X1)

N v �= 0,
(
∑N

i=N−M (λ1 + λ2 + 2i)
)

= 0. Thus, λ1 +λ2 = M −
2N . Similarly, there exist nonnegative integers P and Q such that λ1 −λ2 = Q −2P .
To prove this, replace π(X1) by π(X2) and replace π(Y1) by π(Y2) above. ��
Proposition 4.8 If V is an irreducible so4-module, then V has a unique highest weight.

Proof By Proposition 4.6, V is a direct sum of its weight spaces. Since dim(V ) is
finite, there are only a finite number of weights on V . By Lemma 4.4 and since there
are only finitely many weights on V , there exists a weight λ with weight vector v such
that π(Zα)v = 0 for each root α ∈ � with corresponding root vector Zα . Let V ′
denote the smallest so4-invariant subspace of V that contains v. Then, V ′ is the span
of vectors of the form

π(Z−α1)π(Z−α2) · · · π(Z−αk )v (11)

where α1, . . . , αk ∈ �. If the vector (11) is nonzero, then it is a weight vec-
tor corresponding to the weight λ − α1 − · · · − αk by Lemma 4.4. Observe that
λ � λ − α1 − · · · − αk and so λ is higher than all other weights on V ′. Thus, V ′ is an
so4-module with a unique highest weight λ. Observe that V = V ′ by irreducibility of
V . ��

We end the section with a highest weight theorem for irreducible so4-modules.

Theorem 4.9 Two irreducible so4-modules have the same highest weight if and only
if they are isomorphic as so4-modules.
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5 An action of so4 on the standardmodule for Doob graphs

In this section, we establish a Lie algebra homomorphism π : so4 → Q and show
that Q is generated by the center and π(so4). In addition, we prove a necessary and
sufficient condition for irreducible T -modules to be isomorphic irrducible Q-modules.

Theorem 5.1 With reference to Assumption 3.1, there exists a Lie algebra homomor-
phism π : so4 → Q such that

the element of so4 acts as
H1

1
6 [L, R]

H2
1
12 [R, [F, L]]

X1
1
12 (2L + [L, F])

X2
1
4 (2L − [L, F])

Y1
1
4 (2R − [R, F])

Y2
1
12 (2R + [R, F])

(12)

on the standard module V .

Proof This follows from the fact that the Lie bracket relations of the basis matrices of
so4 coincide with the Lie bracket relations in Lemma 3.9. ��
Corollary 5.2 With reference to Assumption 3.1, let π denote the Lie algebra homo-
morphism in Theorem 5.1. Then, Q is generated by π(so4) and F + 1

6 [R, [F, L]].
Consequently, Q is generated by the homomorphic image of the universal enveloping
algebra U (so4) and the center.

Proof Let Q′ be the subalgebra of Q generated by π(so4) and the matrix F +
1
6 [R, [F, L]]. By (12), the matrices L , F , and R are in Q′. Since Q is generated
by L , F , and R, we have Q′ = Q. ��
Lemma 5.3 With reference to Assumption 3.1, let W denote an irreducible T -module
on the standard module V . Then, W is an irreducible Q-module.

Proof See [24, Proposition 6.3]. ��
Lemma 5.4 With reference to Assumption 3.1, let π denote the Lie algebra homomor-
phism in Theorem 5.1 and let W be an irreducible Q-module on V . If F + 1

6 [R, [F, L]]
acts a scalar on W , then W is an irreducible π(so4)-module.

Proof Let W denote an irreducible Q-module. By (12), W is aπ(so4)-module since W
is invariant under the actions of L , F , and R. Suppose W is not an irreducible π(so4)-
module. Since so4 is semi-simple, there exists a nonzero π(so4)-module W ′ that is
properly contained in W . Observe that W ′ is invariant under the actions of π(so4) and
F + 1

6 [R, [F, L]]. By Corollary 5.2, it follows that W ′ is a Q-module. Since W is an
irreducible Q-module, W = W ′. Hence, W is an irreducible π(so4)-module. ��
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Theorem 5.5 With reference to Assumption 3.1, let π denote the Lie algebra homomor-
phism in Theorem 5.1. Let W denote a subspace of V and suppose F + 1

6 [R, [F, L]]
acts as a scalar on W . Then, the following are equivalent:

i) W is an irreducible T -module,
ii) W is an irreducible Q-module,

iii) W is an irreducible π(so4)-module.

Proof Assume W is an irreducible π(so4)-module. We show that W is an irreducible
T -module. To do this, we construct a basis {wi j } of W and show that this basis satisfies
the conditions in Proposition 2.1. Since W is finite-dimensional, there exists a scalar
v := min{ j : E∗

j W �= 0}. By (5) and (12), E∗
v W = E∗

v V ∩ W is invariant under the
actions of π(H1) and π(H2). Since C is algebraically closed, there exists a weight
vector w ∈ E∗

v W such that

π (H1) w = λ1w, (13)

π (H2) w = λ2w, (14)

where λ1, λ2 ∈ 1
2Z. By (5) and (12) and since E∗

v−1V ∩ W = E∗
v−1W = 0, we have

π (X1) w = 0, (15)

π (X2) w = 0. (16)

Define the vectors

wi j = π (Y1)
i π (Y2)

j w

i ! j ! (17)

for all integers i, j ≥ 0. Observe that wi j ∈ E∗
v+i+ j W . For convenience, define

w�k = 0 if � < 0 or k < 0. Since [Y1, Y2] = 0, π (Y1) and π (Y2) commute and one
easily verifies that

π (Y1) wi j = (i + 1) wi+1, j , (18)

π (Y2) wi j = ( j + 1) wi, j+1, (19)

for all integers i, j ≥ 0. Now, we claim

π (H1) wi j = (λ1 − i − j) wi j , (20)

π (H2) wi j = (λ2 − i + j) wi j , (21)

for all integers i, j ≥ 0. We prove this by induction on i + j . By (13), (14), and (17),
the claim holds for i + j = 0. Assume the claim holds for i + j = �+ k − 1 for some
integers �, k ≥ 0 such that � + k ≥ 1. By (18) and (19) and by induction hypothesis,
we have

π (H1) w�k = 1

�
π (H1) π (Y1) w�−1,k
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= 1

�
[π (H1) , π (Y1)]w�−1,k + 1

�
π (Y1) π (H1) w�−1,k

= −1

�
π (Y1) w�−1,k + 1

�
(λ1 − � + 1 − k) π (Y1) w�−1,k

= (λ1 − � − k) w�k

and

π (H2) w�k = 1

k
π (H2) π (Y2) w�,k−1

= 1

k
[π (H2) , π (Y2)]w�,k−1 + 1

k
π (Y2) π (H2) w�,k−1

= 1

k
π (Y2) w�,k−1 + 1

k
(λ2 − � + k − 1) π (Y2) w�,k−1

= (λ2 − � + k) w�k .

Thus, (20) and (21) hold when i + j = � + k. Similarly, we have

π (X1) wi j = (λ1 + λ2 − i + 1) wi−1, j , (22)

π (X2) wi j = (λ1 − λ2 − j + 1) wi, j−1, (23)

for all integers i, j ≥ 0 by induction on i + j . Now, we find a basis for W . Since W
is finite-dimensional, we may define the scalars

d = max{i : wi0 �= 0},
p = max{ j : w0 j �= 0}.

We claim that wi j �= 0 for integers i, j (0 ≤ i ≤ d, 0 ≤ j ≤ p). By (22) and (23),

0 = wd+1,0 = π (X1) wd+1,0 = (λ1 + λ2 − d) wd,0

0 = w0,p+1 = π (X2) w0,p+1 = (λ1 − λ2 − p) w0,p.

Since wd,0 �= 0 and w0,p �= 0, it follows that

d = λ1 + λ2 and p = λ1 − λ2. (24)

Consider integers �, k ≥ 0 such that w�,k �= 0 but w�+1,k = 0 and w�,k+1 = 0. By
(22) and (23),

0 = w�+1,k = π (X1) w�+1,k = (λ1 + λ2 − �)w�,k,

0 = w�,k+1 = π (X2) w�,k+1 = (λ1 − λ2 − k)w�,k .

Since w�,k �= 0, we have � = d and k = p. This proves the claim. Now, let

W ′ = span{wi j : 0 ≤ i ≤ d, 0 ≤ j ≤ p}.
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Note that W ′ is π(so4)-invariant by (18)–(23). Since W is an irreducible π(so4)-
module, W = W ′. By (20) and (21) and since wi j �= 0, wi j is a weight vector
corresponding to the weight (λ1 − i − j, λ2 − i + j). Hence, wi j ’s belong to different
weight spaces and are linearly independent. This proves {wi j } is a basis for W . Finally,
we show the action of A on wi j . Since F + 1

6 [R, [F, L]] acts as a scalar on W , we
may define

(

F + 1

6
[R, [F, L]]

)

wi j = (t + d − p) wi j (25)

for all integers i, j (0 ≤ i ≤ d, 0 ≤ j ≤ p). By (12), (21), and (24), we have

[R, [F, L]]wi j = 6(d − p − 2i + 2 j)wi j (26)

for all integers i, j (0 ≤ i ≤ d, 0 ≤ j ≤ p). By (25)–(26), we have

Fwi j = (t + 2 (i − j)) wi j . (27)

By (12), (22)–(23), and (18)–(19), we have

Lwi j = 3 (d − i + 1) wi−1, j + (p − j + 1) wi, j−1, (28)

Rwi j = 3 ( j + 1) wi, j+1 + (i + 1) wi+1, j . (29)

for all integers i, j (0 ≤ i ≤ d, 0 ≤ j ≤ p). We obtain

Awi j = 3 (d − i + 1) wi−1, j + (p − j + 1) wi, j−1 + (t + 2 (i − j)) wi j

+3 ( j + 1) wi, j+1 + (i + 1) wi+1, j

by (3) and (27)–(29).Note that
∑

wi j is an eigenvector for Awith eigenvalue 3d+p+t .
Since A has integral eigenvalues, t is an integer. Thus, W is an irreducible T -module
by Proposition 2.1. The remaining assertions of the theorem follow from Lemma 5.3
and Lemma 5.4. ��
Corollary 5.6 With reference to Assumption 3.1, let π denote the Lie algebra homo-
morphism in Theorem 5.1. If W = W (n, m; v, d, p, t) is an irreducible T -module,
then W is an irreducible π(so4)-module with highest weight

( 1
2 (d + p), 1

2 (d − p)
)

.

Proof Let {wi j } denote the basis of W described in Proposition 2.1. By (12) and
Lemma 3.3, we see that

{(
d + p

2
− i − j,

d − p

2
− i + j

)

: 0 ≤ i ≤ d, 0 ≤ j ≤ p

}

is the set of all weights on W . Observe that
( 1
2 (d + p), 1

2 (d − p)
)

is the highest weight
in the set. ��
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Corollary 5.7 With reference to Assumption 3.1, let π denote the Lie algebra homomor-
phism in Theorem 5.1. Let W = W (n, m; v, d, p, t) and W ′ = W (n, m; v′, d ′, p′, t ′)
denote irreducible T -modules. Then, W and W ′ are isomorphic Q-modules if and
only if (d, p, t) = (d ′, p′, t ′).

Proof Let W and W ′ denote irreducible T -modules. By Lemma 3.7, F + 1
6 [R, [F, L]]

acts on W (resp. W ′) as the scalar t − d + p (resp. t ′ − d ′ + p′). Moreover, W and
W ′ are irreducible Q-modules and irreducible π(so4)-modules by Theorem 5.5. By
Corollary 5.6, the highest weight of W (resp. W ′) is

( 1
2 (d + p), 1

2 (d − p)
)

(resp.
( 1
2 (d

′ + p′), 1
2 (d

′ − p′)
)

).
Note that (d, p, t) = (d ′, p′, t ′) if and only if the spaces W and W ′ are isomorphic

π(so4)-modules and F + 1
6 [R, [F, L]] has the same action on them. Since Q is

generated by π(so4) and F + 1
6 [R, [F, L]] by Corollary 5.2, statement holds. ��

Remark 5.8 In [24, Theorem 9.1], Terwilliger and Žitnik gave equivalent conditions
for T �= Q that work for general distance-regular graphs. Among these condi-
tions is the existence of a pair of quasi-isomorphic irreducible T -modules with
unequal endpoints. In Doob graph D(n, m), one can prove that W (n, m; v, d, p, t)
and W (n, m; v′, d ′, p′, t ′) is a pair of quasi-isomorphic irreducible T -modules with
unequal endpoints if and only if v �= v′ and (d, p, t) = (d ′, p′, t ′). This establishes
Corollary 5.7 from the context of quasi-isomorphism.

Remark 5.9 The complex Lie algebra sl2 is a simple Lie algebra with basis {e, f , h}
satisfying the relations

[h, e] = 2e, [h, f ] = −2 f , and [e, f ] = h.

Let h1 (resp. h2) denote the subalgebra of so4 spanned by X1, Y1, and H1 + H2 (resp.
X2, Y2, and H1 − H2). One checks that sl2, h1, and h2 are pairwise isomorphic and in
particular, so4 is a direct sum of h1 and h2. With reference to Assumption 3.1, let π

denote the homomorphism in Theorem 5.1. Let W = W (n, m; v, d, p, t) denote an
irreducible T -module with basis {wi j } as described in Proposition 2.1. Now, consider
the spaces

span
{

wi j | 0 ≤ i ≤ d
}

for a fixed j (0 ≤ j ≤ p), (30)

span
{

wi j | 0 ≤ j ≤ p
}

for a fixed i (0 ≤ i ≤ d). (31)

By (18), (20)–(21), and (22), the spaces (30) are irreducible π(h1)-modules. On the
other hand, the spaces (31) are irreducibleπ(h2)-modules by (19), (20)–(21), and (23).
Therefore, the spaces above are irreducible sl2-modules.
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15. MacLean, M., Miklavič, Š., Penjić, S.: On the Terwilliger algebra of bipartite distance-regular graphs
with �2 = 0 and c2 = 1. Linear Algebra Appl. 496, 307–330 (2016)

16. Martin, W.J., Tanaka, H.: Commutative association schemes. Europ. J. Comb. 30, 1497–1525 (2009)
17. Morales, J.V.: On Lee association schemes over Z4 and their Terwilliger algebra. Linear Algebr. Appl.

510, 311–328 (2016)
18. Morales, J.V., Pascasio, A.: An action of the tetrahedron algebra on the standard module for the

Hamming graphs and Doob graphs. Graphs Comb. 30, 1513–1527 (2014)
19. Tanabe, K.: The irreducible modules of the Terwilliger algebras of Doob schemes. J. Algebr. Comb.

6, 173–195 (1997)
20. Terwilliger, P.: Lectures notes on distance-regular graphs given at De La Salle University, Manila.

Available at https://www.math.wisc.edu/~terwilli/teaching.html (2010)
21. Terwilliger, P.: The subconstituent algebra of an association scheme I. J. Algebr. Comb. 1, 363–388

(1992)
22. Terwilliger, P.: The subconstituent algebra of an association scheme II. J. Algebr. Comb. 2, 73–103

(1993)
23. Terwilliger, P.: The subconstituent algebra of an association scheme III. J. Algebr. Comb. 2, 177–210

(1993)
24. Terwilliger, P., Žitnik, A.: The quantum adjacency algebra and subconstituent algebra of a graph. J.

Comb. Theory Ser. A 166, 297–314 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.math.wisc.edu/~terwilli/teaching.html

	On quantum adjacency algebras of Doob graphs and their irreducible modules
	Abstract
	1 Introduction and background
	2 Doob graphs and their Terwilliger algebras
	3 Quantum adjacency algebras of Doob graphs
	4 The special orthogonal Lie algebra mathfrakso4
	5 An action of mathfrakso4 on the standard module for Doob graphs
	Acknowledgements
	References




