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Abstract
The two-circulant core (TCC) construction for Hadamardmatrices uses two sequences
with almost perfect autocorrelation to construct a Hadamard matrix. A research prob-
lem of K. Horadam asks whether such matrices are cocyclic. Using techniques from
the theory of permutation groups, we prove that the order of a cocyclic TCC matrix
coincides with the order of a Hadamard matrix of Paley type, of Sylvester type or
certain multiples of these orders. We show that there exist cocyclic TCC Hadamard
matrices at all allowable orders ≤ 1000 with at most one exception. Of the four fami-
lies of TCC matrices known in the literature, we establish that two are cocyclic, prove
that one is not cocyclic, and leave one undecided. The undecided family consists of
matrices of 2-power order; we show that these are inequivalent to the Sylvester matri-
ces. As a generalisation of the TCC construction, we introduce quadruple-circulant
core (QCC) Hadamard matrices; our results give a complete description of the orders
that admit cocyclic QCC Hadamard matrices.

Keywords Hadamard matrix · Twin circulant core · Cocyclic matrix · Legendre pair
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1 Introduction

A Hadamard matrix (HM) of order n is an n × n matrix H over {−1, 1} such that
HHᵀ = nIn where In is the n × n identity matrix. Two HMs are (Hadamard) equiv-
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alent if one can be obtained from the other by swapping rows and columns and by
multiplying rows and columns by −1. A square matrix M = (mi, j )i, j of order n is
circulant if mi, j = m0, j−i for all i and j , where arithmetic of the indices is modulo
n. Recall that the n × n circulant matrices with complex entries form a commutative
algebra that is closed under transposition and isomorphic to CCn , the complex group
algebra of the cyclic group of order n.

Let Jm be the all 1’s matrix of orderm. We write 1 for the all 1’s row vector (whose
length will be determined by the context); similarly, 0 denotes the all 0’s row vector.
A two-circulant core (TCC) HM is a HM of order n = 2m + 2 that is equivalent to a
matrix of the form

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1

1ᵀ 1ᵀ A B
1ᵀ −1ᵀ Bᵀ −Aᵀ

⎤
⎥⎥⎦ (1)

where A and B are circulant {±1}-matrices of orderm. Note that a matrix of this shape
is a HM if and only if

AAᵀ + BBᵀ = (2m + 2)Im − 2Jm and A1 = B1 = −1.

Disregarding the trivial case m = 0, we note that m must be odd since otherwise
4 does not divide the order of H . Fletcher, Gysin, and Seberry [6] introduced TCC
HMs and reported three infinite families, called (F1), (F2), and (F3) below. Kotsireas,
Koukouvinos, and Seberry [10] performed an exhaustive search for TCC HMs (which
they consider as a pair of sequences with autocorrelation −2, called Legendre pairs)
with 3 ≤ m ≤ 45, and partial searches for 47 ≤ m ≤ 75. They found another
family of TCC HMs, called (F4) below, and conjectured that TCC HMs exist for all
m. The constructions leading to families (F1), (F3), and (F4) come from the Paley,
Sylvester, and Stanton–Sprott cyclic difference sets, while (F2) comes from the so-
called Szekeres difference families. The orders of the circulant cores in the families
(F1)–(F4) are as follows:

(F1) all orders m where m is a prime;
(F2) all orders m where q = 2m + 1 is a prime power q ≡ 3 mod 4;
(F3) all orders m where m = 2k − 1 with k ≥ 2;
(F4) all orders m where m = p(p + 2) where p and p + 2 are both primes.

To state the results of this paper, it is necessary to briefly introduce some terminol-
ogy; the reader is referred to the monographs of Horadam [7] and Flannery and de
Launey [3] for more background information.

1.1 Terminology

All groups are finite and written multiplicatively. A matrix M is group-developed
over a group G if its rows and columns can be labelled by the elements of G, say
M = (mg,h)g,h∈G , such that there exists a function ϕ : G → Cwithmg,h = ϕ(gh) for
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all g, h ∈ G. The labelling of rows and columns may be distinct under our convention.
Thus, back-circulantmatrices and circulantmatrices are group-developed over a cyclic
group (taking row labels equal to column labels in the first case, and row labels the
inverses of column labels in the second). The order of a group-developed HM is
necessarily a perfect square, see [16], so not every HM is group-developed. Pioneered
by deLauney andHoradam, cocyclic development is an algebraic approach to the study
ofHMs that relates regular subgroups of the automorphismgroup of aHMto functional
identities on the matrix entries. Specifically, cocyclic HMs (CHMs) generalise group-
developed HMs: the entries of a CHMM satisfymg,h = ψ(g, h)ϕ(gh)whereψ : G×
G → {±1} is a 2-cocycle and ϕ : G → {±1} a function.

1.2 Results

The cocyclic Hadamard conjecture [7, Research Problem 38] was proposed by de
Launey and Horadam. It suggests that the Hadamard conjecture could be resolved
through a study of CHMs. To date, there is some substantial evidence in favour of the
conjecture: computational classifications have found CHMs at many small orders, and
certain infinite families of matrices are known to be cocyclic; likewise certain families
are proved not to be cocyclic; see [1] and the references therein. Horadam posed the
problem of deciding when a TCC HM is cocyclic, see [7, Research problem 42]. We
apply results from the theory of permutation groups to establish strong conditions on
the order of a cocyclic TCC HM; our main result is the following.

Theorem 1.1 If H is a cocyclic TCC HM of order n = 2m + 2 with m odd, then:

(A) n = q + 1 where q ≡ 3 mod 4 is a prime power, or
(B) n = 2p + 2 where p is an odd prime, or
(C) n = 2t where t ≥ 2 is an integer.

There exist cocyclic TCC HMs for all orders of type (A), for all orders as in (B) for
which p ≡ 1 mod 4 or for which p ≤ 500, and for all orders as in (C) with t ≤ 8. In
particular, the only order less than 1,000 for which the existence of a cocyclic TCC
HM is open is 512.

One novelty of our work is a precise description of the orders at which a cocyclic
TCCmatrix can exist. In contrast to previous work, this yields infinitelymany orders at
which cocyclic TCCmatrices exist and infinitely many orders at which no TCCmatrix
is cocyclic. Seberry [6] conjectured that TCCmatrices exist at every admissible order,
so our result provides an interesting contrast to the cocyclic Hadamard conjecture.

In Sect. 2, we introduce some notation and discuss preliminary results. In Sect. 3, we
present the classification of transitive permutation groups of degree 2m+2 containing
an element with cyclic structure 1+1+m+m; this will be used in our classification of
the admissible permutation representation groups for cocyclic TCC HMs. In Sect. 4,
we show that Paley I and II HMs are TCC, we discuss equivalence of TCCmatrices in
family (F3) with Sylvester matrices, and we propose a new family of quadruple core
circulant HMs. We conclude the paper with some directions for future work.
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2 Preliminaries

We give an overview of some well-known group theoretic concepts that are required
in Sects. 3 and 4 .

2.1 General groups

We denote by Sym(Ω) and Alt(Ω) the symmetric and alternative groups on a finite
set Ω; when Ω has size n, we identify Ω = {1, . . . , n} and write Symn and Altn . If
T is a permutation group of degree k and H is some group, then H � T denotes the
wreath product (H ×· · ·×H)�T where T permutes the k-copies of H via its natural
action. If q is a prime power, then PGLn(q) and PSLn(q) denote the projective linear
and projective special linear groups of degree n over the field Fq with q elements.
Analogously, AGLn(q) and A�Ln(q) are the groups of n-dimensional affine (semi-
linear) transformations over Fq .

2.2 Permutation groups

A group G acts on the set Ω if there is a homomorphism α : G → Sym(Ω); the
image of ω ∈ Ω under α(g) is usually denoted ωg = ωα(g). The action is faithful
if ker α is trivial. The G-action on Ω is transitive if for any α, β ∈ Ω there exists
g ∈ G such that αg = β; it is n-transitive if the induced action on n-tuples over Ω

with pairwise distinct entries is transitive. The stabiliser of ω ∈ Ω is the subgroup
Gω = {g ∈ G : ωg = ω}; the action is semi-regular if Gω = {1} for every ω ∈ Ω .
The action is regular if it is semi-regular and transitive: for each pair α, β ∈ Ω , there
is a unique g ∈ G with αg = β.

TheG-orbit ofω ∈ Ω isωG = {ωg : g ∈ G}. A block ofG is a subset B ⊆ Ω such
that for every g ∈ G either B = Bg or B ∩ Bg = ∅. The trivial blocks are B = Ω

and singletons B = {ω}. A transitive action is imprimitive if there is a non-trivial
block, and primitive otherwise. If B is a non-trivial block, then G acts transitively on
{Bg : g ∈ G} and the latter is a system of imprimitivity for G. Every such system
partitions Ω into subsets of the same size; in particular, if Ω is finite, then |B| divides
|Ω|. Every transitive permutation group is a subdirect product of primitive groups,
and a taxonomy of primitive groups is given by the famous O’Nan–Scott theorem, see
[4, Chapter 4]. A primitive group is of affine type if it contains a normal elementary
abelian group acting regularly, and of non-affine type otherwise.

Now, let G be transitive. An orbital of G is a G-orbit in Ω ×Ω , and the number of
orbitals is the rank of G. There is a bijection between the orbitals of G and the orbits
of Gω for every ω ∈ Ω . The Gω-orbits on Ω are suborbits, and their cardinalities are
the subdegrees of G; since G is assumed to be transitive, the latter are independent
of ω. If Ω is finite, then a permutation g ∈ Sym(Ω) has cycle type c1 + · · · + ck if
the 〈g〉-orbits on Ω have size c1, . . . , ck with c1 + · · · + ck = |Ω|; equivalently, the
disjoint cycle notation of g is a product of cycles of lengths c1, . . . , ck .
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2.3 A permutation representation of Aut(H)

A matrix M is a ZA-matrix (A-matrix), with A being a group, if all entries lie in
the group ring ZA (in the group A). It is monomial if every row and every column
contains exactly one nonzero entry. The group Monn(A) of all A-monomial matrices
under matrix multiplication.We abbreviate the direct productMonn(A)×Monn(A) as
Mon2n(A); this group acts on the set of A-matrices of size n via (P, Q) ·M = PMQᵀ.
Matrices in the same orbit are A-equivalent, written M ≡A M ′. Let Perm(n) ≤
Monn(A) be the subgroup of permutation matrices isomorphic to Symn , and let
Diagn(A) ≤ Mon(A) be the subgroup of all diagonal matrices. The map that takes
M ∈ Monn(A) and replaces every a ∈ A by 1 ∈ Z is a group homomorphism onto
Perm(n) with kernel Diagn(A); in particular, every M ∈ Monn(A) can be written
uniquely as

M = PMDM (2)

with DM ∈ Diagn(A) and PM ∈ Perm(n).
We are interested in the case where A is the multiplicative group 〈±〉 = {±1} and

H is a HM of order n; in the following, we write≡ for≡〈±〉. The automorphism group
of H is defined as the stabiliser

Aut(H) = {(R, S) ∈ Mon2n(〈±〉) : RHSᵀ = H} .

Note that if (R, S) ∈ Aut(H), then S = H−1RH , hence S is determined by H and
R, and the projection π : (R, S) → R is injective. In particular, Aut(H) → Perm(n),
given by (R, S) �→ PR , is a group homomorphism; we denote its image by

A(H) = {PR ∈ Perm(n) : (R, S) ∈ Aut(H)}.

We conclude this section with a result on A(H) where H is a cocyclic TCC matrix.

Proposition 2.1 Let H be a HM of order n = 2m + 2. If H is cocyclic, then A(H) is
transitive. If H is TCC, thenA(H) contains an element of cycle type 1+ 1+m +m.

Proof The first claim is [14, Lemma 6]. For the second claim, assume that H has
shape (1), and let M be the m × m permutation matrix corresponding to the stan-
dard m-cycle (acting on row vectors). Note that MXMᵀ = X for each circulant
X ∈ {A, B, Aᵀ, Bᵀ}. The block diagonal matrix σ = diag(I2, M, M) yields an auto-
morphism (σ, σ ) ∈ Aut(H) whose image in A(H) has cycle type 1 + 1 + m + m.

��

3 Automorphisms of a cocyclic TCC HM

In this section, we studyA(H) for cocyclic TCCHMs. Ourmain tool is a classification
of transitive permutation groups of degree n = 2m + 2, with m odd, that contain an
element of cycle type 1+1+m+m; such a group is not regular and has rank at most 4.
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3.1 Groups containing elements with cycle structure 1+ 1+m+m

We first study the suborbit lengths of transitive and primitive permutation groups; this
will be required in our proof of Theorem 3.4.

Lemma 3.1 Let G ≤ Sym(Ω) be transitive, |Ω| ≥ 3, and α ∈ Ω . If Gα has exactly
two fixed points in Ω , say α, β ∈ Ω , then G is imprimitive and {α, β} is a non-trivial
block for G.

Proof Since G is transitive, the Orbit–Stabiliser Theorem implies |Gα| = |Gβ |; since
Gα ≤ Gβ , we have Gα = Gβ . Let h ∈ G such that {α, β}h ∩ {α, β} �= ∅. If αh = α,
then h ∈ Gα = Gβ ; hence, {α, β}h = {α, β}. Now, suppose αh = β; we will show
that βh = α, and then, it follows that {α, β} is a block of imprimitivity, as claimed.
If x ∈ Gα = Gβ , then αhxh−1 = α, so hxh−1 ∈ Gα = Gβ , which shows that

βhxh−1 = β. This implies that βhx = βh ; that is, every x ∈ Gα stabilises βh . By
assumption, the only fixed points of Gα = Gβ are {α, β}, which forces βh ∈ {α, β};
hence, βh = α and {α, β}h = {α, β}. ��

The next result from [4] collects some observations on the subdegrees of a primitive
permutation group.

Lemma 3.2 Let G ≤ Sym(Ω) be primitive with subdegrees n1 ≤ · · · ≤ nr and r > 2.
If G is not regular, then n1 < n2 and gcd(nr , ni ) �= 1 for all i ≥ 2; moreover, p ≤ n2
for each prime p dividing n3, . . . , nr .

Proof This follows from [4, p. 72 andExercise 1.6.5] and [4, Lemma3.2B andExercise
3.2.24]. ��

The next theorem of Jones [9, Theorem 1.2, Remark 1.5] constitutes the main
ingredient in our proof of Theorem 3.4. In the following, M11, M12, M24 are three of
the five Mathieu groups, see [15, Section 7.4]; note that below M11 is considered in
its 3-transitive permutation representation on 12 points.

Proposition 3.3 Let T be a transitive permutation group of degree k > 2. If T contains
a cycle fixing exactly one point, then T is 2-transitive (hence primitive) and isomorphic
to one of the following:

1. AGLd(q) ≤ T ≤ A�Ld(q) with k = qd for some prime power q,
2. T = PSL2(p) or T = PGL2(p) with k = p + 1 for some prime p > 3,
3. T ∈ {M11, M12, M24} with k = 12, 12, 24, respectively,
4. Altk ≤ T .

The main result of this section is:

Theorem 3.4 Let G ≤ Sym(Ω) be transitive of degree n = 2m + 2 with odd m. If G
has an element of cycle type 1+ 1+m +m, then there is T as in Proposition 3.3 with
k = m + 1 such that

i) G is 2-transitive, or
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ii) G is imprimitive with blocks of size 2, and the induced action of G on blocks is
T , that is, G ≤ C2 � T with surjective projection G → T , or

iii) G = T � C2.

Proof Let σ ∈ G be the element with cycle type 1+ 1+m +m. Let α ∈ Ω be a fixed
point of σ and note that 〈σ 〉 ≤ Gα has four orbits of size 1, 1,m,m. This implies that
G has rank r ∈ {2, 3, 4}, and we make a case distinction. If r = 2, then the subdegrees
are 1, 2m + 1 and Gα acts transitively on the remaining points; this implies that G is
2-transitive.

If r = 4 with subdegrees 1, 1,m,m, or r = 3 with subdegrees 1, 1, 2m, then Gα

has exactly two fixed points; hence, G admits a system of imprimitivity of size 2 by
Lemma 3.1. Since σ has odd orderm and blocks have size 2, the element σ cannot fix a
block without fixing it element-wise. This implies that σ fixes precisely one block and
so acts transitively on the remaining m blocks: this follows from the Orbit–Stabiliser
Theorem and the fact that for each i ∈ {1, . . . ,m − 1}, the permutation σ i has odd
order and the same fixed points as σ . A permutation of order m that acts transitively
on m blocks must be an m-cycle on those blocks. In particular, the G-action on those
m + 1 blocks is 2-transitive; this implies that this G-action is one of the groups listed
in Proposition 3.3 with k = m + 1; these groups are listed under ii).

Lastly, let r = 3 with subdegrees 1,m,m + 1. Lemma 3.2 implies that G is
imprimitive. Let B be a non-trivial block containing a fixed point x of σ , then Gx has
orbits {x},U , V with |U | = m and |V | = m+1. If g ∈ Gx , then Bg = B since x ∈ B
is fixed by g. But this requires thatU or V is contained in B; that is, B has size m + 1
or m + 2. Since m + 2 does not divide |Ω| = 2m + 2, the only non-trivial block size
is m + 1. The cycle type of σ implies that the action of Gα on the suborbit of length
m + 1 has cycle type 1 + m; in particular, the induced action is 2-transitive and one
of the groups in Proposition 3.3 with k = m + 1. There are two blocks, so this yields
the groups in case iii). ��

3.2 The order of cocyclic TCC HMs

Now, we work towards applying Theorem 3.4 in the case that G = A(H). The fact
that A(H) is a quotient of the automorphism group of a HM implies a bound on the
number of fixed points of a non-identity element.

Lemma 3.5 Let H be a HM of order n and write π : Aut(H) → A(H) for the pro-
jection of Sect. 2.3. If π(P, Q) is non-trivial, then π(P, Q) fixes at most n/2 points.

Proof Since (P, Q) ∈ Aut(H), it follows that PH = HQ. The matrix HQ is a
rearrangement of the columns of H up to signs. If ci is a column of H , then Pci is a
column of HQ; if c j is another column of H , then the inner product of Pci and c j
is 0 by the orthogonality of columns in H . Suppose, for a contradiction, that P fixes
more than n/2 rows and let ci be a column of H with Pci �= ±ci . Then, ci and Pci
have more than n/2 entries in common, so there are more than n/2 positive terms in
the inner product, contradicting orthogonality of columns. ��
Theorem 3.6 Let H be a cocyclic TCC HM of order n = 2m + 2 with m odd. Then,
one of the following holds, where p denotes a prime and q denotes a prime power:
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A) A(H) is non-affine 2-transitive and contains M12 or PSL2(q) as a normal sub-
group, or

B) A(H) is affine 2-transitive and contains AGLn(2) as a normal subgroup, or
C) A(H) ≤ C2 � T with surjective projection A(H) → T , where T ∈

{PSL2(p),PGL2(p)} with m = p a prime, or T ∈ {M11, M12, M24} with
m + 1 = 12, 12, 24, respectively, or,

D) A(H) ≤ C2 � T with surjective projection A(H) → T , and AGL1(q) ≤ T ≤
A�L1(q).

Proof Parts A) and B) are primitive non-affine and primitive affine respectively. Parts
C) and D) are imprimitive, but with induced primitive non-affine and affine actions
on blocks. For m ∈ {1, 3}, there exists a unique equivalence class of HMs of order
n = 2m + 2; these matrices are cocyclic and TCC. Each matrix is equivalent to a
Sylvester matrix and so has A(H) 2-transitive of affine type, leading to a group of
type B). Thus, in the following, let m ≥ 5. Proposition 2.1 implies that G = A(H)

satisfies the hypotheses of Theorem 3.4; we proceed through the three cases.
Case i): Here, G is 2-transitive. It follows from [8, Proposition 1] that if G is non-

affine, then G is M12, contains PSL2(q) with q ≡ 3 mod 4 a prime power, or n = 36.
We can exclude n = 36: there is a unique equivalence class of HMs of order 36 for
whichA(H) is doubly transitive, [13, Theorem 16]. For this matrix,A(H) ∼= Sp6(2)
has order not divisible by m = 17, violating Proposition 2.1. There exists (up to
equivalence) a unique HM of order 12, and this matrix has A(H) ∼= M12. For each
prime power q ≡ 3 mod 4 with q ≥ 19, there exists a unique HM of order q + 1 for
which PSL2(q) ≤ A(H). All such matrices are of Paley type I (see Sect. 4.1 for a
further discussion); this gives the HMs under A).

In the case that G is 2-transitive of affine type, unpublished work of Moorhouse
shows that the only real HMs which arise are equivalent to Sylvester matrices, [11,
Theorem 1.2]; this is covered by B).

Case ii): LetA(H) ≤ C2�T with surjective projectionA(H) → T ,whereA(H) is a
group of rank at least 3. First, supposeAGLd(q) ≤ T ≤ A�Ld(q) andm+1 = k = qd

for some even prime power q; recall that m is odd. Let a = diag(α, 1, . . . , 1) ∈
GLd(q) ≤ T where α is a non-trivial element of the finite field Fq . Let b ∈ G be any
preimage of a under the projectionG → T . It follows that b2 fixes at least 2qd −2q =
2(m+1)−2 d

√
m + 1 elements. If d > 1, then n/2 = m+1 < 2(m+1)−2 d

√
m + 1;

Lemma 3.5 shows that this is not possible, and hence, d = 1; this gives the HMs under
D).

Second, suppose T contains Altk , so T has a 3-cycle fixing k − 2 elements. If
b ∈ G is any preimage of that cycle under the projection G → T , then b2 fixes at
least (2m + 2) − 6 = 2m − 4 elements. Since m ≥ 5, this is again not possible
by Lemma 3.5. Lastly, suppose T ∈ {PSL2(p),PGL2(p), M11, M12, M24}. A direct
computation shows that every non-trivial element in M11 and in M12 (on 12 points)
fixes at most 4 points, and every non-trivial element of M24 (on 24 points) fixes at
most 8 points. Thus, the previous argument cannot exclude the case that G ≤ C2 � T
with T ∈ {M11, M12, M24}. Similarly, every non-trivial element in PSL2(p), acting
on p + 1 points, fixes at most 2 points; this yields the HMs under C).
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Case iii): Here,G = T �C2. By Proposition 3.3, there is a non-trivial element a ∈ T
that has a fixed point; hence, (a, 1) ∈ T × T ≤ G fixes more than n/2 elements; this
is not possible by Lemma 3.5. ��

Going through the list of possibilities in Theorem 3.6, we conclude:

Corollary 3.7 The order of a cocyclic TCC HM has the form q + 1, 2p + 2, or 2t for
some prime power q ≡ 3 mod 4, prime p ≥ 3, and integer t ≥ 2, respectively.

4 Existence of cocyclic TCC HMs

We now discuss the existence of cocyclic TCC HMs.

4.1 Paley type I and type II HMs

Let Fq be the finite field of odd size q, with primitive element ω ∈ Fq . The quadratic
character χ : Fq → C is defined by χ(g) = g(q−1)/2; that is, if g ∈ F

×
q , then χ(g) = 1

if g is a square in F×, and χ(g) = −1 otherwise. We order the elements of Fq as
g0 = 0 and gi = ωi for i ∈ {1, . . . , q − 1}. Let Q = [χ(gi − g j )]i, j∈{0,...,q−1} and
define R as the (q + 1) × (q + 1) matrix

R =
[
0 χ(−1)1
1ᵀ Q

]
.

Now, the Paley type I and type II matrices can be defined as follows:

PI = R + Iq+1 and PII =
[
R + Iq+1 R − Iq+1
R − Iq+1 −R − Iq+1

]
. (3)

Theorem 4.1 [3, Chapter 17] Paley matrices are cocyclic. A PI matrix is Hadamard
if and only if q ≡ 3 mod 4 and a PII matrix is Hadamard if and only if q ≡ 1 mod 4.
All PI matrices of the same order are equivalent, as are all PII matrices of the same
order. A PI matrix is equivalent to a PII matrix if and only if the order of the matrix is
at most 12.

We now study when Paley HMs are TCC.

Proposition 4.2 The Paley type I HMs are TCC for all prime powers q ≡ 3 mod 4.
The Paley type II HMs are TCC if and only if q ≡ 1 mod 4 is a prime.

Proof First, consider Paley I; that is, let q ≡ 3 mod 4 be a prime power. In this case,
χ(−1) = −1, and

χ(x − y) = χ(−1)χ(y − x) = −χ(y − x)

for all x, y ∈ Fq . Let ω be a primitive element of F
×
q and define

R = {ω2i : i ∈ {1, . . . , (q − 1)/2}} and N = {ω2i+1 : i ∈ {1, . . . , (q − 1)/2}} ,
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with this ordering. Let M be the matrix that arises from PI by fixing the labels of the
first row and column, and by labelling the remaining rows and columns by 0,R,N
and 0,N ,R, respectively. Then, PI ≡ M , and, by construction,

M =

⎡
⎢⎢⎣

1 −1 −1 −1
1 1 1 −1

1ᵀ 1ᵀ A B
1ᵀ −1ᵀ C D

⎤
⎥⎥⎦ .

We show that C = Bᵀ and D = −Aᵀ. For this note that

B = I(q−1)/2 +
[
χ(ω2i − ω2 j )

]
i, j∈{1,...,(q−1)/2} and

C = I(q−1)/2 +
[
χ(ω2i+1 − ω2 j+1)

]
i, j∈{1,...,(q−1)/2} .

Now,C = Bᵀ follows fromχ(ω2i+1−ω2 j+1) = χ(ω)χ(ω2i−ω2 j ) = −χ(ω2i−ω2 j ) = χ(ω2 j−ω2i ).

Similarly, we have

A =
[
χ(ω2i − ω2 j+1)

]
i, j∈{1,...,(q−1)/2} and

D =
[
χ(ω2i+1 − ω2 j )

]
i, j∈{1,...,(q−1)/2} .

and D = −Aᵀ follows from χ(ω2i+1 − ω2 j ) = −χ(ω2 j − ω2i+1). By construction,
A and B are circulant matrices. We obtain the required TCC structure for M by
multiplying all columns but the first by −1, and swapping the last two row blocks and
column blocks.

Now, consider Paley II, that is, let q ≡ 1 mod 4 be a prime power; in this case,
χ(−1) = 1. It is straightforward to check that PII is equivalent to

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1

1ᵀ 1 −Q − Iq Q − Iq
1ᵀ −1ᵀ Q − Iq Q + Iq

⎤
⎥⎥⎦ ≡ PII.

Since χ(x − y) = χ(−1)χ(y − x) = χ(y − x), the blocks Q + Iq and Q − Iq are
symmetric; this proves that PII is TCC if and only if these blocks are circulant. This
occurs if and only if the additive group of the field Fq is cyclic, which occurs precisely
when q is prime.

Lastly, we mention that the Paley II matrices are not equivalent to a TCC matrix
when q is not prime. To see this, let H be a HM equivalent to the Paley II matrix
of order 2q + 2, where q ≡ 1 mod 4 is a prime power q = pa . By [3, Theorem
17.2.6] and its proof, if q > 5, then the Sylow p-subgroup of Aut(H) has order q
and is cyclic if and only if q is a prime. Hence, if AH contains an element with cycle
structure 1 + 1 + q + q, then q is a prime; as shown above, the Paley II matrices are
TCC precisely in this case. ��
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Recall that the Kronecker product of cocyclic HMs is cocyclic [3, Lemma 16.4.1].
Thus, the Kronecker product of a Paley I matrix of prime order p ≡ 3 mod 4 with the
HM of order 2 is equivalent to a cocyclic HM. Together with the Paley II HMs, there
exist cocyclic HMs of order 2q + 2 for all odd prime powers q. Moreover, there exist
TCC HMs of order 2p + 2 where p ≡ 3 mod 4 is a prime, namely

[
PI PI
Pᵀ
I −Pᵀ

I

]
≡

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1

1ᵀ 1 −Q − Iq −Q − Iq
1ᵀ −1ᵀ (−Q − Iq)� (Q + Iq)ᵀ

⎤
⎥⎥⎦ (4)

which is in TCC form. We did not manage to prove that this matrix is cocyclic;
however, for every prime p ≡ 3 mod 4 with 7 ≤ p ≤ 500, we have verified this
computationally using techniques developed previously [12]. We also showed that
this matrix is inequivalent to the Kronecker product of a HM of order 2 with PI.

Proposition 4.3 For every prime p ≡ 3 mod 4 with 7 ≤ p ≤ 500, the matrices of the
form (4) are cocyclic TCC HMs over the dihedral group of order 2p + 2.

We can now prove our main result.

Proof of Theorem 1.1 The first claim follows from Corollary 3.7. The Paley type I
matrices are cocyclic and equivalent to TCCmatrices by Theorem 4.1; this establishes
the existence of cocyclic TCC HMs with orders in (A). Existence of TCC HMs of
orders in (B) is established for primes p ≡ 1 mod 4 by Theorem 4.1, and for primes
p ≡ 3 mod 4 less than 500 by Proposition 4.3. Since 2t − 1 is prime for t = 3, 5, 7,
the first power of 2 not covered by Theorem 4.1 or by Proposition 4.3 is 512. ��

4.2 TCC HMs of 2-power order

We continue with a discussion of TCCHMs of 2-power order. The family of Sylvester
HMs is iteratively constructed as

Syln+1 =
[
Syln Syln
Syln −Syln

]
where Syl1 =

[
1 1
1 −1

]
.

It is well known that the Sylvester matrix is Hadamard equivalent to a matrix of the
form

Sn =
[

1 1
1ᵀ Dn

]
, (5)

where Dn is circulant. Let w ∈ F2n be a primitive element, then Dn =
[(−1)Tr(ω

i− j )]i, j=1,...,2n−1 satisfies DnD�
n = 2n I2n − J2n , see [7, Lemma 2.14]; we

note that Horadam chooses an ordering of columns different from ours to obtain a
symmetric back-circulant matrix. The Sylvester matrices are known to be cocyclic
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over many non-isomorphic groups [5], see also [3, Lemma 21.1.1]. The TCC HMs in
family (F3) have the form

S′
n+1 =

[
Sn Sn
Sᵀ
n −Sᵀ

n

]
.

Since theHadamardmatrices of orders 4 and 8 are unique up to equivalence, the first
order at which these matrices could be distinct is 16. A computational investigation
shows that the matrices have distinct automorphism groups. At order 32, the matrix
S′
5 is not cocyclic, while the Sylvester matrices are always cocyclic. Our main result

in this section is that the families Sn and S′
n are inequivalent as Hadamard matrices

for n ≥ 4. For this, we require the following preliminary result.
For a square {±1}-matrix H , let [H ]2 be the F2-matrix arising from H where every

1 is replaced by 0, and every −1 is replaced by 1. The 2-rank of H is defined to be the
(usual) rank of [H ]2 over F2.

Lemma 4.4 Let H and K be square {±1}-matrices. If H and K are Hadamard equiv-
alent, then the 2-ranks of H and K differ by at most 2; this bound is sharp. If H arises
from K by row and column permutations, then H and K have the same 2-rank.

Proof By assumption, RHC = K for signed permutation matrices R and C . Write
R = DRPR and C = PC DC as in (2), and define H ′ = PRH PC . By construction, H ′
and H have the same 2-rank, so it remains to show that the 2-ranks of K = DRH ′DC

and H ′ differ at most by 2. Note that multiplication of a row of H ′ by −1 corresponds
to adding all (−1)’s vector to the respective row of [H ′]2. Thus, if i1, . . . , ik are the
indices of those rows of DR that contain −1, then [DRH ′]2 = [H ′]2 + D where the
entries of D are di, j = 1 if i ∈ {i1, . . . , ik} and di, j = 0 otherwise. This shows that
the (row) ranks of [DRH ′]2 and [H ′]2 differ by at most 1. The same argument shows
that the (column) ranks of [DRH ′]2 and [DRH ′DC ]2 = [K ]2 differ by at most 1, so
the claim follows. Lastly, note that

[
1 1 1
1 1 1
1 1 1

]
and

[ −1 −1 1
1 1 −1
1 1 −1

]

are equivalent and have 2-ranks 0 and 2, respectively. ��
Proposition 4.5 If n ≥ 3, then S′

n+1 is not equivalent to Syln+1.

Proof Since Syln ≡ Sn and Syln+1 = Syl1⊗Syln , it follows that Syln+1 ≡ Syl1⊗Sn ;
to simplify notation, in the following we write

S =
[
Sn Sn
Sn −Sn

]
and S′ = S′

n+1 =
[
Sn Sn
Sᵀ
n −Sᵀ

n

]
.

It suffices to prove that the 2-ranks of S and S′ differ by more than 2; then, S �≡ S′ by
Lemma 4.4.
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By definition,

[Sn]2 = [ 0 0
0ᵀ [Dn ]2

]
and [S]2 =

[ [Sn ]2 [Sn ]2[Sn ]2 [Sn ]2+J

]
,

where J = J2n ; thus, the 2-rank of S is the 2-rank of [Sn]2 plus 1. Since Syln has
2-rank n, see [2, Theorem 1.3], it follows from Lemma 4.4 that the 2-rank of S is
between n − 1 and n + 3.

Now, consider S′. Let R be the (2n − 1) × (2n − 1) matrix with 1’s on its back-
diagonal and 0’s elsewhere, so that RDᵀ

n = DnR. This can be used to show that

S′ ≡

⎡
⎢⎢⎣

1 1 1 1
1ᵀ Dn 1ᵀ DnR
1 1 −1 −1

1ᵀ DnR −1ᵀ −Dn

⎤
⎥⎥⎦ , [S′]2 =

⎡
⎢⎢⎣

0 0 0 0
0ᵀ [Dn]2 0ᵀ [DnR]2
0 0 1 1
0ᵀ [DnR]2 1ᵀ [Dn]2 + J

⎤
⎥⎥⎦

where J is a suitable all 1’s matrix. By Lemma 4.4, the 2-rank of S′ is 1 plus the rank
of

An =
[ [Dn ]2 [Dn ]2+[Dn R]2[Dn ]2+[Dn R]2 0

]
.

Note that [Dn]2 = [Tr(ωi− j )]i, j=1,...,2n−1, and [DnR]2 arises from [Dn]2 by reversing
the ordering of the columns, that is, [DnR]2 = [Tr(ωi+ j )]i, j=1,...,2n−1. Thus, the ranks
of [Dn]2 and [DnR]2 equal the 2-rank of Sn , which lies between n − 2 and n + 2:
recall that Sn ≡ Syln and Syln has 2-rank n.

Since the trace function is aF2-linear map, the column space of [Dn]2 is spanned by
the columns labelled by a F2-basis of F2n . Note that [Dn]2 + [DnR]2 = [Tr(ωi (ω j +
ω− j ))]i, j=1,...,2n−1, so the columns of [Dn]2 + [DnR]2 are exactly those columns of
[Dn]2 labelled by {ωi +ω−i : i = 1, . . . , 2n −1}. Since the latter contains aZ2-basis1

of F2n , it follows that the rank of [Dn]2 + [DnR]2 is the same as [Dn]2.
Let B be the matrix such that B[Dn]2 has row echelon form; if r is the rank of

B[Dn]2, then B[Dn]2 has exactly r nonzero rows. By construction, B[DnR]2 arises
from B[Dn]2 by reversing the ordering of the columns. This shows that if row i in
B[Dn]2 is zero, then also row i in B[Dn]2+B[DnR]2 is zero; thus, B[Dn]2+B[DnR]2
has at most r nonzero rows. Since [Dn]2 and [Dn]2 + [DnR]2 have the same rank,
it follows that B[Dn]2 + B[DnR]2 has exactly r nonzero rows, and those rows are
linearly independent; in particular, row i in B[Dn]2 is nonzero if and only if row i in
B[Dn]2 + B[DnR]2 is nonzero. Together with the structure of An , this implies that
the rank of An is twice the rank of [Dn]2.

Now, we can conclude. Since the rank of [Dn]2 is between n − 2 and n + 2, the
rank of An is between 2n − 4 and 2n + 4. Thus, the 2-rank of S′ lies between 2n − 3

1 Note that B = {ω,ω2, . . . , ωn} is an F2-basis of F2n . We claim that C = {ω + ω−1, . . . , ωn + ω−n} is
also a basis. Let R be the n × n matrix with 1s on the back-diagonal, and let M be the matrix that describes
multiplication by ω−n−1 with respect to B. Then, the matrix R + M describes the linear map defined by
ωi �→ ωn+1−i + ω−n−1+i . Note that R + M maps B to C, and the claim follows from the non-singularity
of R+M : if v is in the kernel of R+M , then vR = vM , and so v = vR2 = vM2; the matrix M2 describes
multiplication by ω−2n−2 �= 1, which forces v = 0.
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and 2n + 5. As shown above, the 2-rank of S is between n − 1 and n + 3. If n ≥ 9,
then 2n−3 and n+3 are more than 2 apart, which proves that S �≡ S′. For 4 ≤ n ≤ 8,
a direct computation shows that S and S′ are not equivalent. ��

4.3 QCCmatrices and further research

The conclusions of Proposition 2.1 and Theorem 3.6 hold for a broader class of
HMs than just the TCC matrices. Motivated by these results, we propose the class
of quadruple-circulant core (QCC) HMs of order n = 2m + 2, as any HM equivalent
to a matrix of the form

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1

1ᵀ 1ᵀ A B
1ᵀ −1ᵀ C −D

⎤
⎥⎥⎦

where A, B,C, D are {±1}-circulant blocks of order m. Note that a matrix of this
shape is a HM if and only if

AAᵀ + BBᵀ = CCᵀ + DDᵀ = (2m + 2)Im − 2Jm,

ACᵀ = BDᵀ, and A1 = B1 = C1 = D1 = −1.

Theorem 3.6 holds verbatim for QCCmatrices. Since the Sylvester matrices and the
Paley matrices belong to the class of QCC matrices, we have determined completely
the spectrumof cocyclicQCCmatrices: they exist at every order listed inCorollary 3.7.

In collaboration with R. Stafford, the third author developed strong restrictions on
cocyclic HMs of order n = 1 + m whose automorphism groups contain elements
of cycle structure 1 + m, see [14]. This was later developed into a full classification
of such matrices, see [13]. The results of the present paper limit the possibilities for
CHMs of order n = 2m + 2 whose automorphism groups contain elements of cycle
structure 1+ 1+m +m. Based on these results, we propose the following questions
for future research.

(R1) Horadam’s [7, Research problem40] concerns the family ofKimuraHMs,which
canbe shown to have an automorphismwith cycle structure 1+1+1+1+m+m+
m +m. Classification results or non-existence results for transitive permutation
groups of degree 4m + 4 containing an element with this cycle structure could
lead to classification results for those HMs. Conversely, a detailed structure
analysis for such permutation groups could lead to new classes of HMs with
specified circulant block structure (or more generally, group-invariant block
structure).

(R2) Let G be a group with two monomial representations ρ1 and ρ2. Then,
ρ1(g)Hρ2(g−1) = H for all g ∈ G if and only if H belongs to the inter-
twiner of ρ1 and ρ2. In future work, the authors intend to develop methods for
working with intertwiners of monomial representations of (covers of) permuta-
tion groups of small rank. An immediate application of this work would be the
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classification of HMs for which A(H) is isomorphic to a subgroup of C2 � G
where G is 2-transitive. This would provide a description of all HMs in cases b)
and c) of Theorem 3.6, replacing the computational evidence of Proposition 4.3
with a formal classification result.
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