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Abstract

In this paper, we study combinatorial aspects of permutations of {1, . .., n} and related
topics. In particular, we prove that there is a unique permutation  of {1, ..., n} such
that all the numbers k + (k) (k = 1, ..., n) are powers of two. We also show that
n | per[i/ 71]151‘, j<n for any integer n > 2. We conjecture that if a group G contains
no element of order among 2, ...,n + 1 thenany A C G with |A| = n can be written
as {aj, ..., a,} with ay, a%, ..., a) pairwise distinct. This conjecture is confirmed
when G is a torsion-free abelian group. We also prove that for any finite subset A of
a torsion-free abelian group G with |A| = n > 3, there is a numbering ay, . .., a, of
all the elements of A such that all the n sums

ay+a+az, ay+taz+tas,...,ap—2+ap—1+ ay,
ap—1+an+a, apta+a

are pairwise distinct, and conjecture that this remains valid if G is cyclic.

Keywords Additive combinatorics - Permutations - Powers of two - Permanents -
Groups

Mathematics Subject Classification Primary 05SA05 - 11B75; Secondary 11B13 -
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1 Introduction

Asusual, forn € ZT = {1, 2,3, ...}, we let S, denote the symmetric group of all the
permutation of {1, ..., n}.
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Let A = [a;j]1<i,j<n be a (0, 1)-matrix (i.e., a;; € {0, 1} foralli, j =1,...,n).
Then the permanent of A given by

per(A) = Z Alx(ly " dnx(n)

TesS,
is just the number of permutations 7 € S, with gy, = 1forallk =1, ..., n.
In 2002, Cloitre proposed the sequence [5, A073364] on OEIS whose nth term a (n)
is the number of permutations & € S, withk+m (k) prime forallk = 1, ..., n. Clearly,

a(n) = per(A), where A is a matrix of order n whose (i, j)-entry (1 <i,j <n)is 1
or 0 according as i + j is prime or not. In 2018 Bradley [3] proved that a(n) > 0 for
alln e Z7T.

Our first theorem is an extension of Bradley’s result.

Theorem 1.1 Let (ay, ay, ...) be an integer sequence with ay = 2 and a, < agy+) <
2ai forallk = 1,2,3.... Then, for any positive integer n, there exists a permutation
7 € S, with w* = I, such that

k+n(): k=1,....n) C {a1,a, ...}, (1.1)

where I, is the identity of S, with I,,(k) =k forallk =1, ..., n.

Recall that the Fiboncci numbers Fy, Fi, ... and the Lucas numbers L, L1, ...
are defined by

F0=07 F1=17 andFl‘l+1=F}’l+Fn71(n=152735"-)’
and
Lo=2, Li=1, and Lyy1=L,+ L1 (n=1,2,3,...).

If we apply Theorem 1.1 with the sequence (aj, az,...) equal to (F3, Fy4,...) or
(Lo, L2, L3, ...), then we immediately obtain the following consequence.

Corollary 1.1 Let n € Z*. Then there is a permutation o € S, with 6> = I, such
that all the sums k + o (k) (k = 1, ..., n) are Fibonacci numbers. Also, there is a
permutation T € S, with > = I,, such that all the numbers k + t(k) (k =1, ..., n)
are Lucas numbers.

Remark 1.1 Let f(n) be the number of permutations o € S, such that all the sums
k+o((k) (k=1,...,n) are Fibonacci numbers. Via Mathematica we find that

(f@,.... f20)=(1,1,1,2,1,2,4,2,1,4,4,20,4,5, 1, 20, 24, 8, 96, 200).

For example, 7 = (2, 3)(4, 9)(5, 8)(6, 7) is the unique permutation in Sg such that all
the numbers k + w (k) (k =1, ...,9) are Fibonacci numbers.
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Recall that those integers 7, = n(n + 1)/2 (n =0, 1, 2, ...) are called triangular
numbers. Note that 7, — 7,1 = n < T,_1 forevery n = 3,4, .... Applying The-
orem 1.1 with (a1, az, a3, ...) = (2, T, Tz, ...), we immediately get the following
corollary.

Corollary 1.2 For any n € Z7, there is a permutation = € S, with w* = I, such that
each of the sums k + (k) (k =1, ..., n) is either 2 or a triangular number.

Remark 1.2 When n = 4, we may take 7 = (2, 4) to meet the requirement in Corol-
lary 1.2. Notethat 1 + 1 =3 =T, and2 +4 =343 =T5.

Our next theorem focuses on permutations involving powers of two.

Theorem 1.2 Let n be any positive integer. Then there is a unique permutation 7w, € Sy,
such that all the numbers k +m,, (k) (k =1, ..., n) are powers of two. In other words,
for the n x n matrix A whose (i, j)-entry is 1 or O according as i + j is a power of
two or not, we have per(A) = 1.

Remark 1.3 Note that the number of 1°s in the matrix A given in Theorem 1.2 coincides
with

[logy n|+1 [log, n] n
YooY 1= > @ -+ > 1=21—llogn]—1.
k=0 1<i,j<n k=0 i=pllogyn]+1_,
i+ j=2k
Example 1.1 Here we list 7, in Theorem 1.2 forn =1, ..., 11:

m=0), m=0), m=(1,3), m=(1,3), 75=@3.5, 76=2,60.,5),
7 = (1,7)(2,6)3,5), ms=(1,7)(2,6)(3,5), w9 =(2,6)(3,5)(7,9),
w0 = (3,5)(6,10)(7,9), w1 = (1,3)(5,11)(6, 10)(7,9).

Theorem 1.2 has the following consequence.

Corollary 1.3 For any n € Z, there is a unique permutation w € S», such that
k+mk)e {2 —1:aeZ ) forallk=1,...,2n.

Now we turn to our results of new types.

Theorem 1.3 (i) Let p be any odd prime. Then there is no w € S, such that all the
p — 1 numbers kx (k) (k =1, ..., p — 1) are pairwise incongruent modulo p. Also,

peri/ i< j<p-1 =0 (mod p). (1.2)
(ii) We have

per[i' ' li<i j<n =0 (mod n) foralln =3,4,5,.... (1.3)
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Remark 1.4 In contrast with Theorem 1.3, it is well-known that

detli/ Mi<ijea= [] G-D=121...;a—1)

I<i<j<n
and in particular
det[ij_lhsi,jgp—L det[ij_l]lfi,jsp #0 (mod p)
for any odd prime p.

In additive combinatorics, there are some interesting topics involving both permu-
tations and finite abelian groups, see, e.g., [7,8]. Below we present two novel theorems
on permutations involving groups.

Theorem 1.4 (i) Let ay, ..., a, be distinct elements of a torsion-free abelian group
G. Then there is a permutation w € S, such that all those kazu) (k =1,...,n) are
pairwise distinct.

(1) Let a, b, c be three distinct elements of a group G such that none of them has
order? or3. Then a®® and b°® are distinct for some o € S,. Also, a’®, br@ 73
are pairwise distinct for some T € S3.

Remark 1.5 On the basis of this theorem, we will formulate a general conjecture for
groups in Sect. 4.

Theorem 1.5 For any n > 3 distinct elements a1, aa, . . ., a, of a torsion-free abelian
group G, there is a permutation © € S, such that all the n sums

by +by+b3z, by+b3+by,...,
bn—2+bn—1+bnv bn—1+bn+bla bn+bl+b2

are pairwise distinct, where by = az ) fork =1, ..., n.

Remark 1.6 By Remark 1.2 of Sun [18], for any finite subset A of a torsion-free abelian
group with |A| = n > 2 we may write A as {ay, ..., a,} suchthata; +aa, ...,a,—1+
an, a, + ap are pairwise distinct.

We are going to prove Theorems 1.1-1.3 and Corollary 1.3 in the next section, and
show Theorems 1.4 and 1.5 in Sect. 3. We will pose some conjectures in Sect. 4.
2 Proofs of Theorems 1.1-1.3 and Corollary 1.3
Proof of Theorem 1.1 For convenience, we setag = 1 and A = {a1, az, a3, ...}. We

use induction on n € Z71 to show the desired result.
Forn =1, we take 7 (1) = 1 and note that 1 + 7w (1) =2 = a; € A.
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Now let n > 2 and assume the desired result for smaller values of n. Choose k € N
withar <n < agy1,and writem = ag1 —n. Thenl <m <2ay —n <2n—n = n.
Let7(j) = ax+1 — j for j =m, ..., n. Then

{m(j): j=m,....n}={m, ..., n},
andr(w(j)) = jforall j =m,..., n.

Case l.m = 1.
In this case, 7 € S, and 72 = I,,.

Case 2. m = n.

In this case, agy+1 = 2n > 2ay. On the other hand, ay4+1 < 2ay. So, ax+1 = 2ax
and gy = n.Letn(j) =n—j =ar — jforall0 < j < n. Thenw € §, and
j4+m() € {ax, axy1) forall j =1,...,n. Note that 72 (k) = k forallk =1, ..., n.

Case3.1 <m < n.

In this case, by the induction hypothesis, for some o € S,,_| with ol = m—1, W€
havei +o(i) € Aforalli =1,...,m—1.Letn(i) =oc (@) foralli =1,...,m—1.
Then w € S, and it meets our requirement. In view of the above, we have completed
the induction proof. O

Proof of Theorem 1.2 Applying Theorem 1.1 with a; = 2* for all k € Z*, we see that
for some 7 € S, with 72 = I, all the numbers k + (k) (k = 1, ...,n) are powers
of two.

Below we use induction on n to prove that the number of & € §,, with

(k+mk): k=1,...,nyC{29: aeZ"}

is exactly one.
The case n = 1 is trivial.

Now let n > 1 and assume that for each m = 1,...,n — 1 there is a unique
Tm € Sp such that all the numbers k + m,,, (k) (k = 1, ..., m) are powers of two.
Choose a € Z1+ with 297! <n <29 and writem = 2% —n. Then 1 < m < n.

Suppose that & € S, and all the numbers k + 7 (k) (k = 1, ..., n) are powers of

two. If 29=1 < k < n, then
pXa <k+nmk)<k+n<2n< patl
and hence (k) = 2% — k since k + 7 (k) is a power of two. Thus
(mk): k=21, ... .n}={m,..., 271}
Ifkef{l,...,2¢7 " —1}and 247! < (k) < n, then
27 k4 7w(k) <n+n<?2°F1,
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hence k + 7w (k) = 2% = m +n and thus m < k < 271, So we have
(7 ') 2V <j<ny={m,....,2¢ " —1}.

(Note that n — 291 =24 —jp — a1 = pa=1 _ ;)
By the above analysis, (k) =29 —k forallk =m, ..., n, and

{mk): k=m,...,n}={m,...,n}

Thus 7 is uniquely determined if m = 1.
Now assume that m > 1. As & € S,, we must have

mk)y: k=1,....m—1y={(1,....,m—1}.

Since k 4+ m(k) is a power of two for every k = 1,...,m — 1, by the induction
hypothesis we have n(k) = m, (k) for all k = 1,...,m — 1. Thus & is indeed
uniquely determined.

In view of the above, the proof of Theorem 1.2 is now complete. O

Proof of Corollary 1.3 Clearly, 7 € Sy, and k + (k) € {2 — 1 : a € ZT} for
all k = 1,...,2n, if and only if there are o, t € S, with 7(2k) = 20(k) — 1 and
7(2k—1) = 2z(k)forallk = 1, ..., nsuchthatk+o (k), k+t(k) € {247V : a € ZF}
forallk = 1, ..., n. Thus we get the desired result by applying Theorem 1.2. O

Lemma 2.1 (Alon’s Combinatorial Nullstellensatz [1]) Let Ay, ..., A, be finite sub-
sets of a field F with |A;| > ki fori = 1,...,nwhereky, ..., k, €{0,1,2,...}. Ifthe
coefficient of the monomial xlfl .. -xff” in P(x1,...,x,) € Flxi, ..., Xy] is nonzero
and ki + - - - + ky, is the total degree of P, then there are a1 € A1, ...,a, € A, such

that P(ay, ..., a,) # 0.

Lemma2.2 Let ay,...,a, be elements of a field F. Then the coefficient of
x?_l ... x"Vin the polynomial

1_[ (xj —xi)ajx; —ajx;) € Flxi, ..., x]

I<i<j<n

1

is (—1)”(”_1)/2per[aij7 l<i,j<n-

Proof This is easy. In fact,

1_[ (xj —xi)ajxj — aix;)

I<i<j<n

n —j i—1_ j—1
= (=) O detlx] 7 T1< j=n x detla} x5} i< j<n

n n
= (—1)(3) Z sign(o) Hxl(l—a(z) Z sign(7) l_[al:f(l)—lxl:[(l)—l.
i=l i=1

oeS, TeS,
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Therefore the coefficient of xf_l .. .x;}’l in this polynomial is

n
(=D& Y sign(@)* [ a7 ™" = (= 1" Pperla! i<, j<n-
i=1

€Sy,
This concludes the proof. O
Remark 2.1 See [6] and [14, Lemma 2.2], for similar identities and arguments.

Proof of Theorem 1.3 (i) Let g be a primitive root modulo p. Then, there is a per-
mutation 7 € S,_1 such that the numbers kr(k) (k = 1,..., p — 1) are pairwise
incongruent modulo p, if and only if there is a permutation p € S,_1 such that
gtP® (i = 1,..., p — 1) are pairwise incongruent modulo p (i.e., the numbers
i+p@)(@=1,..., p—1) are pairwise incongruent modulo p — 1).

Suppose that p € S, and all the numbers i + p(i) (i =1, ..., p — 1) are pairwise
incongruent modulo p — 1. Then

p—1 p—1
D i+p@)=)_j (modp—1,

i=1 j=1

and hence Zfz_lli = p(p — 1)/2 = 0 (mod p — 1) which is impossible. This
contradiction proves the first assertion in Theorem 1.3(i).

Now we turn to prove the second assertion in Theorem 1.3(i). Suppose that
per[i/ i< j<p—1 # 0 (mod p).Then,byLemmaZ.2,thecoe:fﬁcientof)c{’_z...x;';:l2
in the polynomial

[ & —x)Gx; —ixi)

I<i<j<p-1

is not congruent to zero modulo p. Applying Lemma 2.1 with F = Z/pZ and A =
{(k+pZ: k =1,..., p— 1}, we see that there is a permutation 7 € S, 1 such
that all those km (k) (k = 1,..., p — 1) are pairwise incongruent modulo p, which
contradicts the first assertion of Theorem 1.3(i) we have just proved.

(ii) Let n > 2 be an integer. Then

n

o€S, k=1
n—1 n—1
=Y a-D[[P2=@-11r Y J[k®!
€S, k=1 T€8,_1 k=1
o(n)=1
= (n— D!per[i’ i< j<p—1 (mod n).
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We want to prove that n | per[i/ 71]151', j<n- This holds when 7 is an odd prime p,
because p | per[if’]]lﬁi,jfp_l by Theorem 1.3(i). For n = 4, we have

per[ijf]]lfi’j54 = 3' Z ]T(])flzt(2)713‘[(3)71

T€S3

=6 (12*121*133*1 4 13*121*132*1) =0 (mod 4).

Now assume thatn > 41iscomposite. By the above, it suffices to show that (n—1)! =
0 (mod n). Let p be the smallest prime divisor of n. Then n = pg for some integer
g > p.If p < g, thenn = pq divides (n — 1)!. If ¢ = p, then p> = n > 4 and hence
2p < p?, thus 2n = p(2p) divides (n — 1)!.

In view of the above, we have completed the proof of Theorem 1.3. O

3 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4 (i) The case n = 1 is trivial. Below we let n > 1. Note that the
subgroup H of G generated by aj, ..., a, is infinite, finitely generated and torsion-
free. Thus H is isomorphic to Z" for some positive integer r. By algebraic number
theory (cf. [11]), we may take an algebraic number field K with [K : Q] = r and
hence H is isomorphic to the additive group Ok of algebraic integers in K. Thus,
without any loss of generality, we may simply assume that G is the additive group C
of all complex numbers.
n

By Lemma 2.2, the coefficient of xffl . xn_1 in the polynomial

P(xy,...,xy) = H (xj —x)(Jx; —ix;) € Clxy, ..., x,]

I<i<j<n

is (—1)"("_1)/2per[i-/_l]1Si,j5n, which is nonzero since per[ij_l]lsigjsn > 0.
Applying Lemma 2.1 we see that there are xi,...,x, € A = {ay,...,a,} with
P(x1,...,x,) # 0. Thus, for some w € §, all the numbers kas k) (k =1,...,n) are
distinct. This ends the proof of part ().

(ii) Let e be the identity of the group G. Suppose that @ = b* and also a> = b. Then
a = (@®)? = a*, and hence a® = e. As the order of a is not three, we have a = e and
hence b = a? = e, which leads to a contradiction since a =% b. Therefore a®® and
b°@ are distinct for some o € S».

To prove the second assertion in Theorem 1.4(ii), we distinguish two cases.

Case 1. One of a, b, c is the square of another element among a, b, c.

Without loss of generality, we simply assume thata = b%>. Asa # bwehave b # e.
As b is not of order two, we also have a # e. Note that b2 = a # c. If b2 = a3, then
a = a3 which is impossible since the order of a is not two. If a’ # ¢, then c, b2, a3
are pairwise distinct.

Now assume that a> = c. As a is not of order three, we have b # a? and ¢ # e.
Note that a® = ¢ # b and also a® = ¢ # ¢%. If b # ¢?, then b, ¢, a> are pairwise
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distinct. If b = ¢2, thena = b = ¢* = (513)4 and hence the order of a is 11, thus
a? * (a3)3 = ¢3 and hence b, a2, ¢ are pairwise distinct.
Case 2. None of a, b, c is the square of another one among a, b, c.

Suppose that there is no 7 € §3 with a™@®, @, T pairwise distinct. Then
Ae {a, bz} N {az, b}. If > = a, then &3 # b and hence a = A =d%thuisa=e=c
which leads to a contradiction. (Recall that none of a, b, ¢ is of order 3.) Therefore,
¢ = b2 As c is not of order three, if b = e then we have ¢ = ¢ = b which is
impossible. So ¢3 = b? # b and hence b> = ¢> = . Similarly, a® = b*> = ¢>. Thus
a® = b? = a2, hence a = ¢ and b* = a? = ¢, which contradicts b # a since b is not
of order two.

In view of the above, we have finished the proof of Theorem 1.4. O

Proof of Theorem 1.5 The subgroup of G generatedbyay, .. ., a, is a finitely generated
torsion-free abelian group. So we may simply assume that G = Z" for some positive
integer  without any loss of generality. It is well known that there is a linear ordering
<on G = 7" suchthat forany a,b,c € Gifa < bthen —b < —ganda+c < b+c
(cf. [12]). For convenience, we suppose a; < az < --- < a, without any loss of
generality.

If n = 4, then (b1, ba, b3, ba) = (a1, a2, a3, as) meets the requirement since

alt+ataz<ag+a+a <az+aqs+a <ay+az+ as.

Below we assume n > 5.
Clearly

alt+aytaz<ay+aztag <---<ap_p+ap—1+ay.
For convenience we set
S:={ai-1+a+ajt1:1=2,...,n—1},

and let min § and max S denote the least element and the largest element of S, respec-
tively. Note that

minS =a;+ay+a3 <a,+a;+a <a,_1+a, +a

<maxS =a,-2+a,—1 +ay.

If{a, + a1 +az, an_1 +a, + a1} NS =@, then (by, ..., b,) = (ay, ..., a,) meets
the requirement. Obviously,

—ap < —dp—] << —a) < —dap
and (—az) + (—a1) + (—ap) = —(a1 + a2 + ay).
So, itsuffices to find a desired permutation by, . .., b, ofay, . . ., a, under the condition

a,_1+a,+a €8.
Case l.n =5.
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As as +as +a; € S, we have ag + as + a; = a> + az + a4 and we may take
(b1,...,bs) = (a1, a2, a3, as, as) since

agt+ataz<ag+a+a<ay+az+ay
=as5+a4+ay <ay+az+as <az—+as—+ag.

Case2.n = 6.

Asas+ag+aj € S, the sum as+ag+ay is equal to ay +az +a4 or a3 +as +as. If
as +ag¢ +a) = az + a3 + a4, then we may take (by, ..., bg) = (a1, a2, as, a3, as, ag)
since

a1 +a+as <ag+ar+ay <ags+ag+a <as+ag+a =ay +az+aq
<ap)+as—+az <as—+az+aqs <az+as+ ag.

Ifas+ag+a1 = a3 +as+as,thenag+a; = az+aq and we may take (by, ..., bg) =
(a1, a2, a3, a4, ag, as) since

al1+ay+az <as+ay+ay <ag+ay+a=ay +az+as
<az+ags+as=a¢+as+a1 <az+as+as < aq + ag + as.

Case3.n=1.

Asag+a7+ay € S, the sumag + a7 +aj is equal to ar + a3 + a4 oraz +as + as
or as + as + ag. If ag + a7 + a1 = a4 + as + ag, then a7 + a; = as + a5 and we may
take (b1, ..., b7) = (a2, ai, aa, as, a3, ag, ay) since

atat+as<ayt+as+as=a+a+ar <ar+a+ay
<aj+a+a3=a4+as5+a3 <as+ a3+ ag
<a4+as+ag=a) +ag+a; <apy+as+a; <az—+ae+aj.

If ag + a7 + a1 = a» + a3z + aa, then we may take (b1, ..., b7) = (a1, a2, az, as, aa,
ag, aj) since

art+a+a3 <aj+a+ay<ast+art+a <as+ay+a=ay+az+aq
<a)+az+as <az+as+aqs <as+ag+ag < aq +ae+ aj.

Ifas+a7+a; = az+as+asandas+ag+a; # ar+az+aq, thenag+a; < az+ag
and we may take (b1, ..., b7) = (a1, a2, a3, a4, a7, as, ag) since

ay+a +az < ag +ay +ay < min{as + ag + ay, ar + az + aq}
< max{as +ag +ai,ar + a3z +as} < ay +ag+ a7 = az + aq + as
<a3+as+a7; <as+aj;+as <aj+as—+as.
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Ifag+a7+a; = az+ag+asandas+ag+a; = ar +az+aqg,thena;+ay < az+ay
and we may take (b1, ..., b7) = (a1, a2, a3, a4, ae, as, ay) since

art+ay+az3 <aj+a+ay <as+ag+ay =ax+az+aq
<as+ar+a <az+ag+as =a¢+ a7+ a;
<az+ag+ag <ag+ae+as < aeg+as+ ag.

Case4.n > Tanda, +a; +ax ¢ S.
In this case, thereisaunique 2 < i < n—1 witha;_1+a;+aj+1 = ap—1+an,+ai.
Ifi < n — 3, then we may take

(b1, ....by) = (a1, ...,ai—2,ai_1,0;,0i42, Qi+1, A3, - .., Ay)

because

ai—2 +ai—1+a; <aj—1+a +ai41 =ap—1 +ap +a; <aj—1+a; +ai2
<ai +ajy2 +aiy1 < aiy2 +aiv1 +ai43
<ajy1 +aj4+3 +ai44 < - <ap—2+ap—1+an.

Wheni € {n—2,n—3},wehavei > n—3 > 4, and hence in the case a; +a> +a, #
ai—4 + a;—3 + a;—1, we may take

(b13 IR ] bn) = (alv L) ai—4’ ai—39 ai—lv ai—27 aiv ai+11 ai+27 L] al‘l)
because

ai—4+aj-3+a—2 <ai—4+a-3+a—-1 <a-3+a—1+a-2
<ai-1+aji—2+a <ai—2+a +ait1
<daj—1+aj+ajy1 =ap-1+ap+a

<aitajy1t+aiy2 < - <ap—2+ap—1+ay

and

ap+ay+ax < (@i—2+ap—1 —ai+1) +an +a
=aj—3 —ajy1 + (@i-1 + a;i +ai+1) = ai-1 +ai—2 +a;.

Ifi e{n—2,n—3}anda; + a2 + a, = aj—_4 + a;—3 + a;_1, then we may take
(bla ) bn) = (ala ey ai—4,0i-3,4i,04;-2,04; 1, ai+15 ai+27 ceey a}’l)

@ Springer



904 Journal of Algebraic Combinatorics (2021) 54:893-912

because

an+ay+ax=aj—4+aj—3+ai—
<di-4+ai3+a; <aj-3+a; +aj—2 <a; +aj-2+a—1
<aj—2+ai—1+aj+1 <aji—1+a; +ajy1 =ap—1+a, +a;

<aj—1t+aj4+1+ a2 < <ap-2+ap-1 +ay.

Case5.n>7anda, +a; +ap € S.
In this case, for some 2 < j <i <n — 2, we have

apn—1+an+ar=ai—1+a; +aiy1 >aj-1+aj+aj1 =a, +ar +a.
If j +1 =1, then

an-1 —az = (ap—1 + ap + a1) — (ap + a1 +az)
=aj—1+ai+ai41— (@ +ai—1+a;2) =ajy1 —a;—

which is impossible since i > 4 and n > 6.
Ifi — j > 5, then

(br,....by) =(a1,...,aj_1,a;,aj42,aj41,aj43, ...,

a;-3,4di—1,4;-2, 4, alJrl LRI an)
meets the requirement since

aj1+aj+ajr1 =ap+a+ay<aj1+aj+ajo
<ajtajy2+ajy <ajyat+ajirt+adjis
<---<a-3+a-1+a-2<a-1+ai-2+a
<aj—2+ai+ajy <ai-1+a +ay1=ap-1+ap+a
<a; +ai+1 +ai42 <--- <ap—2+ap—1 +an.

Ifi —j=5,thenj+4=i—1and
by, ....by) =(a1,...,aj1,aj,aj412,aj41,0i—1,0-2,0;, 011, -.,0)
meets the requirement. If i — j = 4, then

(b]5"'7bn) = (a17"'5ajfl’aj7aj+27aj+37aj+17ai7ai+1’"'7an)

@ Springer



Journal of Algebraic Combinatorics (2021) 54:893-912 905

meets the requirement since

aj-1+taj+ajy1 =ap +a+a

Ifi — j =3, then

<aj-1+aj+tajr<aj+ajir+aji3
< aj+2+aj+3 +aj+1 <aj+3+aj+1 + a;
<ajy1+ai +aiy1 <ai—1+a;i +aiy1 =ap—1+ay +ai

<a +ai+1 +ai42 < <ap—2+ap-1 +ay.

(bi,....by) = (a1, ...,aj-1,aj,aj42,aj41, 0,811, ..., 0dy)

meets the requirement since

aj1+aj+ajr1 =ap+ar+a

<aj_1+tajtajp<aj+ajir+ajt
<djip+ajyr+a =ai—1+a2+a <aj—2+a; +aiyi
<@i-1+a +aj+1 = ap—1 +an +a

<ai+aj41 +ai42 < <dp—2+ap-1 +an.

If j>4andi = j+ 2, then

(bls ""bn) = (alv cee5Qj-3,04j-1,4j-2,4j4+1,4j,di,di+], di+2, "'7an)

meets the requirement since

aj—4+aj3taj_1 <aj_3+aj_1+aj2<aj_1+aj2+aj+i

<ajatajy1+aj<aj1+aj+aj =apta+a
<ajy1taj+a <aj+a+ait1
<aj-1+a +aj41 = ap—1 +ap +ay < a; +ajy1 + ai42.

Ifi =j+4+2 <n—4,then

by, ....bp) = (a1, ..

i, Aj1,Af, Ay Qi—1, Qi42, Qit1, Qi3 Aitds -« - An)

meets the requirement since

ajp+aj1+aj <aj_1+aj+tajy1=a,+a+a

<aj1+aj+ta <aj+a +ai-i

< aj—1 +a; +aj41 = ap—1 +ap +ay
<aj+aj—1+ajy2 < aj—1+aj+2 + ai+1
< ajy2 +aiy1 +ai43 < aj+1 +ai43 +ai14

< - <daup-2+ay—1+ay.
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Ifi>n—3,j<4andi — j=2,then2 =i —j >n—3—4and hencen € {8, 9}.

For n = 8, we need to consider the case i = 6 and j = 4. Asag +a; +a; = a3+
as+as and a7 +ag+a; = as+ag+aj, wehaveag+a; = as+ag = az+as+as—as.
If 2as # a4 + a7, then as + ag + a1 = 2as + a¢ # aa + ag + a7 and hence we may
take

(b1, ...,bg) = (a1, az, a3, a4, ag, az, as, ag)
since

ay+ay+az3 <ay+az+ags <az+aq4+as=ag+ay +ax <az+asg+ ag
< min{aq + a¢ + a7, as + ag + a1} < max{as + a¢ + a7, as + ag + a}

<ae+aj+as=a;+ag+a; <ay+as+ag.
If 2as = a4 + a7, then ag + ag + a; = as + 2a¢ > as + as + a7 and we may take
(b1, ...,b3) = (a1, a2, a3, as, as, ay, ag, de)
since

ag+ay+az<at+az+as=a +ar+as <ay+az+a
<az+tag+as=ag+ay+ay <aq+as+ay <ag—+ag+ aj
<as+a7+ag <aj+ag—+ ae.

Whenn = 8,i = 5 and j = 3, it suffices to apply the result fori = 6 and j = 4 to
the sequence

ay = —ag < ay=—a; < ay=—as < ay = —as
<ay=-—as <ag=—a3 <ah)=—ay <ag= —aj
since @) + ag + a) = —(a1 + az + ag) = —(az + a3 + ay) = ai + ag + a} and

ag +ay +ay = —(a1 + a7 + ag) = —(a4 + as + ag) = aj + aj + as.

Now it remains to consider the last case where n = 9,i = 6 and j = 4. As
ay+as+as = ag+ay +ap and as+ag+a7 = ag+ag+ay, wehaveas+a4 < ag+aj
andhenceas+a4+ag < az+as+a7 < a7+ag9+ay.If a7 +a9+ay = as+as +ag,
then

ag — a7 = (ag +ay + ay) — (a7 +ag + ay)
=as +ae + a7 — (a4 + as + ag) = a7 — as.

When 2a7 # ag + as, we have a7 + a9 + a1 # a4 + as + ae and hence we may take
(b1, ...,bg) = (a1, az, a3, a4, as, as, ag, aj, ag)
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since

ay+ay+az3 <ay+az+as <az+ags+as =a9+ay +ax <az+as+ag
< min{ayq + as + ag, a7 + a9 + a1} < max{as + as + ag, a7 + a9 + a}
<ae+as+ay;=ag+ag+ay <asg+as+ag
< as—+ag+ay <ag—+ajy+ag.

If 2a7 = ag + a4, then as + ag + a7 < 2a7 + ag = as + ag + ag and hence we may
take

(b1, ...,bo) = (a1, az, a3, a4, ae, ag, as, ay, ag)
since

agtataz<aytaztas<azt+as+as=a9+a;+ay <az+aqg+ ag
<ag+ay+ag<ar+ag+a <ag+ay+a =as+aeg+ay
< a4 +ag+ag <ag+ag+as <ag+as+ay <as—+ay+ ag.

In view of the above, we have completed the proof of Theorem 1.5. O

4 Some conjectures

Motivated by Theorems 1.3(i) and 1.4, we pose the following conjecture for finite
groups.

Conjecture 4.1 Let n be a positive integer, and let G be a group containing no element
of order among 2, ...,n + 1. Then, for any A C G with |A| = n, we may write
A=ay,...,a,}withay, a%, ..., al pairwise distinct.

Remark 4.1 (a) Theorem 1.4 shows that this conjecture holds when n < 3 or G is a
torsion-free abelian group.

(b) Forn = 4,5,6,7, 8,9 we have verified the conjecture for cyclic groups G =
Z/mZ with |G| = m not exceeding 100, 100, 70, 60, 30, 30 respectively.

(c) If G is a finite group with |G| > 1, then the least order of a non-identity element
of G is p(G), the smallest prime divisor of |G]|.
Inspired by Theorem 1.3, we formulate the following conjecture.

Conjecture 4.2 Letn > 1 be an integer withn % 2 (mod 4).

(i) We have
per[i’ ' i< j<u—1 =0 (mod n). 4.1
@ii) Ifn =1 (mod 3), then

per[i’ MNi<i j<n_1 =0 (mod n?). 4.2)
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Remark 4.2 We have checked this conjecture' via computing per[i J ’1]13-, j<n—1 mod-
ulo n? forn < 17. The sequence a, = per[if’l]lg,-,jsn (n=1,2,3,...)is available
from [16, A322363].

Conjecture 4.3 (i) Foranyn € Z™, there is a permutation o, € S, such that ko, (k) -+
1 is prime for everyk =1, ..., n.

(ii) For any integer n > 2, there is a permutation t, € S, such that kt,(k) — 1 is
prime for everyk =1, ..., n.

Remark 4.3 See [16, A321597] for related data and examples.

Conjecture 4.4 (i) Foreachn € 77, there is a permutation 7, of {1, ..., n} such that
k2 + k7, (k) + 7, (k)2 is prime for everyk =1, ..., n.
(i) For any positive integer n # 7, there is a permutation 1, of {1, ..., n} such that

k% + 7, (k)2 is prime for everyk = 1, ..., n.
Remark 4.4 See [16, A321610] for related data and examples.
Asusual, fork =1, 2, 3, ... we let p; denote the k-th prime.

Conjecture 4.5 Foranyn € 7, there is a permutationw € S, such that py~+ pr)+1
is prime for everyk = 1,...,n.

Remark 4.5 See [16, A321727] for related data and examples.

In 1973 Chen [4] proved that there are infinitely many primes p with p+2 a product
of at most two primes; nowadays such primes p are called Chen primes.

Conjecture 4.6 Letn € Z". Then, there is an even permutation o € S, with pi po (k) —
2 prime forallk = 1,...,n. If n > 2, then there is an odd permutation t € §,, with
DkPr(k) — 2 prime forallk =1, ..., n.

Remark 4.6 See [16, A321855] for related data and examples. If we let b(n) denote
the number of even permutations o € S, with pg py ) —2 prime forallk =1, ..., n,
then

b)), ....b(11) = (1,1,1,1,3,6, 1,1, 33, 125, 226).

Conjecture 2.17(ii) of Sun [15] implies that for any odd integer n > 1 there is a prime
p < n such that pn — 2 is prime.

In 2002, Cloitre [5, A073112] created the sequence A073112 on OEIS whose n-th
term is the number of permutations = € S, with Y j_, k++(k) € Z.Recently Sun [17]
conjectured that for any integer n > 5 there is a permutation = € S, satisfying

- 1
Zk+ﬂ(k) =h

k=1

and this was later confirmed by the user Zhao Shen at Mathoverflow via clever induc-
tion arguments.
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In 1982 Filz (cf. [9, pp. 160—162]) conjectured that for any n = 2, 4, 6, ... there is
a circular permutation (i1, ..., i) of 1, ..., n such that all the n adjacent sums

i +iy, 2+i3,...,00—1+in, Ip+ii

are prime.
Motivated by this, we pose the following conjecture.

Conjecture 4.7 (i) For any integer n > 6, there is a permutation w € S, such that

n—1 1
—— =1 4.3)
= (k) +mk+1)
Also, for any integer n > 7, there is a permutation & € S, such that
! + ! +- 1+ ! + ! =1
a()+x2) 7QR2)+7mx3) an—1D+nmn)  whn) +x()
4.4
(ii) For any integer n > 1, there is a permutation & € S, such that
”il ! =0 4.5)
Pt Tk -k + D2 ‘

Remark 4.7 See [16, A322070 and A322099] for related data and examples. For the
latter assertion in Conjecture 4.7(i), the equality (4.4) with n = 8 holds if we take
((),...,w(8) = (6,1,5,2,4,3,7,8). In a previous version of this paper posted
to arXiv, the author also conjectured that for any integer n > 5 there is a permutation
w € S, with ZZ;} m = 1; this, together with two other conjectures of the
author, was confirmed by Han [10].

Conjecture 4.8 (i) For any integer n > 1, there is a permutation w € S, such that

Y momk+ D e +1:m=0,1,2,...}. (4.6)

O<k<n

(ii) For any integer n > 4, there is a unique power of two which can be written as

ZZ;II a()mwk + 1) withm € S, and w(n) = n.

Remark 4.8 Concerning part (i) of Conjecture 4.8, when n = 4 we may choose
(1), ..., m(4) =(1,3,2,4) so that

3
Yomlomk+1)=1x34+3x2+2x4=2"+1.
k=1
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Forany m € S, if foreachk =1,...,n we let

ax Y+ 1) if (k) #n,

O =10 if 71 (k) = n,

then 7’ € S, and
a(Da@R)+---+a(n— Dran) +7w(m)x(l) = an/(k).

k=1

By the Cauchy—Schwarz inequality (cf. [13, p. 178]), for any = € S, we have

(gkﬂk))z < <§k2><gn(k)2>

and hence

" " n+1DQ2n+1)
k) < S k2= TR )

Ifweleto(k)=n+1—m(k)forallk =1,...,n,theno € S, and

Y k) =Y ktn+1—oc)=m+1)> k= ko(k)
k=1 k=1 k=1

k=1
_n(n+ )2 _n(n+ D@+ a4 D +2)
- 2 6 N 6 '
Thus
[Skntos mes,] e ron o {4002 o zbentD)
2 : Lt C = c c )

4.7

Actually equality in (4.7) holds when n # 3, which was first realized by M. Aleksevev
(cf. the comments in [2]). Note that |7 (n)| = n(n*> — 1)/6 + 1.

Inspired by the above analysis, here we pose the following conjecture in additive
combinatorics.

Conjecture 4.9 Letn € Z and let F be a field with p(F) > n + 1, where p(F) = p
if the characteristic of F is a prime p, and p(F) = 400 if the characteristic of F is
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zero. Let A be any finite subset of F with |A| > n+ 6,3, where 8, 3 is 1 or 0 according
as n = 3 or not. Then, for the set

n
S(A) := { Z kay : ay, ..., a, are distinct elements ofA}, 4.8)
k=1

we have

4.9)

2 _
|S(A)] > min {p<F), (A] =t D ne? 21, 1}.

2 6

Remark 4.9 One may compare this conjecture with the author’s conjectural linear
extension of the Erd&s—Heilbronn conjecture (cf. [19]). Perhaps, Conjecture 4.9
remains valid if we replace the field F' by any finite additive group G with |G| > 1
and use p(G) (the least prime factor of |G|) instead of p(F).

Recall that the torsion subgroup of a group G is given by
Tor(G) = {g € G : g is of finite order}.

Conjecture 3.3(i) of the author [ 18] states that if A is an n-subset (with |A| = n > 2)
of an additive abelian group G of odd order then there is a numbering ay, ..., a, of
all the elements of A such thata; + ao, ..., a,—1 + ay, a, + a; are pairwise distinct,
this was verified by Yu-Xuan Ji (a student at Nanjing Univ.) for |G| < 30 in 2020.
Motivated by this and Theorem 1.5, we formulate the following conjecture.

Conjecture 4.10 Let G be an additive abelian group with Tor(G) cyclic or |Tor(G)|
odd. For any finite subset A of G with |A| = n > 3, there is a numbering ay, ..., ay
of all the elements of A such that the n sums

ay+ay+az, ay—+az+a4, ...,
an—2 +ap—1+au, ay—1+a,+a, a,+a+a

are pairwise distinct.

Remark 4.10 (a) Conjecture 4.10 holdsinthecase A =G =Z/nZ ={a=a+nZ:
a € 7} with n > 3 and 3 { n since the natural list 0, 1, ..., 7 — 1 of the elements
of Z/nZ meets the requirement.

(b) In 2008 the author [14] proved that for any three n-subsets A, B, C of an addi-

tive abelian group G with Tor(G) cyclic, there is a numbering ay, . .., a, of the
elements of A, a numbering by, ..., b, of the elements of B and a numbering
ci, ..., cpof the elements of C such that the n sums ay +by+cy, ..., a,+b, +cp

are pairwise distinct.
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