

On permutations of $\{1, \ldots, n\}$ and related topics

Zhi-Wei Sun¹

Received: 25 September 2020 / Accepted: 12 February 2021 / Published online: 25 March 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In this paper, we study combinatorial aspects of permutations of $\{1, \ldots, n\}$ and related topics. In particular, we prove that there is a unique permutation π of $\{1, \ldots, n\}$ such that all the numbers $k + \pi(k)$ ($k = 1, \ldots, n$) are powers of two. We also show that $n \mid \operatorname{per}[i^{j-1}]_{1 \le i,j \le n}$ for any integer n > 2. We conjecture that if a group G contains no element of order among $2, \ldots, n+1$ then any $A \subseteq G$ with |A| = n can be written as $\{a_1, \ldots, a_n\}$ with $a_1, a_2^2, \ldots, a_n^n$ pairwise distinct. This conjecture is confirmed when G is a torsion-free abelian group. We also prove that for any finite subset A of a torsion-free abelian group G with |A| = n > 3, there is a numbering a_1, \ldots, a_n of all the elements of A such that all the n sums

$$a_1 + a_2 + a_3$$
, $a_2 + a_3 + a_4$, ..., $a_{n-2} + a_{n-1} + a_n$,
 $a_{n-1} + a_n + a_1$, $a_n + a_1 + a_2$

are pairwise distinct, and conjecture that this remains valid if G is cyclic.

Keywords Additive combinatorics · Permutations · Powers of two · Permanents · Groups

Mathematics Subject Classification Primary 05A05 \cdot 11B75; Secondary 11B13 \cdot 11B39 \cdot 20D60

1 Introduction

As usual, for $n \in \mathbb{Z}^+ = \{1, 2, 3, ...\}$, we let S_n denote the symmetric group of all the permutation of $\{1, ..., n\}$.

Supported by the National Natural Science Foundation of China (Grant No. 11971222).

Zhi-Wei Sun zwsun@nju.edu.cn http://maths.nju.edu.cn/~zwsun

¹ Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Let $A = [a_{ij}]_{1 \le i,j \le n}$ be a (0, 1)-matrix (i.e., $a_{ij} \in \{0, 1\}$ for all i, j = 1, ..., n). Then the permanent of A given by

$$\operatorname{per}(A) = \sum_{\pi \in S_n} a_{1\pi(1)} \cdots a_{n\pi(n)}$$

is just the number of permutations $\pi \in S_n$ with $a_{k\pi(k)} = 1$ for all k = 1, ..., n.

In 2002, Cloitre proposed the sequence [5, A073364] on OEIS whose *n*th term a(n) is the number of permutations $\pi \in S_n$ with $k + \pi(k)$ prime for all k = 1, ..., n. Clearly, a(n) = per(A), where A is a matrix of order n whose (i, j)-entry $(1 \le i, j \le n)$ is 1 or 0 according as i + j is prime or not. In 2018 Bradley [3] proved that a(n) > 0 for all $n \in \mathbb{Z}^+$.

Our first theorem is an extension of Bradley's result.

Theorem 1.1 Let $(a_1, a_2, ...)$ be an integer sequence with $a_1 = 2$ and $a_k < a_{k+1} \le 2a_k$ for all k = 1, 2, 3 ... Then, for any positive integer n, there exists a permutation $\pi \in S_n$ with $\pi^2 = I_n$ such that

$$\{k + \pi(k) : k = 1, \dots, n\} \subseteq \{a_1, a_2, \dots\},\tag{1.1}$$

where I_n is the identity of S_n with $I_n(k) = k$ for all k = 1, ..., n.

Recall that the Fiboncci numbers F_0, F_1, \ldots and the Lucas numbers L_0, L_1, \ldots are defined by

$$F_0 = 0$$
, $F_1 = 1$, and $F_{n+1} = F_n + F_{n-1}$ $(n = 1, 2, 3, ...)$,

and

$$L_0 = 2$$
, $L_1 = 1$, and $L_{n+1} = L_n + L_{n-1}$ $(n = 1, 2, 3, ...)$.

If we apply Theorem 1.1 with the sequence $(a_1, a_2, ...)$ equal to $(F_3, F_4, ...)$ or $(L_0, L_2, L_3, ...)$, then we immediately obtain the following consequence.

Corollary 1.1 Let $n \in \mathbb{Z}^+$. Then there is a permutation $\sigma \in S_n$ with $\sigma^2 = I_n$ such that all the sums $k + \sigma(k)$ (k = 1, ..., n) are Fibonacci numbers. Also, there is a permutation $\tau \in S_n$ with $\tau^2 = I_n$ such that all the numbers $k + \tau(k)$ (k = 1, ..., n) are Lucas numbers.

Remark 1.1 Let f(n) be the number of permutations $\sigma \in S_n$ such that all the sums $k + \sigma(k)$ (k = 1, ..., n) are Fibonacci numbers. Via Mathematica we find that

$$(f(1), \ldots, f(20)) = (1, 1, 1, 2, 1, 2, 4, 2, 1, 4, 4, 20, 4, 5, 1, 20, 24, 8, 96, 200).$$

For example, $\pi = (2, 3)(4, 9)(5, 8)(6, 7)$ is the unique permutation in S₉ such that all the numbers $k + \pi(k)$ (k = 1, ..., 9) are Fibonacci numbers.

Recall that those integers $T_n = n(n + 1)/2$ (n = 0, 1, 2, ...) are called triangular numbers. Note that $T_n - T_{n-1} = n \le T_{n-1}$ for every n = 3, 4, ... Applying Theorem 1.1 with $(a_1, a_2, a_3, ...) = (2, T_2, T_3, ...)$, we immediately get the following corollary.

Corollary 1.2 For any $n \in \mathbb{Z}^+$, there is a permutation $\pi \in S_n$ with $\pi^2 = I_n$ such that each of the sums $k + \pi(k)$ (k = 1, ..., n) is either 2 or a triangular number.

Remark 1.2 When n = 4, we may take $\pi = (2, 4)$ to meet the requirement in Corollary 1.2. Note that $1 + 1 = 3 = T_2$ and $2 + 4 = 3 + 3 = T_3$.

Our next theorem focuses on permutations involving powers of two.

Theorem 1.2 Let n be any positive integer. Then there is a unique permutation $\pi_n \in S_n$ such that all the numbers $k + \pi_n(k)$ (k = 1, ..., n) are powers of two. In other words, for the $n \times n$ matrix A whose (i, j)-entry is 1 or 0 according as i + j is a power of two or not, we have per(A) = 1.

Remark 1.3 Note that the number of 1's in the matrix *A* given in Theorem 1.2 coincides with

$$\sum_{k=0}^{\lfloor \log_2 n \rfloor + 1} \sum_{\substack{1 \le i, j \le n \\ i+j=2^k}} 1 = \sum_{k=0}^{\lfloor \log_2 n \rfloor} (2^k - 1) + \sum_{i=2^{\lfloor \log_2 n \rfloor + 1} - n}^n 1 = 2n - \lfloor \log_2 n \rfloor - 1.$$

Example 1.1 Here we list π_n in Theorem 1.2 for n = 1, ..., 11:

 $\begin{aligned} \pi_1 &= (1), \quad \pi_2 &= (1), \quad \pi_3 &= (1,3), \quad \pi_4 &= (1,3), \quad \pi_5 &= (3,5), \quad \pi_6 &= (2,6)(3,5), \\ \pi_7 &= (1,7)(2,6)(3,5), \quad \pi_8 &= (1,7)(2,6)(3,5), \quad \pi_9 &= (2,6)(3,5)(7,9), \\ \pi_{10} &= (3,5)(6,10)(7,9), \quad \pi_{11} &= (1,3)(5,11)(6,10)(7,9). \end{aligned}$

Theorem 1.2 has the following consequence.

Corollary 1.3 For any $n \in \mathbb{Z}^+$, there is a unique permutation $\pi \in S_{2n}$ such that $k + \pi(k) \in \{2^a - 1 : a \in \mathbb{Z}^+\}$ for all k = 1, ..., 2n.

Now we turn to our results of new types.

Theorem 1.3 (i) Let p be any odd prime. Then there is no $\pi \in S_{p-1}$ such that all the p-1 numbers $k\pi(k)$ (k = 1, ..., p-1) are pairwise incongruent modulo p. Also,

$$\operatorname{per}[i^{j-1}]_{1 \le i, j \le p-1} \equiv 0 \pmod{p}.$$
(1.2)

(ii) We have

$$\operatorname{per}[i^{j-1}]_{1 \le i, j \le n} \equiv 0 \pmod{n} \text{ for all } n = 3, 4, 5, \dots$$
(1.3)

🖄 Springer

Remark 1.4 In contrast with Theorem 1.3, it is well-known that

$$\det[i^{j-1}]_{1 \le i, j \le n} = \prod_{1 \le i < j \le n} (j-i) = 1! 2! \dots (n-1)!$$

and in particular

$$\det[i^{j-1}]_{1 \le i, j \le p-1}, \, \det[i^{j-1}]_{1 \le i, j \le p} \ne 0 \pmod{p}$$

for any odd prime *p*.

In additive combinatorics, there are some interesting topics involving both permutations and finite abelian groups, see, e.g., [7,8]. Below we present two novel theorems on permutations involving groups.

Theorem 1.4 (i) Let a_1, \ldots, a_n be distinct elements of a torsion-free abelian group *G*. Then there is a permutation $\pi \in S_n$ such that all those $ka_{\pi(k)}$ $(k = 1, \ldots, n)$ are pairwise distinct.

(ii) Let a, b, c be three distinct elements of a group G such that none of them has order 2 or 3. Then $a^{\sigma(1)}$ and $b^{\sigma(2)}$ are distinct for some $\sigma \in S_2$. Also, $a^{\tau(1)}$, $b^{\tau(2)}$, $c^{\tau(3)}$ are pairwise distinct for some $\tau \in S_3$.

Remark 1.5 On the basis of this theorem, we will formulate a general conjecture for groups in Sect. 4.

Theorem 1.5 For any n > 3 distinct elements $a_1, a_2, ..., a_n$ of a torsion-free abelian group *G*, there is a permutation $\pi \in S_n$ such that all the *n* sums

 $b_1 + b_2 + b_3$, $b_2 + b_3 + b_4$,..., $b_{n-2} + b_{n-1} + b_n$, $b_{n-1} + b_n + b_1$, $b_n + b_1 + b_2$

are pairwise distinct, where $b_k = a_{\pi(k)}$ for k = 1, ..., n.

Remark 1.6 By Remark 1.2 of Sun [18], for any finite subset A of a torsion-free abelian group with |A| = n > 2 we may write A as $\{a_1, \ldots, a_n\}$ such that $a_1 + a_2, \ldots, a_{n-1} + a_n, a_n + a_1$ are pairwise distinct.

We are going to prove Theorems 1.1-1.3 and Corollary 1.3 in the next section, and show Theorems 1.4 and 1.5 in Sect. 3. We will pose some conjectures in Sect. 4.

2 Proofs of Theorems 1.1–1.3 and Corollary 1.3

Proof of Theorem 1.1 For convenience, we set $a_0 = 1$ and $A = \{a_1, a_2, a_3, \ldots\}$. We use induction on $n \in \mathbb{Z}^+$ to show the desired result.

For n = 1, we take $\pi(1) = 1$ and note that $1 + \pi(1) = 2 = a_1 \in A$.

Now let $n \ge 2$ and assume the desired result for smaller values of n. Choose $k \in \mathbb{N}$ with $a_k \le n < a_{k+1}$, and write $m = a_{k+1} - n$. Then $1 \le m \le 2a_k - n \le 2n - n = n$. Let $\pi(j) = a_{k+1} - j$ for j = m, ..., n. Then

$$\{\pi(j): j = m, \dots, n\} = \{m, \dots, n\},\$$

and $\pi(\pi(j)) = j$ for all $j = m, \ldots, n$.

Case 1. m = 1.

In this case, $\pi \in S_n$ and $\pi^2 = I_n$.

Case 2. m = n.

In this case, $a_{k+1} = 2n \ge 2a_k$. On the other hand, $a_{k+1} \le 2a_k$. So, $a_{k+1} = 2a_k$ and $a_k = n$. Let $\pi(j) = n - j = a_k - j$ for all 0 < j < n. Then $\pi \in S_n$ and $j + \pi(j) \in \{a_k, a_{k+1}\}$ for all j = 1, ..., n. Note that $\pi^2(k) = k$ for all k = 1, ..., n.

Case 3. 1 < m < n.

In this case, by the induction hypothesis, for some $\sigma \in S_{m-1}$ with $\sigma^2 = I_{m-1}$, we have $i + \sigma(i) \in A$ for all i = 1, ..., m-1. Let $\pi(i) = \sigma(i)$ for all i = 1, ..., m-1. Then $\pi \in S_n$ and it meets our requirement. In view of the above, we have completed the induction proof.

Proof of Theorem 1.2 Applying Theorem 1.1 with $a_k = 2^k$ for all $k \in \mathbb{Z}^+$, we see that for some $\pi \in S_n$ with $\pi^2 = I_n$ all the numbers $k + \pi(k)$ (k = 1, ..., n) are powers of two.

Below we use induction on *n* to prove that the number of $\pi \in S_n$ with

$$\{k + \pi(k) : k = 1, \dots, n\} \subseteq \{2^a : a \in \mathbb{Z}^+\}$$

is exactly one.

The case n = 1 is trivial.

Now let n > 1 and assume that for each m = 1, ..., n - 1 there is a unique $\pi_m \in S_m$ such that all the numbers $k + \pi_m(k)$ (k = 1, ..., m) are powers of two. Choose $a \in \mathbb{Z}^+$ with $2^{a-1} \le n < 2^a$, and write $m = 2^a - n$. Then $1 \le m \le n$.

Suppose that $\pi \in S_n$ and all the numbers $k + \pi(k)$ (k = 1, ..., n) are powers of two. If $2^{a-1} \le k \le n$, then

$$2^{a-1} < k + \pi(k) \le k + n \le 2n < 2^{a+1}$$

and hence $\pi(k) = 2^a - k$ since $k + \pi(k)$ is a power of two. Thus

$${\pi(k): k = 2^{a-1}, \dots, n} = {m, \dots, 2^{a-1}}.$$

If $k \in \{1, ..., 2^{a-1} - 1\}$ and $2^{a-1} < \pi(k) \le n$, then

$$2^{a-1} < k + \pi(k) \le n + n < 2^{a+1},$$

hence $k + \pi(k) = 2^a = m + n$ and thus $m \le k < 2^{a-1}$. So we have

$${\pi^{-1}(j): 2^{a-1} < j \le n} = {m, \dots, 2^{a-1} - 1}$$

(Note that $n - 2^{a-1} = 2^a - m - 2^{a-1} = 2^{a-1} - m$.)

By the above analysis, $\pi(k) = 2^a - k$ for all k = m, ..., n, and

$${\pi(k): k = m, ..., n} = {m, ..., n}.$$

Thus π is uniquely determined if m = 1.

Now assume that m > 1. As $\pi \in S_n$, we must have

$$\{\pi(k): k = 1, \dots, m-1\} = \{1, \dots, m-1\}.$$

Since $k + \pi(k)$ is a power of two for every k = 1, ..., m - 1, by the induction hypothesis we have $\pi(k) = \pi_m(k)$ for all k = 1, ..., m - 1. Thus π is indeed uniquely determined.

In view of the above, the proof of Theorem 1.2 is now complete.

Proof of Corollary 1.3 Clearly, $\pi \in S_{2n}$ and $k + \pi(k) \in \{2^a - 1 : a \in \mathbb{Z}^+\}$ for all k = 1, ..., 2n, if and only if there are $\sigma, \tau \in S_n$ with $\pi(2k) = 2\sigma(k) - 1$ and $\pi(2k-1) = 2\tau(k)$ for all k = 1, ..., n such that $k + \sigma(k), k + \tau(k) \in \{2^{a-1} : a \in \mathbb{Z}^+\}$ for all k = 1, ..., n. Thus we get the desired result by applying Theorem 1.2.

Lemma 2.1 (Alon's Combinatorial Nullstellensatz [1]) Let A_1, \ldots, A_n be finite subsets of a field F with $|A_i| > k_i$ for $i = 1, \ldots, n$ where $k_1, \ldots, k_n \in \{0, 1, 2, \ldots\}$. If the coefficient of the monomial $x_1^{k_1} \cdots x_n^{k_n}$ in $P(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$ is nonzero and $k_1 + \cdots + k_n$ is the total degree of P, then there are $a_1 \in A_1, \ldots, a_n \in A_n$ such that $P(a_1, \ldots, a_n) \neq 0$.

Lemma 2.2 Let a_1, \ldots, a_n be elements of a field F. Then the coefficient of $x_1^{n-1} \ldots x_n^{n-1}$ in the polynomial

$$\prod_{\leq i < j \leq n} (x_j - x_i)(a_j x_j - a_i x_i) \in F[x_1, \dots, x_n]$$

is $(-1)^{n(n-1)/2} \operatorname{per}[a_i^{j-1}]_{1 \le i, j \le n}$.

1

Proof This is easy. In fact,

$$\prod_{1 \le i < j \le n} (x_j - x_i)(a_j x_j - a_i x_i)$$

= $(-1)^{\binom{n}{2}} \det[x_i^{n-j}]_{1 \le i, j \le n} \times \det[a_i^{j-1} x_i^{j-1}]_{1 \le i, j \le n}$
= $(-1)^{\binom{n}{2}} \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{i=1}^n x_i^{n-\sigma(i)} \sum_{\tau \in S_n} \operatorname{sign}(\tau) \prod_{i=1}^n a_i^{\tau(i)-1} x_i^{\tau(i)-1}$

🖉 Springer

Therefore the coefficient of $x_1^{n-1} \dots x_n^{n-1}$ in this polynomial is

$$(-1)^{\binom{n}{2}} \sum_{\sigma \in S_n} \operatorname{sign}(\sigma)^2 \prod_{i=1}^n a_i^{\sigma(i)-1} = (-1)^{n(n-1)/2} \operatorname{per}[a_i^{j-1}]_{1 \le i, j \le n}$$

This concludes the proof.

Remark 2.1 See [6] and [14, Lemma 2.2], for similar identities and arguments.

Proof of Theorem 1.3 (i) Let g be a primitive root modulo p. Then, there is a permutation $\pi \in S_{p-1}$ such that the numbers $k\pi(k)$ (k = 1, ..., p - 1) are pairwise incongruent modulo p, if and only if there is a permutation $\rho \in S_{p-1}$ such that $g^{i+\rho(i)}$ (i = 1, ..., p - 1) are pairwise incongruent modulo p (i.e., the numbers $i + \rho(i)$ (i = 1, ..., p - 1) are pairwise incongruent modulo p - 1). Suppose that $\rho \in S_{p-1}$ and all the numbers $i + \rho(i)$ (i = 1, ..., p - 1) are pairwise

incongruent modulo p - 1. Then

$$\sum_{i=1}^{p-1} (i + \rho(i)) \equiv \sum_{j=1}^{p-1} j \pmod{p-1},$$

and hence $\sum_{i=1}^{p-1} i = p(p-1)/2 \equiv 0 \pmod{p-1}$ which is impossible. This contradiction proves the first assertion in Theorem 1.3(i).

Now we turn to prove the second assertion in Theorem 1.3(i). Suppose that $per[i^{j-1}]_{1 \le i, j \le p-1} \ne 0 \pmod{p}$. Then, by Lemma 2.2, the coefficient of $x_1^{p-2} \dots x_{p-1}^{p-2}$ in the polynomial

$$\prod_{1 \le i < j \le p-1} (x_j - x_i)(jx_j - ix_i)$$

is not congruent to zero modulo p. Applying Lemma 2.1 with $F = \mathbb{Z}/p\mathbb{Z}$ and $A = \{k + p\mathbb{Z} : k = 1, ..., p - 1\}$, we see that there is a permutation $\pi \in S_{p-1}$ such that all those $k\pi(k)$ (k = 1, ..., p - 1) are pairwise incongruent modulo p, which contradicts the first assertion of Theorem 1.3(i) we have just proved.

(ii) Let n > 2 be an integer. Then

$$\operatorname{per}[i^{j-1}]_{1 \le i, j \le n} = \sum_{\sigma \in S_n} \prod_{k=1}^n k^{\sigma(k)-1}$$
$$\equiv \sum_{\substack{\sigma \in S_n \\ \sigma(n)=1}} (n-1)! \prod_{k=1}^{n-1} k^{\sigma(k)-2} = (n-1)! \sum_{\tau \in S_{n-1}} \prod_{k=1}^{n-1} k^{\tau(k)-1}$$
$$= (n-1)! \operatorname{per}[i^{j-1}]_{1 \le i, j \le n-1} \pmod{n}.$$

899

🖄 Springer

We want to prove that $n | \operatorname{per}[i^{j-1}]_{1 \le i,j \le n}$. This holds when n is an odd prime p, because $p | \operatorname{per}[i^{j-1}]_{1 \le i,j \le p-1}$ by Theorem 1.3(i). For n = 4, we have

$$per[i^{j-1}]_{1 \le i, j \le 4} \equiv 3! \sum_{\tau \in S_3} 1^{\tau(1)-1} 2^{\tau(2)-1} 3^{\tau(3)-1}$$
$$\equiv 6 \left(1^{2-1} 2^{1-1} 3^{3-1} + 1^{3-1} 2^{1-1} 3^{2-1} \right) \equiv 0 \pmod{4}.$$

Now assume that n > 4 is composite. By the above, it suffices to show that $(n-1)! \equiv 0 \pmod{n}$. Let p be the smallest prime divisor of n. Then n = pq for some integer $q \ge p$. If p < q, then n = pq divides (n-1)!. If q = p, then $p^2 = n > 4$ and hence $2p < p^2$, thus 2n = p(2p) divides (n-1)!.

In view of the above, we have completed the proof of Theorem 1.3. \Box

3 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4 (i) The case n = 1 is trivial. Below we let n > 1. Note that the subgroup H of G generated by a_1, \ldots, a_n is infinite, finitely generated and torsion-free. Thus H is isomorphic to \mathbb{Z}^r for some positive integer r. By algebraic number theory (cf. [11]), we may take an algebraic number field K with $[K : \mathbb{Q}] = r$ and hence H is isomorphic to the additive group O_K of algebraic integers in K. Thus, without any loss of generality, we may simply assume that G is the additive group \mathbb{C} of all complex numbers.

By Lemma 2.2, the coefficient of $x_1^{n-1} \dots x_n^{n-1}$ in the polynomial

$$P(x_1,\ldots,x_n) := \prod_{1 \le i < j \le n} (x_j - x_i)(jx_j - ix_i) \in \mathbb{C}[x_1,\ldots,x_n]$$

is $(-1)^{n(n-1)/2} \operatorname{per}[i^{j-1}]_{1 \le i,j \le n}$, which is nonzero since $\operatorname{per}[i^{j-1}]_{1 \le i,j \le n} > 0$. Applying Lemma 2.1 we see that there are $x_1, \ldots, x_n \in A = \{a_1, \ldots, a_n\}$ with $P(x_1, \ldots, x_n) \ne 0$. Thus, for some $\pi \in S_n$ all the numbers $ka_{\sigma(k)}$ $(k = 1, \ldots, n)$ are distinct. This ends the proof of part (i).

(ii) Let *e* be the identity of the group *G*. Suppose that $a = b^2$ and also $a^2 = b$. Then $a = (a^2)^2 = a^4$, and hence $a^3 = e$. As the order of *a* is not three, we have a = e and hence $b = a^2 = e$, which leads to a contradiction since $a \neq b$. Therefore $a^{\sigma(1)}$ and $b^{\sigma(2)}$ are distinct for some $\sigma \in S_2$.

To prove the second assertion in Theorem 1.4(ii), we distinguish two cases. *Case 1*. One of a, b, c is the square of another element among a, b, c.

Without loss of generality, we simply assume that $a = b^2$. As $a \neq b$ we have $b \neq e$. As b is not of order two, we also have $a \neq e$. Note that $b^2 = a \neq c$. If $b^2 = a^3$, then $a = a^3$ which is impossible since the order of a is not two. If $a^3 \neq c$, then c, b^2, a^3 are pairwise distinct.

Now assume that $a^3 = c$. As *a* is not of order three, we have $b \neq a^2$ and $c \neq e$. Note that $a^3 = c \neq b$ and also $a^3 = c \neq c^2$. If $b \neq c^2$, then *b*, c^2 , a^3 are pairwise distinct. If $b = c^2$, then $a = b^2 = c^4 = (a^3)^4$ and hence the order of a is 11, thus $a^2 \neq (a^3)^3 = c^3$ and hence b, a^2, c^3 are pairwise distinct.

Case 2. None of a, b, c is the square of another one among a, b, c.

Suppose that there is no $\tau \in S_3$ with $a^{\tau(1)}, b^{\tau(2)}, c^{\tau(3)}$ pairwise distinct. Then $c^3 \in \{a, b^2\} \cap \{a^2, b\}$. If $c^3 = a$, then $c^3 \neq b$ and hence $a = c^3 = a^2$, thus a = e = c which leads to a contradiction. (Recall that none of a, b, c is of order 3.) Therefore, $c^3 = b^2$. As c is not of order three, if b = e then we have c = e = b which is impossible. So $c^3 = b^2 \neq b$ and hence $b^2 = c^3 = a^2$. Similarly, $a^3 = b^2 = c^2$. Thus $a^3 = b^2 = a^2$, hence a = e and $b^2 = a^2 = e$, which contradicts $b \neq a$ since b is not of order two.

In view of the above, we have finished the proof of Theorem 1.4.

Proof of Theorem 1.5 The subgroup of *G* generated by a_1, \ldots, a_n is a finitely generated torsion-free abelian group. So we may simply assume that $G = \mathbb{Z}^r$ for some positive integer *r* without any loss of generality. It is well known that there is a linear ordering \leq on $G = \mathbb{Z}^r$ such that for any $a, b, c \in G$ if a < b then -b < -a and a + c < b + c (cf. [12]). For convenience, we suppose $a_1 < a_2 < \cdots < a_n$ without any loss of generality.

If n = 4, then $(b_1, b_2, b_3, b_4) = (a_1, a_2, a_3, a_4)$ meets the requirement since

$$a_1 + a_2 + a_3 < a_4 + a_1 + a_2 < a_3 + a_4 + a_1 < a_2 + a_3 + a_4$$

Below we assume $n \ge 5$.

Clearly

$$a_1 + a_2 + a_3 < a_2 + a_3 + a_4 < \dots < a_{n-2} + a_{n-1} + a_n.$$

For convenience we set

$$S := \{a_{i-1} + a_i + a_{i+1} : i = 2, \dots, n-1\},\$$

and let min *S* and max *S* denote the least element and the largest element of *S*, respectively. Note that

$$\min S = a_1 + a_2 + a_3 < a_n + a_1 + a_2 < a_{n-1} + a_n + a_1$$

$$< \max S = a_{n-2} + a_{n-1} + a_n.$$

If $\{a_n + a_1 + a_2, a_{n-1} + a_n + a_1\} \cap S = \emptyset$, then $(b_1, \ldots, b_n) = (a_1, \ldots, a_n)$ meets the requirement. Obviously,

$$-a_n < -a_{n-1} < \dots < -a_2 < -a_1$$

and $(-a_2) + (-a_1) + (-a_n) = -(a_1 + a_2 + a_n)$

So, it suffices to find a desired permutation b_1, \ldots, b_n of a_1, \ldots, a_n under the condition $a_{n-1} + a_n + a_1 \in S$. Case 1. n = 5.

As $a_4 + a_5 + a_1 \in S$, we have $a_4 + a_5 + a_1 = a_2 + a_3 + a_4$ and we may take $(b_1, \ldots, b_5) = (a_1, a_2, a_3, a_5, a_4)$ since

$$a_1 + a_2 + a_3 < a_4 + a_1 + a_2 < a_2 + a_3 + a_4$$

= $a_5 + a_4 + a_1 < a_2 + a_3 + a_5 < a_3 + a_5 + a_4$.

Case 2. n = 6.

As $a_5 + a_6 + a_1 \in S$, the sum $a_5 + a_6 + a_1$ is equal to $a_2 + a_3 + a_4$ or $a_3 + a_4 + a_5$. If $a_5 + a_6 + a_1 = a_2 + a_3 + a_4$, then we may take $(b_1, \ldots, b_6) = (a_1, a_2, a_5, a_3, a_4, a_6)$ since

$$a_1 + a_2 + a_5 < a_6 + a_1 + a_2 < a_4 + a_6 + a_1 < a_5 + a_6 + a_1 = a_2 + a_3 + a_4$$
$$< a_2 + a_5 + a_3 < a_5 + a_3 + a_4 < a_3 + a_4 + a_6.$$

If $a_5 + a_6 + a_1 = a_3 + a_4 + a_5$, then $a_6 + a_1 = a_3 + a_4$ and we may take $(b_1, \dots, b_6) = (a_1, a_2, a_3, a_4, a_6, a_5)$ since

$$a_1 + a_2 + a_3 < a_5 + a_1 + a_2 < a_6 + a_1 + a_2 = a_2 + a_3 + a_4$$

$$< a_3 + a_4 + a_5 = a_6 + a_5 + a_1 < a_3 + a_4 + a_6 < a_4 + a_6 + a_5$$

Case 3. n = 7.

As $a_6 + a_7 + a_1 \in S$, the sum $a_6 + a_7 + a_1$ is equal to $a_2 + a_3 + a_4$ or $a_3 + a_4 + a_5$ or $a_4 + a_5 + a_6$. If $a_6 + a_7 + a_1 = a_4 + a_5 + a_6$, then $a_7 + a_1 = a_4 + a_5$ and we may take $(b_1, \ldots, b_7) = (a_2, a_1, a_4, a_5, a_3, a_6, a_7)$ since

$$a_{2} + a_{1} + a_{4} < a_{1} + a_{4} + a_{5} = a_{1} + a_{1} + a_{7} < a_{7} + a_{2} + a_{1}$$

$$< a_{7} + a_{1} + a_{3} = a_{4} + a_{5} + a_{3} < a_{5} + a_{3} + a_{6}$$

$$< a_{4} + a_{5} + a_{6} = a_{1} + a_{6} + a_{7} < a_{2} + a_{6} + a_{7} < a_{3} + a_{6} + a_{7}.$$

If $a_6 + a_7 + a_1 = a_2 + a_3 + a_4$, then we may take $(b_1, \dots, b_7) = (a_1, a_2, a_3, a_5, a_4, a_6, a_7)$ since

$$a_1 + a_2 + a_3 < a_7 + a_1 + a_2 < a_5 + a_7 + a_1 < a_6 + a_7 + a_1 = a_2 + a_3 + a_4$$
$$< a_2 + a_3 + a_5 < a_3 + a_5 + a_4 < a_5 + a_4 + a_6 < a_4 + a_6 + a_7.$$

If $a_6 + a_7 + a_1 = a_3 + a_4 + a_5$ and $a_5 + a_6 + a_1 \neq a_2 + a_3 + a_4$, then $a_6 + a_1 < a_3 + a_4$ and we may take $(b_1, \dots, b_7) = (a_1, a_2, a_3, a_4, a_7, a_5, a_6)$ since

$$a_1 + a_2 + a_3 < a_6 + a_1 + a_2 < \min\{a_5 + a_6 + a_1, a_2 + a_3 + a_4\}$$

$$< \max\{a_5 + a_6 + a_1, a_2 + a_3 + a_4\} < a_1 + a_6 + a_7 = a_3 + a_4 + a_5$$

$$< a_3 + a_4 + a_7 < a_4 + a_7 + a_5 < a_7 + a_5 + a_6.$$

🖉 Springer

If $a_6 + a_7 + a_1 = a_3 + a_4 + a_5$ and $a_5 + a_6 + a_1 = a_2 + a_3 + a_4$, then $a_7 + a_1 < a_3 + a_4$ and we may take $(b_1, \dots, b_7) = (a_1, a_2, a_3, a_4, a_6, a_5, a_7)$ since

$$a_1 + a_2 + a_3 < a_7 + a_1 + a_2 < a_5 + a_6 + a_1 = a_2 + a_3 + a_4$$

$$< a_5 + a_7 + a_1 < a_3 + a_4 + a_5 = a_6 + a_7 + a_1$$

$$< a_3 + a_4 + a_6 < a_4 + a_6 + a_5 < a_6 + a_5 + a_7.$$

Case 4. n > 7 and $a_n + a_1 + a_2 \notin S$.

In this case, there is a unique 2 < i < n-1 with $a_{i-1}+a_i+a_{i+1} = a_{n-1}+a_n+a_1$. If i < n-3, then we may take

$$(b_1, \ldots, b_n) = (a_1, \ldots, a_{i-2}, a_{i-1}, a_i, a_{i+2}, a_{i+1}, a_{i+3}, \ldots, a_n)$$

because

$$\begin{aligned} a_{i-2} + a_{i-1} + a_i &< a_{i-1} + a_i + a_{i+1} = a_{n-1} + a_n + a_1 < a_{i-1} + a_i + a_{i+2} \\ &< a_i + a_{i+2} + a_{i+1} < a_{i+2} + a_{i+1} + a_{i+3} \\ &< a_{i+1} + a_{i+3} + a_{i+4} < \dots < a_{n-2} + a_{n-1} + a_n. \end{aligned}$$

When $i \in \{n-2, n-3\}$, we have $i \ge n-3 > 4$, and hence in the case $a_1 + a_2 + a_n \ne a_{i-4} + a_{i-3} + a_{i-1}$, we may take

$$(b_1,\ldots,b_n) = (a_1,\ldots,a_{i-4},a_{i-3},a_{i-1},a_{i-2},a_i,a_{i+1},a_{i+2},\ldots,a_n)$$

because

$$a_{i-4} + a_{i-3} + a_{i-2} < a_{i-4} + a_{i-3} + a_{i-1} < a_{i-3} + a_{i-1} + a_{i-2}$$

$$< a_{i-1} + a_{i-2} + a_i < a_{i-2} + a_i + a_{i+1}$$

$$< a_{i-1} + a_i + a_{i+1} = a_{n-1} + a_n + a_1$$

$$< a_i + a_{i+1} + a_{i+2} < \dots < a_{n-2} + a_{n-1} + a_n$$

and

$$a_n + a_1 + a_2 < (a_{i-2} + a_{n-1} - a_{i+1}) + a_n + a_1$$

= $a_{i-2} - a_{i+1} + (a_{i-1} + a_i + a_{i+1}) = a_{i-1} + a_{i-2} + a_i.$

If $i \in \{n - 2, n - 3\}$ and $a_1 + a_2 + a_n = a_{i-4} + a_{i-3} + a_{i-1}$, then we may take

$$(b_1, \ldots, b_n) = (a_1, \ldots, a_{i-4}, a_{i-3}, a_i, a_{i-2}, a_{i-1}, a_{i+1}, a_{i+2}, \ldots, a_n)$$

Deringer

because

$$a_{n} + a_{1} + a_{2} = a_{i-4} + a_{i-3} + a_{i-1}$$

$$< a_{i-4} + a_{i-3} + a_{i} < a_{i-3} + a_{i} + a_{i-2} < a_{i} + a_{i-2} + a_{i-1}$$

$$< a_{i-2} + a_{i-1} + a_{i+1} < a_{i-1} + a_{i} + a_{i+1} = a_{n-1} + a_{n} + a_{1}$$

$$< a_{i-1} + a_{i+1} + a_{i+2} < \dots < a_{n-2} + a_{n-1} + a_{n}.$$

Case 5. n > 7 and $a_n + a_1 + a_2 \in S$. In this case, for some $2 < j < i \le n - 2$, we have

$$a_{n-1} + a_n + a_1 = a_{i-1} + a_i + a_{i+1} > a_{j-1} + a_j + a_{j+1} = a_n + a_1 + a_2.$$

If j + 1 = i, then

$$a_{n-1} - a_2 = (a_{n-1} + a_n + a_1) - (a_n + a_1 + a_2)$$

= $a_{i-1} + a_i + a_{i+1} - (a_i + a_{i-1} + a_{i-2}) = a_{i+1} - a_{i-2}$

which is impossible since $i \ge 4$ and n > 6.

If i - j > 5, then

$$(b_1, \dots, b_n) = (a_1, \dots, a_{j-1}, a_j, a_{j+2}, a_{j+1}, a_{j+3}, \dots, a_{i-3}, a_{i-1}, a_{i-2}, a_i, a_{i+1}, \dots, a_n)$$

meets the requirement since

$$\begin{aligned} a_{j-1} + a_j + a_{j+1} &= a_n + a_1 + a_2 < a_{j-1} + a_j + a_{j+2} \\ &< a_j + a_{j+2} + a_{j+1} < a_{j+2} + a_{j+1} + a_{j+3} \\ &< \dots < a_{i-3} + a_{i-1} + a_{i-2} < a_{i-1} + a_{i-2} + a_i \\ &< a_{i-2} + a_i + a_{i+1} < a_{i-1} + a_i + a_{i+1} = a_{n-1} + a_n + a_1 \\ &< a_i + a_{i+1} + a_{i+2} < \dots < a_{n-2} + a_{n-1} + a_n. \end{aligned}$$

If i - j = 5, then j + 4 = i - 1 and

$$(b_1, \ldots, b_n) = (a_1, \ldots, a_{j-1}, a_j, a_{j+2}, a_{j+1}, a_{i-1}, a_{i-2}, a_i, a_{i+1}, \ldots, a_n)$$

meets the requirement. If i - j = 4, then

$$(b_1, \ldots, b_n) = (a_1, \ldots, a_{j-1}, a_j, a_{j+2}, a_{j+3}, a_{j+1}, a_i, a_{i+1}, \ldots, a_n)$$

Deringer

meets the requirement since

$$\begin{aligned} a_{j-1} + a_j + a_{j+1} &= a_n + a_1 + a_2 \\ &< a_{j-1} + a_j + a_{j+2} < a_j + a_{j+2} + a_{j+3} \\ &< a_{j+2} + a_{j+3} + a_{j+1} < a_{j+3} + a_{j+1} + a_i \\ &< a_{j+1} + a_i + a_{i+1} < a_{i-1} + a_i + a_{i+1} = a_{n-1} + a_n + a_1 \\ &< a_i + a_{i+1} + a_{i+2} < \dots < a_{n-2} + a_{n-1} + a_n. \end{aligned}$$

If i - j = 3, then

$$(b_1,\ldots,b_n) = (a_1,\ldots,a_{j-1},a_j,a_{j+2},a_{j+1},a_i,a_{i+1},\ldots,a_n)$$

meets the requirement since

$$\begin{aligned} a_{j-1} + a_j + a_{j+1} &= a_n + a_1 + a_2 \\ &< a_{j-1} + a_j + a_{j+2} < a_j + a_{j+2} + a_{j+1} \\ &< a_{j+2} + a_{j+1} + a_i = a_{i-1} + a_{i-2} + a_i < a_{i-2} + a_i + a_{i+1} \\ &< a_{i-1} + a_i + a_{i+1} = a_{n-1} + a_n + a_1 \\ &< a_i + a_{i+1} + a_{i+2} < \dots < a_{n-2} + a_{n-1} + a_n. \end{aligned}$$

If j > 4 and i = j + 2, then

$$(b_1, \ldots, b_n) = (a_1, \ldots, a_{j-3}, a_{j-1}, a_{j-2}, a_{j+1}, a_j, a_i, a_{i+1}, a_{i+2}, \ldots, a_n)$$

meets the requirement since

$$\begin{aligned} a_{j-4} + a_{j-3} + a_{j-1} &< a_{j-3} + a_{j-1} + a_{j-2} < a_{j-1} + a_{j-2} + a_{j+1} \\ &< a_{j-2} + a_{j+1} + a_j < a_{j-1} + a_j + a_{j+1} = a_n + a_1 + a_2 \\ &< a_{j+1} + a_j + a_i < a_j + a_i + a_{i+1} \\ &< a_{i-1} + a_i + a_{i+1} = a_{n-1} + a_n + a_1 < a_i + a_{i+1} + a_{i+2}. \end{aligned}$$

If $i = j + 2 \le n - 4$, then

$$(b_1, \ldots, b_n) = (a_1, \ldots, a_{j-2}, a_{j-1}, a_j, a_i, a_{i-1}, a_{i+2}, a_{i+1}, a_{i+3}, a_{i+4}, \ldots, a_n)$$

meets the requirement since

$$a_{j-2} + a_{j-1} + a_j < a_{j-1} + a_j + a_{j+1} = a_n + a_1 + a_2$$

$$< a_{j-1} + a_j + a_i < a_j + a_i + a_{i-1}$$

$$< a_{i-1} + a_i + a_{i+1} = a_{n-1} + a_n + a_1$$

$$< a_i + a_{i-1} + a_{i+2} < a_{i-1} + a_{i+2} + a_{i+1}$$

$$< a_{i+2} + a_{i+1} + a_{i+3} < a_{i+1} + a_{i+3} + a_{i+4}$$

$$< \dots < a_{n-2} + a_{n-1} + a_n.$$

Deringer

If $i \ge n-3$, $j \le 4$ and i - j = 2, then $2 = i - j \ge n - 3 - 4$ and hence $n \in \{8, 9\}$. For n = 8, we need to consider the case i = 6 and j = 4. As $a_8 + a_1 + a_2 = a_3 + a_1 + a_2 = a_3 + a_3 + a_4 + a_5 + a_$

For n = 6, we need to consider the case t = 0 and y = 4. As $a_8 + a_1 + a_2 = a_3 + a_4 + a_5$ and $a_7 + a_8 + a_1 = a_5 + a_6 + a_7$, we have $a_8 + a_1 = a_5 + a_6 = a_3 + a_4 + a_5 - a_2$. If $2a_5 \neq a_4 + a_7$, then $a_5 + a_8 + a_1 = 2a_5 + a_6 \neq a_4 + a_6 + a_7$ and hence we may take

$$(b_1, \ldots, b_8) = (a_1, a_2, a_3, a_4, a_6, a_7, a_5, a_8)$$

since

$$a_1 + a_2 + a_3 < a_2 + a_3 + a_4 < a_3 + a_4 + a_5 = a_8 + a_1 + a_2 < a_3 + a_4 + a_6$$

< min{a_4 + a_6 + a_7, a_5 + a_8 + a_1} < max{a_4 + a_6 + a_7, a_5 + a_8 + a_1}
< a_6 + a_7 + a_5 = a_7 + a_8 + a_1 < a_7 + a_5 + a_8.

If $2a_5 = a_4 + a_7$, then $a_6 + a_8 + a_1 = a_5 + 2a_6 > a_4 + a_5 + a_7$ and we may take

$$(b_1,\ldots,b_8) = (a_1,a_2,a_3,a_4,a_5,a_7,a_8,a_6)$$

since

$$a_1 + a_2 + a_3 < a_1 + a_3 + a_4 = a_1 + a_2 + a_6 < a_2 + a_3 + a_4$$

$$< a_3 + a_4 + a_5 = a_8 + a_1 + a_2 < a_4 + a_5 + a_7 < a_6 + a_8 + a_1$$

$$< a_5 + a_7 + a_8 < a_7 + a_8 + a_6.$$

When n = 8, i = 5 and j = 3, it suffices to apply the result for i = 6 and j = 4 to the sequence

$$\begin{aligned} a_1' &= -a_8 < a_2' = -a_7 < a_3' = -a_6 < a_4' = -a_5 \\ &< a_5' = -a_4 < a_6' = -a_3 < a_7' = -a_2 < a_8' = -a_1 \end{aligned}$$

since $a'_7 + a'_8 + a'_1 = -(a_1 + a_2 + a_8) = -(a_2 + a_3 + a_4) = a'_5 + a'_6 + a'_7$ and $a'_8 + a'_1 + a'_2 = -(a_1 + a_7 + a_8) = -(a_4 + a_5 + a_6) = a'_3 + a'_4 + a'_5$.

Now it remains to consider the last case where n = 9, i = 6 and j = 4. As $a_3 + a_4 + a_5 = a_9 + a_1 + a_2$ and $a_5 + a_6 + a_7 = a_8 + a_9 + a_1$, we have $a_3 + a_4 < a_9 + a_1$ and hence $a_3 + a_4 + a_6 < a_3 + a_4 + a_7 < a_7 + a_9 + a_1$. If $a_7 + a_9 + a_1 = a_4 + a_5 + a_6$, then

$$a_8 - a_7 = (a_8 + a_9 + a_1) - (a_7 + a_9 + a_1)$$

= $a_5 + a_6 + a_7 - (a_4 + a_5 + a_6) = a_7 - a_4.$

When $2a_7 \neq a_8 + a_4$, we have $a_7 + a_9 + a_1 \neq a_4 + a_5 + a_6$ and hence we may take

$$(b_1,\ldots,b_9) = (a_1,a_2,a_3,a_4,a_6,a_5,a_8,a_7,a_9)$$

907

since

$$a_{1} + a_{2} + a_{3} < a_{2} + a_{3} + a_{4} < a_{3} + a_{4} + a_{5} = a_{9} + a_{1} + a_{2} < a_{3} + a_{4} + a_{6}$$

$$< \min\{a_{4} + a_{5} + a_{6}, a_{7} + a_{9} + a_{1}\} < \max\{a_{4} + a_{5} + a_{6}, a_{7} + a_{9} + a_{1}\}$$

$$< a_{6} + a_{5} + a_{7} = a_{8} + a_{9} + a_{1} < a_{6} + a_{5} + a_{8}$$

$$< a_{5} + a_{8} + a_{7} < a_{8} + a_{7} + a_{9}.$$

If $2a_7 = a_8 + a_4$, then $a_5 + a_6 + a_7 < 2a_7 + a_6 = a_4 + a_6 + a_8$ and hence we may take

$$(b_1,\ldots,b_9) = (a_1,a_2,a_3,a_4,a_6,a_8,a_5,a_7,a_9)$$

since

$$a_1 + a_2 + a_3 < a_2 + a_3 + a_4 < a_3 + a_4 + a_5 = a_9 + a_1 + a_2 < a_3 + a_4 + a_6$$

$$< a_9 + a_1 + a_6 < a_7 + a_9 + a_1 < a_8 + a_9 + a_1 = a_5 + a_6 + a_7$$

$$< a_4 + a_6 + a_8 < a_6 + a_8 + a_5 < a_8 + a_5 + a_7 < a_5 + a_7 + a_9.$$

In view of the above, we have completed the proof of Theorem 1.5. \Box

4 Some conjectures

Motivated by Theorems 1.3(i) and 1.4, we pose the following conjecture for finite groups.

Conjecture 4.1 Let *n* be a positive integer, and let *G* be a group containing no element of order among 2, ..., n + 1. Then, for any $A \subseteq G$ with |A| = n, we may write $A = \{a_1, ..., a_n\}$ with $a_1, a_2^2, ..., a_n^n$ pairwise distinct.

- **Remark 4.1** (a) Theorem 1.4 shows that this conjecture holds when $n \le 3$ or G is a torsion-free abelian group.
- (b) For n = 4, 5, 6, 7, 8, 9 we have verified the conjecture for cyclic groups $G = \mathbb{Z}/m\mathbb{Z}$ with |G| = m not exceeding 100, 100, 70, 60, 30, 30 respectively.
- (c) If G is a finite group with |G| > 1, then the least order of a non-identity element of G is p(G), the smallest prime divisor of |G|.

Inspired by Theorem 1.3, we formulate the following conjecture.

Conjecture 4.2 *Let* n > 1 *be an integer with* $n \not\equiv 2 \pmod{4}$ *.*

(i) We have

$$\operatorname{per}[i^{j-1}]_{1 \le i, j \le n-1} \equiv 0 \pmod{n}.$$
(4.1)

(ii) If $n \equiv 1 \pmod{3}$, then

$$\operatorname{per}[i^{j-1}]_{1 \le i, j \le n-1} \equiv 0 \pmod{n^2}.$$
(4.2)

🖉 Springer

Remark 4.2 We have checked this conjecture via computing $per[i^{j-1}]_{1 \le i,j \le n-1}$ modulo n^2 for $n \le 17$. The sequence $a_n = per[i^{j-1}]_{1 \le i,j \le n}$ (n = 1, 2, 3, ...) is available from [16, A322363].

- **Conjecture 4.3** (i) For any $n \in \mathbb{Z}^+$, there is a permutation $\sigma_n \in S_n$ such that $k\sigma_n(k) + 1$ is prime for every k = 1, ..., n.
- (ii) For any integer n > 2, there is a permutation $\tau_n \in S_n$ such that $k\tau_n(k) 1$ is prime for every k = 1, ..., n.

Remark 4.3 See [16, A321597] for related data and examples.

- **Conjecture 4.4** (i) For each $n \in \mathbb{Z}^+$, there is a permutation π_n of $\{1, \ldots, n\}$ such that $k^2 + k\pi_n(k) + \pi_n(k)^2$ is prime for every $k = 1, \ldots, n$.
- (ii) For any positive integer $n \neq 7$, there is a permutation π_n of $\{1, \ldots, n\}$ such that $k^2 + \pi_n(k)^2$ is prime for every $k = 1, \ldots, n$.

Remark 4.4 See [16, A321610] for related data and examples.

As usual, for k = 1, 2, 3, ... we let p_k denote the k-th prime.

Conjecture 4.5 For any $n \in \mathbb{Z}^+$, there is a permutation $\pi \in S_n$ such that $p_k + p_{\pi(k)} + 1$ is prime for every k = 1, ..., n.

Remark 4.5 See [16, A321727] for related data and examples.

In 1973 Chen [4] proved that there are infinitely many primes p with p+2 a product of at most two primes; nowadays such primes p are called Chen primes.

Conjecture 4.6 Let $n \in \mathbb{Z}^+$. Then, there is an even permutation $\sigma \in S_n$ with $p_k p_{\sigma(k)} - 2$ prime for all k = 1, ..., n. If n > 2, then there is an odd permutation $\tau \in S_n$ with $p_k p_{\tau(k)} - 2$ prime for all k = 1, ..., n.

Remark 4.6 See [16, A321855] for related data and examples. If we let b(n) denote the number of even permutations $\sigma \in S_n$ with $p_k p_{\sigma(k)} - 2$ prime for all k = 1, ..., n, then

$$(b(1), \ldots, b(11)) = (1, 1, 1, 1, 3, 6, 1, 1, 33, 125, 226).$$

Conjecture 2.17(ii) of Sun [15] implies that for any odd integer n > 1 there is a prime $p \le n$ such that pn - 2 is prime.

In 2002, Cloitre [5, A073112] created the sequence A073112 on OEIS whose *n*-th term is the number of permutations $\pi \in S_n$ with $\sum_{k=1}^n \frac{1}{k+\pi(k)} \in \mathbb{Z}$. Recently Sun [17] conjectured that for any integer n > 5 there is a permutation $\pi \in S_n$ satisfying

$$\sum_{k=1}^{n} \frac{1}{k + \pi(k)} = 1,$$

and this was later confirmed by the user Zhao Shen at Mathoverflow via clever induction arguments. In 1982 Filz (cf. [9, pp. 160–162]) conjectured that for any n = 2, 4, 6, ... there is a circular permutation $(i_1, ..., i_n)$ of 1, ..., n such that all the *n* adjacent sums

$$i_1 + i_2$$
, $i_2 + i_3$, ..., $i_{n-1} + i_n$, $i_n + i_1$

are prime.

Motivated by this, we pose the following conjecture.

Conjecture 4.7 (i) For any integer n > 6, there is a permutation $\pi \in S_n$ such that

$$\sum_{k=1}^{n-1} \frac{1}{\pi(k) + \pi(k+1)} = 1.$$
(4.3)

Also, for any integer n > 7, there is a permutation $\pi \in S_n$ such that

$$\frac{1}{\pi(1) + \pi(2)} + \frac{1}{\pi(2) + \pi(3)} + \dots + \frac{1}{\pi(n-1) + \pi(n)} + \frac{1}{\pi(n) + \pi(1)} = 1.$$
(4.4)

(ii) For any integer n > 7, there is a permutation $\pi \in S_n$ such that

$$\sum_{k=1}^{n-1} \frac{1}{\pi(k)^2 - \pi(k+1)^2} = 0.$$
(4.5)

Remark 4.7 See [16, A322070 and A322099] for related data and examples. For the latter assertion in Conjecture 4.7(i), the equality (4.4) with n = 8 holds if we take $(\pi(1), \ldots, \pi(8)) = (6, 1, 5, 2, 4, 3, 7, 8)$. In a previous version of this paper posted to arXiv, the author also conjectured that for any integer n > 5 there is a permutation $\pi \in S_n$ with $\sum_{k=1}^{n-1} \frac{1}{\pi(k)\pi(k+1)} = 1$; this, together with two other conjectures of the author, was confirmed by Han [10].

Conjecture 4.8 (i) For any integer n > 1, there is a permutation $\pi \in S_n$ such that

$$\sum_{0 < k < n} \pi(k) \pi(k+1) \in \{2^m + 1 : m = 0, 1, 2, \ldots\}.$$
(4.6)

(ii) For any integer n > 4, there is a unique power of two which can be written as $\sum_{k=1}^{n-1} \pi(k)\pi(k+1)$ with $\pi \in S_n$ and $\pi(n) = n$.

Remark 4.8 Concerning part (i) of Conjecture 4.8, when n = 4 we may choose $(\pi(1), \ldots, \pi(4)) = (1, 3, 2, 4)$ so that

$$\sum_{k=1}^{3} \pi(k)\pi(k+1) = 1 \times 3 + 3 \times 2 + 2 \times 4 = 2^{4} + 1.$$

For any $\pi \in S_n$, if for each k = 1, ..., n we let

$$\pi'(k) = \begin{cases} \pi(\pi^{-1}(k) + 1) & \text{if } \pi^{-1}(k) \neq n, \\ \pi(1) & \text{if } \pi^{-1}(k) = n, \end{cases}$$

then $\pi' \in S_n$ and

$$\pi(1)\pi(2) + \dots + \pi(n-1)\pi(n) + \pi(n)\pi(1) = \sum_{k=1}^{n} k\pi'(k).$$

By the Cauchy–Schwarz inequality (cf. [13, p. 178]), for any $\pi \in S_n$ we have

$$\left(\sum_{k=1}^{n} k\pi(k)\right)^2 \le \left(\sum_{k=1}^{n} k^2\right) \left(\sum_{k=1}^{n} \pi(k)^2\right)$$

and hence

$$\sum_{k=1}^{n} k\pi(k) \le \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

If we let $\sigma(k) = n + 1 - \pi(k)$ for all k = 1, ..., n, then $\sigma \in S_n$ and

$$\sum_{k=1}^{n} k\pi(k) = \sum_{k=1}^{n} k(n+1-\sigma(k)) = (n+1)\sum_{k=1}^{n} k - \sum_{k=1}^{n} k\sigma(k)$$
$$\geq \frac{n(n+1)^2}{2} - \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)(n+2)}{6}.$$

Thus

$$\left\{\sum_{k=1}^{n} k\pi(k) : \pi \in S_n\right\} \subseteq T(n) := \left\{\frac{n(n+1)(n+2)}{6}, \dots, \frac{n(n+1)(2n+1)}{6}\right\}.$$
(4.7)

Actually equality in (4.7) holds when $n \neq 3$, which was first realized by M. Aleksevev (cf. the comments in [2]). Note that $|T(n)| = n(n^2 - 1)/6 + 1$.

Inspired by the above analysis, here we pose the following conjecture in additive combinatorics.

Conjecture 4.9 Let $n \in \mathbb{Z}^+$ and let F be a field with p(F) > n + 1, where p(F) = p if the characteristic of F is a prime p, and $p(F) = +\infty$ if the characteristic of F is

zero. Let A *be any finite subset of* F *with* $|A| \ge n + \delta_{n,3}$ *, where* $\delta_{n,3}$ *is* 1 *or* 0 *according as* n = 3 *or not. Then, for the set*

$$S(A) := \left\{ \sum_{k=1}^{n} ka_k : a_1, \dots, a_n \text{ are distinct elements of } A \right\},$$
(4.8)

we have

$$|S(A)| \ge \min\left\{p(F), \quad (|A|-n)\frac{n(n+1)}{2} + \frac{n(n^2-1)}{6} + 1\right\}.$$
 (4.9)

Remark 4.9 One may compare this conjecture with the author's conjectural linear extension of the Erdős–Heilbronn conjecture (cf. [19]). Perhaps, Conjecture 4.9 remains valid if we replace the field F by any finite additive group G with |G| > 1 and use p(G) (the least prime factor of |G|) instead of p(F).

Recall that the torsion subgroup of a group G is given by

$$Tor(G) = \{g \in G : g \text{ is of finite order}\}.$$

Conjecture 3.3(i) of the author [18] states that if *A* is an *n*-subset (with |A| = n > 2) of an additive abelian group *G* of odd order then there is a numbering a_1, \ldots, a_n of all the elements of *A* such that $a_1 + a_2, \ldots, a_{n-1} + a_n, a_n + a_1$ are pairwise distinct, this was verified by Yu-Xuan Ji (a student at Nanjing Univ.) for |G| < 30 in 2020. Motivated by this and Theorem 1.5, we formulate the following conjecture.

Conjecture 4.10 Let G be an additive abelian group with Tor(G) cyclic or |Tor(G)| odd. For any finite subset A of G with |A| = n > 3, there is a numbering a_1, \ldots, a_n of all the elements of A such that the n sums

$$a_1 + a_2 + a_3, \quad a_2 + a_3 + a_4, \quad \dots,$$

 $a_{n-2} + a_{n-1} + a_n, \quad a_{n-1} + a_n + a_1, \quad a_n + a_1 + a_2$

are pairwise distinct.

- *Remark 4.10* (a) Conjecture 4.10 holds in the case $A = G = \mathbb{Z}/n\mathbb{Z} = \{\bar{a} = a + n\mathbb{Z} : a \in \mathbb{Z}\}$ with n > 3 and $3 \nmid n$ since the natural list $\bar{0}, \bar{1}, \dots, \bar{n-1}$ of the elements of $\mathbb{Z}/n\mathbb{Z}$ meets the requirement.
- (b) In 2008 the author [14] proved that for any three *n*-subsets *A*, *B*, *C* of an additive abelian group *G* with Tor(G) cyclic, there is a numbering a_1, \ldots, a_n of the elements of *A*, a numbering b_1, \ldots, b_n of the elements of *B* and a numbering c_1, \ldots, c_n of the elements of *C* such that the *n* sums $a_1+b_1+c_1, \ldots, a_n+b_n+c_n$ are pairwise distinct.

References

- 1. Alon, N.: Combinatorial Nullstellensatz. Combin. Probab. Comput. 8, 7–29 (1999)
- 2. Boscole, J.: Sequence A126972 in OEIS (2007). Website: http://oeis.org/A126972
- 3. Bradley, P.: Prime number sums. Preprint arXiv:1809.01012 (2018)
- Chen, J.-R.: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16, 157–176 (1973)
- 5. Cloitre, B.: Sequences A073112 and A073364 in OEIS (2002). http://oeis.org
- Dasgupta, S., Károlyi, G., Serra, O., Szegedy, B.: Transversals of additive Latin squares. Israel J. Math. 126, 17–28 (2001)
- Feng, T., Sun, Z.-W., Xiang, Q.: Exterior algebras and two conjectures on finite abelian groups. Israel J. Math. 182, 425–437 (2011)
- Ge, F., SUN, Z.-W.: On a permutation problem for finite abelian groups. Electron. J. Combin. 24(1), # P1.17, 1–6 (2017)
- 9. Guy, R.K.: Unsolved Problems in Number Theory, 3rd edn. Springer, New York (2004)
- Han, G.-N.: On the existence of permutations conditioned by certain rational functions. Electron. Res. Arch. 28, 149–156 (2020)
- 11. Hecke, E.: Lectures on the Theory of Algebraic Numbers. Graduate Texts in Mathematics, vol. 77, pp. 108–116. Springer, New York (1981)
- 12. Levi, F.W.: Ordered groups. Proc. Indian Acad. Sci. Sect. A 16, 256–263 (1942)
- Nathanson, M.B.: Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics, vol. 164. Springer, New York (1996)
- 14. Sun, Z.-W.: An additive theorem and restricted sumsets. Math. Res. Lett. 15, 1263–1276 (2008)
- Sun, Z.-W.: Problems on combinatorial properties of primes. In: Kaneko, M., Kanemitsu, S., Liu, J. (eds.) Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28–Nov. 1, 2013), Ser. Number Theory Appl., vol. 11, pp. 169–187. World Scientific, Singapore (2015)
- Sun, Z.-W.: Sequences A321597, A321610, A321611, A321727, A321855, A322070, A322099, A322363 in OEIS (2018). http://oeis.org
- 17. Sun, Z.-W.: Permutations $\pi \in S_n$ with $\sum_{k=1}^n \frac{1}{k+\pi(k)} = 1$, Question 315648 on Mathoverflow, Nov. 19 (2018). Website: https://mathoverflow.net/questions/315648
- Sun, Z.-W.: Some new problems in additive combinatorics. Nanjing Univ. J. Math. Biquarterly 36, 134–155 (2019). http://maths.nju.edu.cn/~zwsun/196a.pdf
- Sun, Z.-W., Zhao, L.-L.: Linear extension of the Erdős–Heilbronn conjecture. J. Combin. Theory Ser. A 119, 364–381 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.