On permutations of $\{1, \ldots, n\}$ and related topics

Zhi-Wei Sun ${ }^{1}$

Received: 25 September 2020 / Accepted: 12 February 2021 / Published online: 25 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In this paper, we study combinatorial aspects of permutations of $\{1, \ldots, n\}$ and related topics. In particular, we prove that there is a unique permutation π of $\{1, \ldots, n\}$ such that all the numbers $k+\pi(k)(k=1, \ldots, n)$ are powers of two. We also show that $n \mid \operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n}$ for any integer $n>2$. We conjecture that if a group G contains no element of order among $2, \ldots, n+1$ then any $A \subseteq G$ with $|A|=n$ can be written as $\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{1}, a_{2}^{2}, \ldots, a_{n}^{n}$ pairwise distinct. This conjecture is confirmed when G is a torsion-free abelian group. We also prove that for any finite subset A of a torsion-free abelian group G with $|A|=n>3$, there is a numbering a_{1}, \ldots, a_{n} of all the elements of A such that all the n sums $$
\begin{aligned} & a_{1}+a_{2}+a_{3}, \quad a_{2}+a_{3}+a_{4}, \ldots, a_{n-2}+a_{n-1}+a_{n}, \\ & \quad a_{n-1}+a_{n}+a_{1}, \quad a_{n}+a_{1}+a_{2} \end{aligned}
$$

are pairwise distinct, and conjecture that this remains valid if G is cyclic.

Keywords Additive combinatorics • Permutations • Powers of two • Permanents • Groups

Mathematics Subject Classification Primary 05A05 • 11B75; Secondary 11B13 • 11B39 - 20D60

1 Introduction

As usual, for $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$, we let S_{n} denote the symmetric group of all the permutation of $\{1, \ldots, n\}$.

Supported by the National Natural Science Foundation of China (Grant No. 11971222).

Zhi-Wei Sun
zwsun@nju.edu.cn
http://maths.nju.edu.cn/~zwsun
1 Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Let $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ be a $(0,1)$-matrix (i.e., $a_{i j} \in\{0,1\}$ for all $i, j=1, \ldots, n$). Then the permanent of A given by

$$
\operatorname{per}(A)=\sum_{\pi \in S_{n}} a_{1 \pi(1)} \cdots a_{n \pi(n)}
$$

is just the number of permutations $\pi \in S_{n}$ with $a_{k \pi(k)}=1$ for all $k=1, \ldots, n$.
In 2002, Cloitre proposed the sequence [5, A073364] on OEIS whose nth term $a(n)$ is the number of permutations $\pi \in S_{n}$ with $k+\pi(k)$ prime for all $k=1, \ldots, n$. Clearly, $a(n)=\operatorname{per}(A)$, where A is a matrix of order n whose (i, j)-entry $(1 \leq i, j \leq n)$ is 1 or 0 according as $i+j$ is prime or not. In 2018 Bradley [3] proved that $a(n)>0$ for all $n \in \mathbb{Z}^{+}$.

Our first theorem is an extension of Bradley's result.
Theorem 1.1 Let $\left(a_{1}, a_{2}, \ldots\right)$ be an integer sequence with $a_{1}=2$ and $a_{k}<a_{k+1} \leq$ $2 a_{k}$ for all $k=1,2,3 \ldots$ Then, for any positive integer n, there exists a permutation $\pi \in S_{n}$ with $\pi^{2}=I_{n}$ such that

$$
\begin{equation*}
\{k+\pi(k): k=1, \ldots, n\} \subseteq\left\{a_{1}, a_{2}, \ldots\right\}, \tag{1.1}
\end{equation*}
$$

where I_{n} is the identity of S_{n} with $I_{n}(k)=k$ for all $k=1, \ldots, n$.
Recall that the Fiboncci numbers F_{0}, F_{1}, \ldots and the Lucas numbers L_{0}, L_{1}, \ldots are defined by

$$
F_{0}=0, F_{1}=1, \text { and } F_{n+1}=F_{n}+F_{n-1}(n=1,2,3, \ldots),
$$

and

$$
L_{0}=2, \quad L_{1}=1, \quad \text { and } \quad L_{n+1}=L_{n}+L_{n-1} \quad(n=1,2,3, \ldots) .
$$

If we apply Theorem 1.1 with the sequence $\left(a_{1}, a_{2}, \ldots\right)$ equal to $\left(F_{3}, F_{4}, \ldots\right)$ or ($L_{0}, L_{2}, L_{3}, \ldots$), then we immediately obtain the following consequence.

Corollary 1.1 Let $n \in \mathbb{Z}^{+}$. Then there is a permutation $\sigma \in S_{n}$ with $\sigma^{2}=I_{n}$ such that all the sums $k+\sigma(k)(k=1, \ldots, n)$ are Fibonacci numbers. Also, there is a permutation $\tau \in S_{n}$ with $\tau^{2}=I_{n}$ such that all the numbers $k+\tau(k)(k=1, \ldots, n)$ are Lucas numbers.

Remark 1.1 Let $f(n)$ be the number of permutations $\sigma \in S_{n}$ such that all the sums $k+\sigma(k)(k=1, \ldots, n)$ are Fibonacci numbers. Via Mathematica we find that

$$
(f(1), \ldots, f(20))=(1,1,1,2,1,2,4,2,1,4,4,20,4,5,1,20,24,8,96,200)
$$

For example, $\pi=(2,3)(4,9)(5,8)(6,7)$ is the unique permutation in S_{9} such that all the numbers $k+\pi(k)(k=1, \ldots, 9)$ are Fibonacci numbers.

Recall that those integers $T_{n}=n(n+1) / 2(n=0,1,2, \ldots)$ are called triangular numbers. Note that $T_{n}-T_{n-1}=n \leq T_{n-1}$ for every $n=3,4, \ldots$. Applying Theorem 1.1 with $\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(2, T_{2}, T_{3}, \ldots\right)$, we immediately get the following corollary.

Corollary 1.2 For any $n \in \mathbb{Z}^{+}$, there is a permutation $\pi \in S_{n}$ with $\pi^{2}=I_{n}$ such that each of the sums $k+\pi(k)(k=1, \ldots, n)$ is either 2 or a triangular number.

Remark 1.2 When $n=4$, we may take $\pi=(2,4)$ to meet the requirement in Corollary 1.2. Note that $1+1=3=T_{2}$ and $2+4=3+3=T_{3}$.

Our next theorem focuses on permutations involving powers of two.
Theorem 1.2 Let n be any positive integer. Then there is a unique permutation $\pi_{n} \in S_{n}$ such that all the numbers $k+\pi_{n}(k)(k=1, \ldots, n)$ are powers of two. In other words, for the $n \times n$ matrix A whose (i, j)-entry is 1 or 0 according as $i+j$ is a power of two or not, we have $\operatorname{per}(A)=1$.

Remark 1.3 Note that the number of 1's in the matrix A given in Theorem 1.2 coincides with

$$
\sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor+1} \sum_{\substack{1 \leq i, j \leq n \\ i+j=2^{k}}} 1=\sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor}\left(2^{k}-1\right)+\sum_{i=2^{\left\lfloor\log _{2} n\right\rfloor+1}-n}^{n} 1=2 n-\left\lfloor\log _{2} n\right\rfloor-1 .
$$

Example 1.1 Here we list π_{n} in Theorem 1.2 for $n=1, \ldots, 11$:

$$
\begin{aligned}
\pi_{1} & =(1), \quad \pi_{2}=(1), \quad \pi_{3}=(1,3), \quad \pi_{4}=(1,3), \quad \pi_{5}=(3,5), \quad \pi_{6}=(2,6)(3,5), \\
\pi_{7} & =(1,7)(2,6)(3,5), \quad \pi_{8}=(1,7)(2,6)(3,5), \quad \pi_{9}=(2,6)(3,5)(7,9), \\
\pi_{10} & =(3,5)(6,10)(7,9), \quad \pi_{11}=(1,3)(5,11)(6,10)(7,9) .
\end{aligned}
$$

Theorem 1.2 has the following consequence.
Corollary 1.3 For any $n \in \mathbb{Z}^{+}$, there is a unique permutation $\pi \in S_{2 n}$ such that $k+\pi(k) \in\left\{2^{a}-1: a \in \mathbb{Z}^{+}\right\}$for all $k=1, \ldots, 2 n$.

Now we turn to our results of new types.
Theorem 1.3 (i) Let p be any odd prime. Then there is no $\pi \in S_{p-1}$ such that all the $p-1$ numbers $k \pi(k)(k=1, \ldots, p-1)$ are pairwise incongruent modulo p. Also,

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq p-1} \equiv 0 \quad(\bmod p) . \tag{1.2}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n} \equiv 0 \quad(\bmod n) \text { for all } n=3,4,5, \ldots \tag{1.3}
\end{equation*}
$$

Remark 1.4 In contrast with Theorem 1.3, it is well-known that

$$
\operatorname{det}\left[i^{j-1}\right]_{1 \leq i, j \leq n}=\prod_{1 \leq i<j \leq n}(j-i)=1!2!\ldots(n-1)!
$$

and in particular

$$
\operatorname{det}\left[i^{j-1}\right]_{1 \leq i, j \leq p-1}, \operatorname{det}\left[i^{j-1}\right]_{1 \leq i, j \leq p} \neq 0 \quad(\bmod p)
$$

for any odd prime p.
In additive combinatorics, there are some interesting topics involving both permutations and finite abelian groups, see, e.g., [7,8]. Below we present two novel theorems on permutations involving groups.

Theorem 1.4 (i) Let a_{1}, \ldots, a_{n} be distinct elements of a torsion-free abelian group G. Then there is a permutation $\pi \in S_{n}$ such that all those $k a_{\pi(k)}(k=1, \ldots, n)$ are pairwise distinct.
(ii) Let a, b, c be three distinct elements of a group G such that none of them has order 2 or 3 . Then $a^{\sigma(1)}$ and $b^{\sigma(2)}$ are distinct for some $\sigma \in S_{2}$. Also, $a^{\tau(1)}, b^{\tau(2)}, c^{\tau(3)}$ are pairwise distinct for some $\tau \in S_{3}$.

Remark 1.5 On the basis of this theorem, we will formulate a general conjecture for groups in Sect. 4.

Theorem 1.5 For any $n>3$ distinct elements $a_{1}, a_{2}, \ldots, a_{n}$ of a torsion-free abelian group G, there is a permutation $\pi \in S_{n}$ such that all the n sums

$$
\begin{aligned}
& b_{1}+b_{2}+b_{3}, \quad b_{2}+b_{3}+b_{4}, \ldots, \\
& \quad b_{n-2}+b_{n-1}+b_{n}, \quad b_{n-1}+b_{n}+b_{1}, \quad b_{n}+b_{1}+b_{2}
\end{aligned}
$$

are pairwise distinct, where $b_{k}=a_{\pi(k)}$ for $k=1, \ldots, n$.
Remark 1.6 By Remark 1.2 of Sun [18], for any finite subset A of a torsion-free abelian group with $|A|=n>2$ we may write A as $\left\{a_{1}, \ldots, a_{n}\right\}$ such that $a_{1}+a_{2}, \ldots, a_{n-1}+$ $a_{n}, a_{n}+a_{1}$ are pairwise distinct.

We are going to prove Theorems 1.1-1.3 and Corollary 1.3 in the next section, and show Theorems 1.4 and 1.5 in Sect. 3. We will pose some conjectures in Sect. 4.

2 Proofs of Theorems 1.1-1.3 and Corollary 1.3

Proof of Theorem 1.1 For convenience, we set $a_{0}=1$ and $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. We use induction on $n \in \mathbb{Z}^{+}$to show the desired result.

For $n=1$, we take $\pi(1)=1$ and note that $1+\pi(1)=2=a_{1} \in A$.

Now let $n \geq 2$ and assume the desired result for smaller values of n. Choose $k \in \mathbb{N}$ with $a_{k} \leq n<a_{k+1}$, and write $m=a_{k+1}-n$. Then $1 \leq m \leq 2 a_{k}-n \leq 2 n-n=n$. Let $\pi(j)=a_{k+1}-j$ for $j=m, \ldots, n$. Then

$$
\{\pi(j): j=m, \ldots, n\}=\{m, \ldots, n\},
$$

and $\pi(\pi(j))=j$ for all $j=m, \ldots, n$.
Case 1. $m=1$.
In this case, $\pi \in S_{n}$ and $\pi^{2}=I_{n}$.
Case 2. $m=n$.
In this case, $a_{k+1}=2 n \geq 2 a_{k}$. On the other hand, $a_{k+1} \leq 2 a_{k}$. So, $a_{k+1}=2 a_{k}$ and $a_{k}=n$. Let $\pi(j)=n-j=a_{k}-j$ for all $0<j<n$. Then $\pi \in S_{n}$ and $j+\pi(j) \in\left\{a_{k}, a_{k+1}\right\}$ for all $j=1, \ldots, n$. Note that $\pi^{2}(k)=k$ for all $k=1, \ldots, n$.

Case 3. $1<m<n$.
In this case, by the induction hypothesis, for some $\sigma \in S_{m-1}$ with $\sigma^{2}=I_{m-1}$, we have $i+\sigma(i) \in A$ for all $i=1, \ldots, m-1$. Let $\pi(i)=\sigma(i)$ for all $i=1, \ldots, m-1$. Then $\pi \in S_{n}$ and it meets our requirement. In view of the above, we have completed the induction proof.

Proof of Theorem 1.2 Applying Theorem 1.1 with $a_{k}=2^{k}$ for all $k \in \mathbb{Z}^{+}$, we see that for some $\pi \in S_{n}$ with $\pi^{2}=I_{n}$ all the numbers $k+\pi(k)(k=1, \ldots, n)$ are powers of two.

Below we use induction on n to prove that the number of $\pi \in S_{n}$ with

$$
\{k+\pi(k): k=1, \ldots, n\} \subseteq\left\{2^{a}: a \in \mathbb{Z}^{+}\right\}
$$

is exactly one.
The case $n=1$ is trivial.
Now let $n>1$ and assume that for each $m=1, \ldots, n-1$ there is a unique $\pi_{m} \in S_{m}$ such that all the numbers $k+\pi_{m}(k)(k=1, \ldots, m)$ are powers of two. Choose $a \in \mathbb{Z}^{+}$with $2^{a-1} \leq n<2^{a}$, and write $m=2^{a}-n$. Then $1 \leq m \leq n$.

Suppose that $\pi \in S_{n}$ and all the numbers $k+\pi(k)(k=1, \ldots, n)$ are powers of two. If $2^{a-1} \leq k \leq n$, then

$$
2^{a-1}<k+\pi(k) \leq k+n \leq 2 n<2^{a+1}
$$

and hence $\pi(k)=2^{a}-k$ since $k+\pi(k)$ is a power of two. Thus

$$
\left\{\pi(k): k=2^{a-1}, \ldots, n\right\}=\left\{m, \ldots, 2^{a-1}\right\} .
$$

If $k \in\left\{1, \ldots, 2^{a-1}-1\right\}$ and $2^{a-1}<\pi(k) \leq n$, then

$$
2^{a-1}<k+\pi(k) \leq n+n<2^{a+1}
$$

hence $k+\pi(k)=2^{a}=m+n$ and thus $m \leq k<2^{a-1}$. So we have

$$
\left\{\pi^{-1}(j): 2^{a-1}<j \leq n\right\}=\left\{m, \ldots, 2^{a-1}-1\right\}
$$

(Note that $n-2^{a-1}=2^{a}-m-2^{a-1}=2^{a-1}-m$.)
By the above analysis, $\pi(k)=2^{a}-k$ for all $k=m, \ldots, n$, and

$$
\{\pi(k): k=m, \ldots, n\}=\{m, \ldots, n\} .
$$

Thus π is uniquely determined if $m=1$.
Now assume that $m>1$. As $\pi \in S_{n}$, we must have

$$
\{\pi(k): k=1, \ldots, m-1\}=\{1, \ldots, m-1\} .
$$

Since $k+\pi(k)$ is a power of two for every $k=1, \ldots, m-1$, by the induction hypothesis we have $\pi(k)=\pi_{m}(k)$ for all $k=1, \ldots, m-1$. Thus π is indeed uniquely determined.

In view of the above, the proof of Theorem 1.2 is now complete.
Proof of Corollary 1.3 Clearly, $\pi \in S_{2 n}$ and $k+\pi(k) \in\left\{2^{a}-1: a \in \mathbb{Z}^{+}\right\}$for all $k=1, \ldots, 2 n$, if and only if there are $\sigma, \tau \in S_{n}$ with $\pi(2 k)=2 \sigma(k)-1$ and $\pi(2 k-1)=2 \tau(k)$ for all $k=1, \ldots, n$ such that $k+\sigma(k), k+\tau(k) \in\left\{2^{a-1}: a \in \mathbb{Z}^{+}\right\}$ for all $k=1, \ldots, n$. Thus we get the desired result by applying Theorem 1.2.

Lemma 2.1 (Alon's Combinatorial Nullstellensatz [1]) Let A_{1}, \ldots, A_{n} be finite subsets of a field F with $\left|A_{i}\right|>k_{i}$ for $i=1, \ldots, n$ where $k_{1}, \ldots, k_{n} \in\{0,1,2, \ldots\}$. If the coefficient of the monomial $x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ in $P\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ is nonzero and $k_{1}+\cdots+k_{n}$ is the total degree of P, then there are $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ such that $P\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Lemma 2.2 Let a_{1}, \ldots, a_{n} be elements of a field F. Then the coefficient of $x_{1}^{n-1} \ldots x_{n}^{n-1}$ in the polynomial

$$
\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(a_{j} x_{j}-a_{i} x_{i}\right) \in F\left[x_{1}, \ldots, x_{n}\right]
$$

is $(-1)^{n(n-1) / 2} \operatorname{per}\left[a_{i}^{j-1}\right]_{1 \leq i, j \leq n}$.
Proof This is easy. In fact,

$$
\begin{aligned}
& \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(a_{j} x_{j}-a_{i} x_{i}\right) \\
= & (-1)^{\binom{n}{2}} \operatorname{det}\left[x_{i}^{n-j}\right]_{1 \leq i, j \leq n} \times \operatorname{det}\left[a_{i}^{j-1} x_{i}^{j-1}\right]_{1 \leq i, j \leq n} \\
& =(-1)^{\binom{n}{2}} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} x_{i}^{n-\sigma(i)} \sum_{\tau \in S_{n}} \operatorname{sign}(\tau) \prod_{i=1}^{n} a_{i}^{\tau(i)-1} x_{i}^{\tau(i)-1} .
\end{aligned}
$$

Therefore the coefficient of $x_{1}^{n-1} \ldots x_{n}^{n-1}$ in this polynomial is

$$
(-1)^{\binom{n}{2}} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma)^{2} \prod_{i=1}^{n} a_{i}^{\sigma(i)-1}=(-1)^{n(n-1) / 2} \operatorname{per}\left[a_{i}^{j-1}\right]_{1 \leq i, j \leq n} .
$$

This concludes the proof.
Remark 2.1 See [6] and [14, Lemma 2.2], for similar identities and arguments.
Proof of Theorem 1.3 (i) Let g be a primitive root modulo p. Then, there is a permutation $\pi \in S_{p-1}$ such that the numbers $k \pi(k)(k=1, \ldots, p-1)$ are pairwise incongruent modulo p, if and only if there is a permutation $\rho \in S_{p-1}$ such that $g^{i+\rho(i)}(i=1, \ldots, p-1)$ are pairwise incongruent modulo p (i.e., the numbers $i+\rho(i)(i=1, \ldots, p-1)$ are pairwise incongruent modulo $p-1)$.
Suppose that $\rho \in S_{p-1}$ and all the numbers $i+\rho(i)(i=1, \ldots, p-1)$ are pairwise incongruent modulo $p-1$. Then

$$
\sum_{i=1}^{p-1}(i+\rho(i)) \equiv \sum_{j=1}^{p-1} j \quad(\bmod p-1)
$$

and hence $\sum_{i=1}^{p-1} i=p(p-1) / 2 \equiv 0(\bmod p-1)$ which is impossible. This contradiction proves the first assertion in Theorem 1.3(i).

Now we turn to prove the second assertion in Theorem 1.3(i). Suppose that $\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq p-1} \neq 0(\bmod p)$. Then, by Lemma 2.2, the coefficient of $x_{1}^{p-2} \ldots x_{p-1}^{p-2}$ in the polynomial

$$
\prod_{1 \leq i<j \leq p-1}\left(x_{j}-x_{i}\right)\left(j x_{j}-i x_{i}\right)
$$

is not congruent to zero modulo p. Applying Lemma 2.1 with $F=\mathbb{Z} / p \mathbb{Z}$ and $A=$ $\{k+p \mathbb{Z}: k=1, \ldots, p-1\}$, we see that there is a permutation $\pi \in S_{p-1}$ such that all those $k \pi(k)(k=1, \ldots, p-1)$ are pairwise incongruent modulo p, which contradicts the first assertion of Theorem 1.3(i) we have just proved.
(ii) Let $n>2$ be an integer. Then

$$
\begin{aligned}
\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n} & =\sum_{\sigma \in S_{n}} \prod_{k=1}^{n} k^{\sigma(k)-1} \\
& \equiv \sum_{\substack{\sigma \in S_{n} \\
\sigma(n)=1}}(n-1)!\prod_{k=1}^{n-1} k^{\sigma(k)-2}=(n-1)!\sum_{\tau \in S_{n-1}} \prod_{k=1}^{n-1} k^{\tau(k)-1} \\
& =(n-1)!\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n-1} \quad(\bmod n) .
\end{aligned}
$$

We want to prove that $n \mid \operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n}$. This holds when n is an odd prime p, because $p \mid \operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq p-1}$ by Theorem 1.3(i). For $n=4$, we have

$$
\begin{aligned}
\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq 4} & \equiv 3!\sum_{\tau \in S_{3}} 1^{\tau(1)-1} 2^{\tau(2)-1} 3^{\tau(3)-1} \\
& \equiv 6\left(1^{2-1} 2^{1-1} 3^{3-1}+1^{3-1} 2^{1-1} 3^{2-1}\right) \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

Now assume that $n>4$ is composite. By the above, it suffices to show that $(n-1)!\equiv$ $0(\bmod n)$. Let p be the smallest prime divisor of n. Then $n=p q$ for some integer $q \geq p$. If $p<q$, then $n=p q$ divides $(n-1)$!. If $q=p$, then $p^{2}=n>4$ and hence $2 p<p^{2}$, thus $2 n=p(2 p)$ divides $(n-1)$!.

In view of the above, we have completed the proof of Theorem 1.3.

3 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4 (i) The case $n=1$ is trivial. Below we let $n>1$. Note that the subgroup H of G generated by a_{1}, \ldots, a_{n} is infinite, finitely generated and torsionfree. Thus H is isomorphic to \mathbb{Z}^{r} for some positive integer r. By algebraic number theory (cf. [11]), we may take an algebraic number field K with $[K: \mathbb{Q}]=r$ and hence H is isomorphic to the additive group O_{K} of algebraic integers in K. Thus, without any loss of generality, we may simply assume that G is the additive group \mathbb{C} of all complex numbers.
By Lemma 2.2, the coefficient of $x_{1}^{n-1} \ldots x_{n}^{n-1}$ in the polynomial

$$
P\left(x_{1}, \ldots, x_{n}\right):=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(j x_{j}-i x_{i}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

is $(-1)^{n(n-1) / 2} \operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n}$, which is nonzero since $\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n}>0$. Applying Lemma 2.1 we see that there are $x_{1}, \ldots, x_{n} \in A=\left\{a_{1}, \ldots, a_{n}\right\}$ with $P\left(x_{1}, \ldots, x_{n}\right) \neq 0$. Thus, for some $\pi \in S_{n}$ all the numbers $k a_{\sigma(k)}(k=1, \ldots, n)$ are distinct. This ends the proof of part (i).
(ii) Let e be the identity of the group G. Suppose that $a=b^{2}$ and also $a^{2}=b$. Then $a=\left(a^{2}\right)^{2}=a^{4}$, and hence $a^{3}=e$. As the order of a is not three, we have $a=e$ and hence $b=a^{2}=e$, which leads to a contradiction since $a \neq b$. Therefore $a^{\sigma(1)}$ and $b^{\sigma(2)}$ are distinct for some $\sigma \in S_{2}$.

To prove the second assertion in Theorem 1.4(ii), we distinguish two cases. Case 1. One of a, b, c is the square of another element among a, b, c.

Without loss of generality, we simply assume that $a=b^{2}$. As $a \neq b$ we have $b \neq e$. As b is not of order two, we also have $a \neq e$. Note that $b^{2}=a \neq c$. If $b^{2}=a^{3}$, then $a=a^{3}$ which is impossible since the order of a is not two. If $a^{3} \neq c$, then c, b^{2}, a^{3} are pairwise distinct.

Now assume that $a^{3}=c$. As a is not of order three, we have $b \neq a^{2}$ and $c \neq e$. Note that $a^{3}=c \neq b$ and also $a^{3}=c \neq c^{2}$. If $b \neq c^{2}$, then b, c^{2}, a^{3} are pairwise
distinct. If $b=c^{2}$, then $a=b^{2}=c^{4}=\left(a^{3}\right)^{4}$ and hence the order of a is 11 , thus $a^{2} \neq\left(a^{3}\right)^{3}=c^{3}$ and hence b, a^{2}, c^{3} are pairwise distinct.
Case 2. None of a, b, c is the square of another one among a, b, c.
Suppose that there is no $\tau \in S_{3}$ with $a^{\tau(1)}, b^{\tau(2)}, c^{\tau(3)}$ pairwise distinct. Then $c^{3} \in\left\{a, b^{2}\right\} \cap\left\{a^{2}, b\right\}$. If $c^{3}=a$, then $c^{3} \neq b$ and hence $a=c^{3}=a^{2}$, thus $a=e=c$ which leads to a contradiction. (Recall that none of a, b, c is of order 3.) Therefore, $c^{3}=b^{2}$. As c is not of order three, if $b=e$ then we have $c=e=b$ which is impossible. So $c^{3}=b^{2} \neq b$ and hence $b^{2}=c^{3}=a^{2}$. Similarly, $a^{3}=b^{2}=c^{2}$. Thus $a^{3}=b^{2}=a^{2}$, hence $a=e$ and $b^{2}=a^{2}=e$, which contradicts $b \neq a$ since b is not of order two.

In view of the above, we have finished the proof of Theorem 1.4.
Proof of Theorem 1.5 The subgroup of G generated by a_{1}, \ldots, a_{n} is a finitely generated torsion-free abelian group. So we may simply assume that $G=\mathbb{Z}^{r}$ for some positive integer r without any loss of generality. It is well known that there is a linear ordering \leq on $G=\mathbb{Z}^{r}$ such that for any $a, b, c \in G$ if $a<b$ then $-b<-a$ and $a+c<b+c$ (cf. [12]). For convenience, we suppose $a_{1}<a_{2}<\cdots<a_{n}$ without any loss of generality.

If $n=4$, then $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ meets the requirement since

$$
a_{1}+a_{2}+a_{3}<a_{4}+a_{1}+a_{2}<a_{3}+a_{4}+a_{1}<a_{2}+a_{3}+a_{4} .
$$

Below we assume $n \geq 5$.
Clearly

$$
a_{1}+a_{2}+a_{3}<a_{2}+a_{3}+a_{4}<\cdots<a_{n-2}+a_{n-1}+a_{n} .
$$

For convenience we set

$$
S:=\left\{a_{i-1}+a_{i}+a_{i+1}: i=2, \ldots, n-1\right\},
$$

and let min S and max S denote the least element and the largest element of S, respectively. Note that

$$
\begin{aligned}
& \min S=a_{1}+a_{2}+a_{3}<a_{n}+a_{1}+a_{2}<a_{n-1}+a_{n}+a_{1} \\
& <\max S=a_{n-2}+a_{n-1}+a_{n} .
\end{aligned}
$$

If $\left\{a_{n}+a_{1}+a_{2}, a_{n-1}+a_{n}+a_{1}\right\} \cap S=\emptyset$, then $\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$ meets the requirement. Obviously,

$$
\begin{aligned}
& -a_{n}<-a_{n-1}<\cdots<-a_{2}<-a_{1} \\
& \text { and }\left(-a_{2}\right)+\left(-a_{1}\right)+\left(-a_{n}\right)=-\left(a_{1}+a_{2}+a_{n}\right) .
\end{aligned}
$$

So, it suffices to find a desired permutation b_{1}, \ldots, b_{n} of a_{1}, \ldots, a_{n} under the condition $a_{n-1}+a_{n}+a_{1} \in S$.
Case 1. $n=5$.

As $a_{4}+a_{5}+a_{1} \in S$, we have $a_{4}+a_{5}+a_{1}=a_{2}+a_{3}+a_{4}$ and we may take $\left(b_{1}, \ldots, b_{5}\right)=\left(a_{1}, a_{2}, a_{3}, a_{5}, a_{4}\right)$ since

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}<a_{4}+a_{1}+a_{2}<a_{2}+a_{3}+a_{4} \\
& =a_{5}+a_{4}+a_{1}<a_{2}+a_{3}+a_{5}<a_{3}+a_{5}+a_{4} .
\end{aligned}
$$

Case 2. $n=6$.
As $a_{5}+a_{6}+a_{1} \in S$, the sum $a_{5}+a_{6}+a_{1}$ is equal to $a_{2}+a_{3}+a_{4}$ or $a_{3}+a_{4}+a_{5}$. If $a_{5}+a_{6}+a_{1}=a_{2}+a_{3}+a_{4}$, then we may take $\left(b_{1}, \ldots, b_{6}\right)=\left(a_{1}, a_{2}, a_{5}, a_{3}, a_{4}, a_{6}\right)$ since

$$
\begin{aligned}
a_{1}+a_{2}+a_{5} & <a_{6}+a_{1}+a_{2}<a_{4}+a_{6}+a_{1}<a_{5}+a_{6}+a_{1}=a_{2}+a_{3}+a_{4} \\
& <a_{2}+a_{5}+a_{3}<a_{5}+a_{3}+a_{4}<a_{3}+a_{4}+a_{6} .
\end{aligned}
$$

If $a_{5}+a_{6}+a_{1}=a_{3}+a_{4}+a_{5}$, then $a_{6}+a_{1}=a_{3}+a_{4}$ and we may take $\left(b_{1}, \ldots, b_{6}\right)=$ $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, a_{5}\right)$ since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{5}+a_{1}+a_{2}<a_{6}+a_{1}+a_{2}=a_{2}+a_{3}+a_{4} \\
& <a_{3}+a_{4}+a_{5}=a_{6}+a_{5}+a_{1}<a_{3}+a_{4}+a_{6}<a_{4}+a_{6}+a_{5} .
\end{aligned}
$$

Case 3. $n=7$.
As $a_{6}+a_{7}+a_{1} \in S$, the sum $a_{6}+a_{7}+a_{1}$ is equal to $a_{2}+a_{3}+a_{4}$ or $a_{3}+a_{4}+a_{5}$ or $a_{4}+a_{5}+a_{6}$. If $a_{6}+a_{7}+a_{1}=a_{4}+a_{5}+a_{6}$, then $a_{7}+a_{1}=a_{4}+a_{5}$ and we may take $\left(b_{1}, \ldots, b_{7}\right)=\left(a_{2}, a_{1}, a_{4}, a_{5}, a_{3}, a_{6}, a_{7}\right)$ since

$$
\begin{aligned}
a_{2}+a_{1}+a_{4} & <a_{1}+a_{4}+a_{5}=a_{1}+a_{1}+a_{7}<a_{7}+a_{2}+a_{1} \\
& <a_{7}+a_{1}+a_{3}=a_{4}+a_{5}+a_{3}<a_{5}+a_{3}+a_{6} \\
& <a_{4}+a_{5}+a_{6}=a_{1}+a_{6}+a_{7}<a_{2}+a_{6}+a_{7}<a_{3}+a_{6}+a_{7} .
\end{aligned}
$$

If $a_{6}+a_{7}+a_{1}=a_{2}+a_{3}+a_{4}$, then we may take $\left(b_{1}, \ldots, b_{7}\right)=\left(a_{1}, a_{2}, a_{3}, a_{5}, a_{4}\right.$, $\left.a_{6}, a_{7}\right)$ since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{7}+a_{1}+a_{2}<a_{5}+a_{7}+a_{1}<a_{6}+a_{7}+a_{1}=a_{2}+a_{3}+a_{4} \\
& <a_{2}+a_{3}+a_{5}<a_{3}+a_{5}+a_{4}<a_{5}+a_{4}+a_{6}<a_{4}+a_{6}+a_{7} .
\end{aligned}
$$

If $a_{6}+a_{7}+a_{1}=a_{3}+a_{4}+a_{5}$ and $a_{5}+a_{6}+a_{1} \neq a_{2}+a_{3}+a_{4}$, then $a_{6}+a_{1}<a_{3}+a_{4}$ and we may take $\left(b_{1}, \ldots, b_{7}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{7}, a_{5}, a_{6}\right)$ since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{6}+a_{1}+a_{2}<\min \left\{a_{5}+a_{6}+a_{1}, a_{2}+a_{3}+a_{4}\right\} \\
& <\max \left\{a_{5}+a_{6}+a_{1}, a_{2}+a_{3}+a_{4}\right\}<a_{1}+a_{6}+a_{7}=a_{3}+a_{4}+a_{5} \\
& <a_{3}+a_{4}+a_{7}<a_{4}+a_{7}+a_{5}<a_{7}+a_{5}+a_{6} .
\end{aligned}
$$

If $a_{6}+a_{7}+a_{1}=a_{3}+a_{4}+a_{5}$ and $a_{5}+a_{6}+a_{1}=a_{2}+a_{3}+a_{4}$, then $a_{7}+a_{1}<a_{3}+a_{4}$ and we may take $\left(b_{1}, \ldots, b_{7}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, a_{5}, a_{7}\right)$ since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{7}+a_{1}+a_{2}<a_{5}+a_{6}+a_{1}=a_{2}+a_{3}+a_{4} \\
& <a_{5}+a_{7}+a_{1}<a_{3}+a_{4}+a_{5}=a_{6}+a_{7}+a_{1} \\
& <a_{3}+a_{4}+a_{6}<a_{4}+a_{6}+a_{5}<a_{6}+a_{5}+a_{7} .
\end{aligned}
$$

Case 4. $n>7$ and $a_{n}+a_{1}+a_{2} \notin S$.
In this case, there is a unique $2<i<n-1$ with $a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1}$. If $i<n-3$, then we may take

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{i-2}, a_{i-1}, a_{i}, a_{i+2}, a_{i+1}, a_{i+3}, \ldots, a_{n}\right)
$$

because

$$
\begin{aligned}
a_{i-2}+a_{i-1}+a_{i} & <a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1}<a_{i-1}+a_{i}+a_{i+2} \\
& <a_{i}+a_{i+2}+a_{i+1}<a_{i+2}+a_{i+1}+a_{i+3} \\
& <a_{i+1}+a_{i+3}+a_{i+4}<\cdots<a_{n-2}+a_{n-1}+a_{n} .
\end{aligned}
$$

When $i \in\{n-2, n-3\}$, we have $i \geq n-3>4$, and hence in the case $a_{1}+a_{2}+a_{n} \neq$ $a_{i-4}+a_{i-3}+a_{i-1}$, we may take

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{i-4}, a_{i-3}, a_{i-1}, a_{i-2}, a_{i}, a_{i+1}, a_{i+2}, \ldots, a_{n}\right)
$$

because

$$
\begin{aligned}
a_{i-4}+a_{i-3}+a_{i-2} & <a_{i-4}+a_{i-3}+a_{i-1}<a_{i-3}+a_{i-1}+a_{i-2} \\
& <a_{i-1}+a_{i-2}+a_{i}<a_{i-2}+a_{i}+a_{i+1} \\
& <a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1} \\
& <a_{i}+a_{i+1}+a_{i+2}<\cdots<a_{n-2}+a_{n-1}+a_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{n}+a_{1}+a_{2} & <\left(a_{i-2}+a_{n-1}-a_{i+1}\right)+a_{n}+a_{1} \\
& =a_{i-2}-a_{i+1}+\left(a_{i-1}+a_{i}+a_{i+1}\right)=a_{i-1}+a_{i-2}+a_{i} .
\end{aligned}
$$

If $i \in\{n-2, n-3\}$ and $a_{1}+a_{2}+a_{n}=a_{i-4}+a_{i-3}+a_{i-1}$, then we may take

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{i-4}, a_{i-3}, a_{i}, a_{i-2}, a_{i-1}, a_{i+1}, a_{i+2}, \ldots, a_{n}\right)
$$

because

$$
\begin{aligned}
a_{n}+a_{1}+a_{2} & =a_{i-4}+a_{i-3}+a_{i-1} \\
& <a_{i-4}+a_{i-3}+a_{i}<a_{i-3}+a_{i}+a_{i-2}<a_{i}+a_{i-2}+a_{i-1} \\
& <a_{i-2}+a_{i-1}+a_{i+1}<a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1} \\
& <a_{i-1}+a_{i+1}+a_{i+2}<\cdots<a_{n-2}+a_{n-1}+a_{n} .
\end{aligned}
$$

Case 5. $n>7$ and $a_{n}+a_{1}+a_{2} \in S$.
In this case, for some $2<j<i \leq n-2$, we have

$$
a_{n-1}+a_{n}+a_{1}=a_{i-1}+a_{i}+a_{i+1}>a_{j-1}+a_{j}+a_{j+1}=a_{n}+a_{1}+a_{2}
$$

If $j+1=i$, then

$$
\begin{aligned}
a_{n-1}-a_{2} & =\left(a_{n-1}+a_{n}+a_{1}\right)-\left(a_{n}+a_{1}+a_{2}\right) \\
& =a_{i-1}+a_{i}+a_{i+1}-\left(a_{i}+a_{i-1}+a_{i-2}\right)=a_{i+1}-a_{i-2}
\end{aligned}
$$

which is impossible since $i \geq 4$ and $n>6$.
If $i-j>5$, then

$$
\begin{aligned}
& \left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{j-1}, a_{j}, a_{j+2}, a_{j+1}, a_{j+3}, \ldots\right. \\
& \left.a_{i-3}, a_{i-1}, a_{i-2}, a_{i}, a_{i+1}, \ldots, a_{n}\right)
\end{aligned}
$$

meets the requirement since

$$
\begin{aligned}
a_{j-1}+a_{j}+a_{j+1} & =a_{n}+a_{1}+a_{2}<a_{j-1}+a_{j}+a_{j+2} \\
& <a_{j}+a_{j+2}+a_{j+1}<a_{j+2}+a_{j+1}+a_{j+3} \\
& <\cdots<a_{i-3}+a_{i-1}+a_{i-2}<a_{i-1}+a_{i-2}+a_{i} \\
& <a_{i-2}+a_{i}+a_{i+1}<a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1} \\
& <a_{i}+a_{i+1}+a_{i+2}<\cdots<a_{n-2}+a_{n-1}+a_{n}
\end{aligned}
$$

If $i-j=5$, then $j+4=i-1$ and

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{j-1}, a_{j}, a_{j+2}, a_{j+1}, a_{i-1}, a_{i-2}, a_{i}, a_{i+1}, \ldots, a_{n}\right)
$$

meets the requirement. If $i-j=4$, then

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{j-1}, a_{j}, a_{j+2}, a_{j+3}, a_{j+1}, a_{i}, a_{i+1}, \ldots, a_{n}\right)
$$

meets the requirement since

$$
\begin{aligned}
a_{j-1}+a_{j}+a_{j+1} & =a_{n}+a_{1}+a_{2} \\
& <a_{j-1}+a_{j}+a_{j+2}<a_{j}+a_{j+2}+a_{j+3} \\
& <a_{j+2}+a_{j+3}+a_{j+1}<a_{j+3}+a_{j+1}+a_{i} \\
& <a_{j+1}+a_{i}+a_{i+1}<a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1} \\
& <a_{i}+a_{i+1}+a_{i+2}<\cdots<a_{n-2}+a_{n-1}+a_{n} .
\end{aligned}
$$

If $i-j=3$, then

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{j-1}, a_{j}, a_{j+2}, a_{j+1}, a_{i}, a_{i+1}, \ldots, a_{n}\right)
$$

meets the requirement since

$$
\begin{aligned}
a_{j-1}+a_{j}+a_{j+1} & =a_{n}+a_{1}+a_{2} \\
& <a_{j-1}+a_{j}+a_{j+2}<a_{j}+a_{j+2}+a_{j+1} \\
& <a_{j+2}+a_{j+1}+a_{i}=a_{i-1}+a_{i-2}+a_{i}<a_{i-2}+a_{i}+a_{i+1} \\
& <a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1} \\
& <a_{i}+a_{i+1}+a_{i+2}<\cdots<a_{n-2}+a_{n-1}+a_{n} .
\end{aligned}
$$

If $j>4$ and $i=j+2$, then

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{j-3}, a_{j-1}, a_{j-2}, a_{j+1}, a_{j}, a_{i}, a_{i+1}, a_{i+2}, \ldots, a_{n}\right)
$$

meets the requirement since

$$
\begin{aligned}
a_{j-4}+a_{j-3}+a_{j-1} & <a_{j-3}+a_{j-1}+a_{j-2}<a_{j-1}+a_{j-2}+a_{j+1} \\
& <a_{j-2}+a_{j+1}+a_{j}<a_{j-1}+a_{j}+a_{j+1}=a_{n}+a_{1}+a_{2} \\
& <a_{j+1}+a_{j}+a_{i}<a_{j}+a_{i}+a_{i+1} \\
& <a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1}<a_{i}+a_{i+1}+a_{i+2}
\end{aligned}
$$

If $i=j+2 \leq n-4$, then

$$
\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{j-2}, a_{j-1}, a_{j}, a_{i}, a_{i-1}, a_{i+2}, a_{i+1}, a_{i+3}, a_{i+4}, \ldots, a_{n}\right)
$$

meets the requirement since

$$
\begin{aligned}
a_{j-2}+a_{j-1}+a_{j} & <a_{j-1}+a_{j}+a_{j+1}=a_{n}+a_{1}+a_{2} \\
& <a_{j-1}+a_{j}+a_{i}<a_{j}+a_{i}+a_{i-1} \\
& <a_{i-1}+a_{i}+a_{i+1}=a_{n-1}+a_{n}+a_{1} \\
& <a_{i}+a_{i-1}+a_{i+2}<a_{i-1}+a_{i+2}+a_{i+1} \\
& <a_{i+2}+a_{i+1}+a_{i+3}<a_{i+1}+a_{i+3}+a_{i+4} \\
& <\cdots<a_{n-2}+a_{n-1}+a_{n} .
\end{aligned}
$$

If $i \geq n-3, j \leq 4$ and $i-j=2$, then $2=i-j \geq n-3-4$ and hence $n \in\{8,9\}$.
For $n=8$, we need to consider the case $i=6$ and $j=4$. As $a_{8}+a_{1}+a_{2}=a_{3}+$ $a_{4}+a_{5}$ and $a_{7}+a_{8}+a_{1}=a_{5}+a_{6}+a_{7}$, we have $a_{8}+a_{1}=a_{5}+a_{6}=a_{3}+a_{4}+a_{5}-a_{2}$. If $2 a_{5} \neq a_{4}+a_{7}$, then $a_{5}+a_{8}+a_{1}=2 a_{5}+a_{6} \neq a_{4}+a_{6}+a_{7}$ and hence we may take

$$
\left(b_{1}, \ldots, b_{8}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, a_{7}, a_{5}, a_{8}\right)
$$

since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{2}+a_{3}+a_{4}<a_{3}+a_{4}+a_{5}=a_{8}+a_{1}+a_{2}<a_{3}+a_{4}+a_{6} \\
& <\min \left\{a_{4}+a_{6}+a_{7}, a_{5}+a_{8}+a_{1}\right\}<\max \left\{a_{4}+a_{6}+a_{7}, a_{5}+a_{8}+a_{1}\right\} \\
& <a_{6}+a_{7}+a_{5}=a_{7}+a_{8}+a_{1}<a_{7}+a_{5}+a_{8} .
\end{aligned}
$$

If $2 a_{5}=a_{4}+a_{7}$, then $a_{6}+a_{8}+a_{1}=a_{5}+2 a_{6}>a_{4}+a_{5}+a_{7}$ and we may take

$$
\left(b_{1}, \ldots, b_{8}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{7}, a_{8}, a_{6}\right)
$$

since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{1}+a_{3}+a_{4}=a_{1}+a_{2}+a_{6}<a_{2}+a_{3}+a_{4} \\
& <a_{3}+a_{4}+a_{5}=a_{8}+a_{1}+a_{2}<a_{4}+a_{5}+a_{7}<a_{6}+a_{8}+a_{1} \\
& <a_{5}+a_{7}+a_{8}<a_{7}+a_{8}+a_{6} .
\end{aligned}
$$

When $n=8, i=5$ and $j=3$, it suffices to apply the result for $i=6$ and $j=4$ to the sequence

$$
\begin{aligned}
a_{1}^{\prime}=-a_{8} & <a_{2}^{\prime}=-a_{7}<a_{3}^{\prime}=-a_{6}<a_{4}^{\prime}=-a_{5} \\
& <a_{5}^{\prime}=-a_{4}<a_{6}^{\prime}=-a_{3}<a_{7}^{\prime}=-a_{2}<a_{8}^{\prime}=-a_{1}
\end{aligned}
$$

since $a_{7}^{\prime}+a_{8}^{\prime}+a_{1}^{\prime}=-\left(a_{1}+a_{2}+a_{8}\right)=-\left(a_{2}+a_{3}+a_{4}\right)=a_{5}^{\prime}+a_{6}^{\prime}+a_{7}^{\prime}$ and $a_{8}^{\prime}+a_{1}^{\prime}+a_{2}^{\prime}=-\left(a_{1}+a_{7}+a_{8}\right)=-\left(a_{4}+a_{5}+a_{6}\right)=a_{3}^{\prime}+a_{4}^{\prime}+a_{5}^{\prime}$.

Now it remains to consider the last case where $n=9, i=6$ and $j=4$. As $a_{3}+a_{4}+a_{5}=a_{9}+a_{1}+a_{2}$ and $a_{5}+a_{6}+a_{7}=a_{8}+a_{9}+a_{1}$, we have $a_{3}+a_{4}<a_{9}+a_{1}$ and hence $a_{3}+a_{4}+a_{6}<a_{3}+a_{4}+a_{7}<a_{7}+a_{9}+a_{1}$. If $a_{7}+a_{9}+a_{1}=a_{4}+a_{5}+a_{6}$, then

$$
\begin{aligned}
& a_{8}-a_{7}=\left(a_{8}+a_{9}+a_{1}\right)-\left(a_{7}+a_{9}+a_{1}\right) \\
& =a_{5}+a_{6}+a_{7}-\left(a_{4}+a_{5}+a_{6}\right)=a_{7}-a_{4} .
\end{aligned}
$$

When $2 a_{7} \neq a_{8}+a_{4}$, we have $a_{7}+a_{9}+a_{1} \neq a_{4}+a_{5}+a_{6}$ and hence we may take

$$
\left(b_{1}, \ldots, b_{9}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, a_{5}, a_{8}, a_{7}, a_{9}\right)
$$

since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{2}+a_{3}+a_{4}<a_{3}+a_{4}+a_{5}=a_{9}+a_{1}+a_{2}<a_{3}+a_{4}+a_{6} \\
& <\min \left\{a_{4}+a_{5}+a_{6}, a_{7}+a_{9}+a_{1}\right\}<\max \left\{a_{4}+a_{5}+a_{6}, a_{7}+a_{9}+a_{1}\right\} \\
& <a_{6}+a_{5}+a_{7}=a_{8}+a_{9}+a_{1}<a_{6}+a_{5}+a_{8} \\
& <a_{5}+a_{8}+a_{7}<a_{8}+a_{7}+a_{9} .
\end{aligned}
$$

If $2 a_{7}=a_{8}+a_{4}$, then $a_{5}+a_{6}+a_{7}<2 a_{7}+a_{6}=a_{4}+a_{6}+a_{8}$ and hence we may take

$$
\left(b_{1}, \ldots, b_{9}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, a_{8}, a_{5}, a_{7}, a_{9}\right)
$$

since

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & <a_{2}+a_{3}+a_{4}<a_{3}+a_{4}+a_{5}=a_{9}+a_{1}+a_{2}<a_{3}+a_{4}+a_{6} \\
& <a_{9}+a_{1}+a_{6}<a_{7}+a_{9}+a_{1}<a_{8}+a_{9}+a_{1}=a_{5}+a_{6}+a_{7} \\
& <a_{4}+a_{6}+a_{8}<a_{6}+a_{8}+a_{5}<a_{8}+a_{5}+a_{7}<a_{5}+a_{7}+a_{9}
\end{aligned}
$$

In view of the above, we have completed the proof of Theorem 1.5.

4 Some conjectures

Motivated by Theorems 1.3(i) and 1.4, we pose the following conjecture for finite groups.

Conjecture 4.1 Let n be a positive integer, and let G be a group containing no element of order among $2, \ldots, n+1$. Then, for any $A \subseteq G$ with $|A|=n$, we may write $A=\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{1}, a_{2}^{2}, \ldots, a_{n}^{n}$ pairwise distinct.

Remark 4.1 (a) Theorem 1.4 shows that this conjecture holds when $n \leq 3$ or G is a torsion-free abelian group.
(b) For $n=4,5,6,7,8,9$ we have verified the conjecture for cyclic groups $G=$ $\mathbb{Z} / m \mathbb{Z}$ with $|G|=m$ not exceeding $100,100,70,60,30,30$ respectively.
(c) If G is a finite group with $|G|>1$, then the least order of a non-identity element of G is $p(G)$, the smallest prime divisor of $|G|$.
Inspired by Theorem 1.3, we formulate the following conjecture.
Conjecture 4.2 Let $n>1$ be an integer with $n \not \equiv 2(\bmod 4)$.
(i) We have

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n-1} \equiv 0 \quad(\bmod n) \tag{4.1}
\end{equation*}
$$

(ii) If $n \equiv 1(\bmod 3)$, then

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n-1} \equiv 0 \quad\left(\bmod n^{2}\right) . \tag{4.2}
\end{equation*}
$$

Remark 4.2 We have checked this conjecture via computing $\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n-1}$ modulo n^{2} for $n \leq 17$. The sequence $a_{n}=\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n}(n=1,2,3, \ldots)$ is available from [16, A322363].

Conjecture 4.3 (i) For any $n \in \mathbb{Z}^{+}$, there is a permutation $\sigma_{n} \in S_{n}$ such that $k \sigma_{n}(k)+$ 1 is prime for every $k=1, \ldots, n$.
(ii) For any integer $n>2$, there is a permutation $\tau_{n} \in S_{n}$ such that $k \tau_{n}(k)-1$ is prime for every $k=1, \ldots, n$.

Remark 4.3 See [16, A321597] for related data and examples.
Conjecture 4.4 (i) For each $n \in \mathbb{Z}^{+}$, there is a permutation π_{n} of $\{1, \ldots, n\}$ such that $k^{2}+k \pi_{n}(k)+\pi_{n}(k)^{2}$ is prime for every $k=1, \ldots, n$.
(ii) For any positive integer $n \neq 7$, there is a permutation π_{n} of $\{1, \ldots, n\}$ such that $k^{2}+\pi_{n}(k)^{2}$ is prime for every $k=1, \ldots, n$.

Remark 4.4 See [16, A321610] for related data and examples.
As usual, for $k=1,2,3, \ldots$ we let p_{k} denote the k-th prime.
Conjecture 4.5 For any $n \in \mathbb{Z}^{+}$, there is a permutation $\pi \in S_{n}$ such that $p_{k}+p_{\pi(k)}+1$ is prime for every $k=1, \ldots, n$.

Remark 4.5 See [16, A321727] for related data and examples.
In 1973 Chen [4] proved that there are infinitely many primes p with $p+2$ a product of at most two primes; nowadays such primes p are called Chen primes.

Conjecture 4.6 Letn $\in \mathbb{Z}^{+}$. Then, there is an even permutation $\sigma \in S_{n}$ with $p_{k} p_{\sigma(k)}-$ 2 prime for all $k=1, \ldots, n$. If $n>2$, then there is an odd permutation $\tau \in S_{n}$ with $p_{k} p_{\tau(k)}-2$ prime for all $k=1, \ldots, n$.

Remark 4.6 See [16, A321855] for related data and examples. If we let $b(n)$ denote the number of even permutations $\sigma \in S_{n}$ with $p_{k} p_{\sigma(k)}-2$ prime for all $k=1, \ldots, n$, then

$$
(b(1), \ldots, b(11))=(1,1,1,1,3,6,1,1,33,125,226) .
$$

Conjecture 2.17(ii) of Sun [15] implies that for any odd integer $n>1$ there is a prime $p \leq n$ such that $p n-2$ is prime.

In 2002, Cloitre [5, A073112] created the sequence A073112 on OEIS whose n-th term is the number of permutations $\pi \in S_{n}$ with $\sum_{k=1}^{n} \frac{1}{k+\pi(k)} \in \mathbb{Z}$. Recently Sun [17] conjectured that for any integer $n>5$ there is a permutation $\pi \in S_{n}$ satisfying

$$
\sum_{k=1}^{n} \frac{1}{k+\pi(k)}=1
$$

and this was later confirmed by the user Zhao Shen at Mathoverflow via clever induction arguments.

In 1982 Filz (cf. [9, pp. 160-162]) conjectured that for any $n=2,4,6, \ldots$ there is a circular permutation $\left(i_{1}, \ldots, i_{n}\right)$ of $1, \ldots, n$ such that all the n adjacent sums

$$
i_{1}+i_{2}, \quad i_{2}+i_{3}, \ldots, i_{n-1}+i_{n}, \quad i_{n}+i_{1}
$$

are prime.
Motivated by this, we pose the following conjecture.
Conjecture 4.7 (i) For any integer $n>6$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{1}{\pi(k)+\pi(k+1)}=1 \tag{4.3}
\end{equation*}
$$

Also, for any integer $n>7$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\frac{1}{\pi(1)+\pi(2)}+\frac{1}{\pi(2)+\pi(3)}+\cdots+\frac{1}{\pi(n-1)+\pi(n)}+\frac{1}{\pi(n)+\pi(1)}=1 . \tag{4.4}
\end{equation*}
$$

(ii) For any integer $n>7$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{1}{\pi(k)^{2}-\pi(k+1)^{2}}=0 \tag{4.5}
\end{equation*}
$$

Remark 4.7 See [16, A322070 and A322099] for related data and examples. For the latter assertion in Conjecture 4.7(i), the equality (4.4) with $n=8$ holds if we take $(\pi(1), \ldots, \pi(8))=(6,1,5,2,4,3,7,8)$. In a previous version of this paper posted to arXiv, the author also conjectured that for any integer $n>5$ there is a permutation $\pi \in S_{n}$ with $\sum_{k=1}^{n-1} \frac{1}{\pi(k) \pi(k+1)}=1$; this, together with two other conjectures of the author, was confirmed by Han [10].

Conjecture 4.8 (i) For any integer $n>1$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{0<k<n} \pi(k) \pi(k+1) \in\left\{2^{m}+1: m=0,1,2, \ldots\right\} . \tag{4.6}
\end{equation*}
$$

(ii) For any integer $n>4$, there is a unique power of two which can be written as $\sum_{k=1}^{n-1} \pi(k) \pi(k+1)$ with $\pi \in S_{n}$ and $\pi(n)=n$.

Remark 4.8 Concerning part (i) of Conjecture 4.8 , when $n=4$ we may choose $(\pi(1), \ldots, \pi(4))=(1,3,2,4)$ so that

$$
\sum_{k=1}^{3} \pi(k) \pi(k+1)=1 \times 3+3 \times 2+2 \times 4=2^{4}+1
$$

For any $\pi \in S_{n}$, if for each $k=1, \ldots, n$ we let

$$
\pi^{\prime}(k)= \begin{cases}\pi\left(\pi^{-1}(k)+1\right) & \text { if } \pi^{-1}(k) \neq n \\ \pi(1) & \text { if } \pi^{-1}(k)=n\end{cases}
$$

then $\pi^{\prime} \in S_{n}$ and

$$
\pi(1) \pi(2)+\cdots+\pi(n-1) \pi(n)+\pi(n) \pi(1)=\sum_{k=1}^{n} k \pi^{\prime}(k) .
$$

By the Cauchy-Schwarz inequality (cf. [13, p. 178]), for any $\pi \in S_{n}$ we have

$$
\left(\sum_{k=1}^{n} k \pi(k)\right)^{2} \leq\left(\sum_{k=1}^{n} k^{2}\right)\left(\sum_{k=1}^{n} \pi(k)^{2}\right)
$$

and hence

$$
\sum_{k=1}^{n} k \pi(k) \leq \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

If we let $\sigma(k)=n+1-\pi(k)$ for all $k=1, \ldots, n$, then $\sigma \in S_{n}$ and

$$
\begin{aligned}
\sum_{k=1}^{n} k \pi(k) & =\sum_{k=1}^{n} k(n+1-\sigma(k))=(n+1) \sum_{k=1}^{n} k-\sum_{k=1}^{n} k \sigma(k) \\
& \geq \frac{n(n+1)^{2}}{2}-\frac{n(n+1)(2 n+1)}{6}=\frac{n(n+1)(n+2)}{6} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\{\sum_{k=1}^{n} k \pi(k): \pi \in S_{n}\right\} \subseteq T(n):=\left\{\frac{n(n+1)(n+2)}{6}, \ldots, \frac{n(n+1)(2 n+1)}{6}\right\} \tag{4.7}
\end{equation*}
$$

Actually equality in (4.7) holds when $n \neq 3$, which was first realized by M. Aleksevev (cf. the comments in [2]). Note that $|T(n)|=n\left(n^{2}-1\right) / 6+1$.

Inspired by the above analysis, here we pose the following conjecture in additive combinatorics.

Conjecture 4.9 Let $n \in \mathbb{Z}^{+}$and let F be a field with $p(F)>n+1$, where $p(F)=p$ if the characteristic of F is a prime p, and $p(F)=+\infty$ if the characteristic of F is
zero. Let A be any finite subset of F with $|A| \geq n+\delta_{n, 3}$, where $\delta_{n, 3}$ is 1 or 0 according as $n=3$ or not. Then, for the set

$$
\begin{equation*}
S(A):=\left\{\sum_{k=1}^{n} k a_{k}: a_{1}, \ldots, a_{n} \text { are distinct elements of } A\right\}, \tag{4.8}
\end{equation*}
$$

we have

$$
\begin{equation*}
|S(A)| \geq \min \left\{p(F), \quad(|A|-n) \frac{n(n+1)}{2}+\frac{n\left(n^{2}-1\right)}{6}+1\right\} . \tag{4.9}
\end{equation*}
$$

Remark 4.9 One may compare this conjecture with the author's conjectural linear extension of the Erdős-Heilbronn conjecture (cf. [19]). Perhaps, Conjecture 4.9 remains valid if we replace the field F by any finite additive group G with $|G|>1$ and use $p(G)$ (the least prime factor of $|G|)$ instead of $p(F)$.

Recall that the torsion subgroup of a group G is given by

$$
\operatorname{Tor}(G)=\{g \in G: g \text { is of finite order }\} .
$$

Conjecture 3.3(i) of the author [18] states that if A is an n-subset (with $|A|=n>2$) of an additive abelian group G of odd order then there is a numbering a_{1}, \ldots, a_{n} of all the elements of A such that $a_{1}+a_{2}, \ldots, a_{n-1}+a_{n}, a_{n}+a_{1}$ are pairwise distinct, this was verified by Yu-Xuan Ji (a student at Nanjing Univ.) for $|G|<30$ in 2020. Motivated by this and Theorem 1.5, we formulate the following conjecture.

Conjecture 4.10 Let G be an additive abelian group with $\operatorname{Tor}(G)$ cyclic or $|\operatorname{Tor}(G)|$ odd. For any finite subset A of G with $|A|=n>3$, there is a numbering a_{1}, \ldots, a_{n} of all the elements of A such that the n sums

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}, \quad a_{2}+a_{3}+a_{4}, \quad \ldots, \\
& \quad a_{n-2}+a_{n-1}+a_{n}, \quad a_{n-1}+a_{n}+a_{1}, \quad a_{n}+a_{1}+a_{2}
\end{aligned}
$$

are pairwise distinct.
Remark 4.10 (a) Conjecture 4.10 holds in the case $A=G=\mathbb{Z} / n \mathbb{Z}=\{\bar{a}=a+n \mathbb{Z}$: $a \in \mathbb{Z}\}$ with $n>3$ and $3 \nmid n$ since the natural list $\overline{0}, \overline{1}, \ldots, \overline{n-1}$ of the elements of $\mathbb{Z} / n \mathbb{Z}$ meets the requirement.
(b) In 2008 the author [14] proved that for any three n-subsets A, B, C of an additive abelian group G with $\operatorname{Tor}(G)$ cyclic, there is a numbering a_{1}, \ldots, a_{n} of the elements of A, a numbering b_{1}, \ldots, b_{n} of the elements of B and a numbering c_{1}, \ldots, c_{n} of the elements of C such that the n sums $a_{1}+b_{1}+c_{1}, \ldots, a_{n}+b_{n}+c_{n}$ are pairwise distinct.

References

1. Alon, N.: Combinatorial Nullstellensatz. Combin. Probab. Comput. 8, 7-29 (1999)
2. Boscole, J.: Sequence A126972 in OEIS (2007). Website: http://oeis.org/A126972
3. Bradley, P.: Prime number sums. Preprint arXiv:1809.01012 (2018)
4. Chen, J.-R.: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16, 157-176 (1973)
5. Cloitre, B.: Sequences A073112 and A073364 in OEIS (2002). http://oeis.org
6. Dasgupta, S., Károlyi, G., Serra, O., Szegedy, B.: Transversals of additive Latin squares. Israel J. Math. 126, 17-28 (2001)
7. Feng, T., Sun, Z.-W., Xiang, Q.: Exterior algebras and two conjectures on finite abelian groups. Israel J. Math. 182, 425-437 (2011)
8. Ge, F., SUN, Z.-W.: On a permutation problem for finite abelian groups. Electron. J. Combin. 24(1), \# P1.17, 1-6 (2017)
9. Guy, R.K.: Unsolved Problems in Number Theory, 3rd edn. Springer, New York (2004)
10. Han, G.-N.: On the existence of permutations conditioned by certain rational functions. Electron. Res. Arch. 28, 149-156 (2020)
11. Hecke, E.: Lectures on the Theory of Algebraic Numbers. Graduate Texts in Mathematics, vol. 77, pp. 108-116. Springer, New York (1981)
12. Levi, F.W.: Ordered groups. Proc. Indian Acad. Sci. Sect. A 16, 256-263 (1942)
13. Nathanson, M.B.: Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics, vol. 164. Springer, New York (1996)
14. Sun, Z.-W.: An additive theorem and restricted sumsets. Math. Res. Lett. 15, 1263-1276 (2008)
15. Sun, Z.-W.: Problems on combinatorial properties of primes. In: Kaneko, M., Kanemitsu, S., Liu, J. (eds.) Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., vol. 11, pp. 169-187. World Scientific, Singapore (2015)
16. Sun, Z.-W.: Sequences A321597, A321610, A321611, A321727, A321855, A322070, A322099, A322363 in OEIS (2018). http://oeis.org
17. Sun, Z.-W.: Permutations $\pi \in S_{n}$ with $\sum_{k=1}^{n} \frac{1}{k+\pi(k)}=1$, Question 315648 on Mathoverflow, Nov. 19 (2018). Website: https://mathoverflow.net/questions/315648
18. Sun, Z.-W.: Some new problems in additive combinatorics. Nanjing Univ. J. Math. Biquarterly 36, 134-155 (2019). http://maths.nju.edu.cn/~zwsun/196a.pdf
19. Sun, Z.-W., Zhao, L.-L.: Linear extension of the Erdős-Heilbronn conjecture. J. Combin. Theory Ser. A 119, 364-381 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

