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Abstract
In this paper, we study combinatorial aspects of permutations of {1, . . . , n} and related
topics. In particular, we prove that there is a unique permutation π of {1, . . . , n} such
that all the numbers k + π(k) (k = 1, . . . , n) are powers of two. We also show that
n | per[i j−1]1≤i, j≤n for any integer n > 2. We conjecture that if a group G contains
no element of order among 2, . . . , n + 1 then any A ⊆ G with |A| = n can be written
as {a1, . . . , an} with a1, a22 , . . . , a

n
n pairwise distinct. This conjecture is confirmed

when G is a torsion-free abelian group. We also prove that for any finite subset A of
a torsion-free abelian group G with |A| = n > 3, there is a numbering a1, . . . , an of
all the elements of A such that all the n sums

a1 + a2 + a3, a2 + a3 + a4, . . . , an−2 + an−1 + an,

an−1 + an + a1, an + a1 + a2

are pairwise distinct, and conjecture that this remains valid if G is cyclic.

Keywords Additive combinatorics · Permutations · Powers of two · Permanents ·
Groups

Mathematics Subject Classification Primary 05A05 · 11B75; Secondary 11B13 ·
11B39 · 20D60

1 Introduction

As usual, for n ∈ Z
+ = {1, 2, 3, . . .}, we let Sn denote the symmetric group of all the

permutation of {1, . . . , n}.
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Let A = [ai j ]1≤i, j≤n be a (0, 1)-matrix (i.e., ai j ∈ {0, 1} for all i, j = 1, . . . , n).
Then the permanent of A given by

per(A) =
∑

π∈Sn
a1π(1) · · · anπ(n)

is just the number of permutations π ∈ Sn with akπ(k) = 1 for all k = 1, . . . , n.
In 2002, Cloitre proposed the sequence [5, A073364] on OEISwhose nth term a(n)

is the number of permutationsπ ∈ Sn with k+π(k) prime for all k = 1, . . . , n. Clearly,
a(n) = per(A), where A is a matrix of order n whose (i, j)-entry (1 ≤ i, j ≤ n) is 1
or 0 according as i + j is prime or not. In 2018 Bradley [3] proved that a(n) > 0 for
all n ∈ Z

+.
Our first theorem is an extension of Bradley’s result.

Theorem 1.1 Let (a1, a2, . . .) be an integer sequence with a1 = 2 and ak < ak+1 ≤
2ak for all k = 1, 2, 3 . . .. Then, for any positive integer n, there exists a permutation
π ∈ Sn with π2 = In such that

{k + π(k) : k = 1, . . . , n} ⊆ {a1, a2, . . .}, (1.1)

where In is the identity of Sn with In(k) = k for all k = 1, . . . , n.

Recall that the Fiboncci numbers F0, F1, . . . and the Lucas numbers L0, L1, . . .

are defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . .),

and

L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1 (n = 1, 2, 3, . . .).

If we apply Theorem 1.1 with the sequence (a1, a2, . . .) equal to (F3, F4, . . .) or
(L0, L2, L3, . . .), then we immediately obtain the following consequence.

Corollary 1.1 Let n ∈ Z
+. Then there is a permutation σ ∈ Sn with σ 2 = In such

that all the sums k + σ(k) (k = 1, . . . , n) are Fibonacci numbers. Also, there is a
permutation τ ∈ Sn with τ 2 = In such that all the numbers k + τ(k) (k = 1, . . . , n)

are Lucas numbers.

Remark 1.1 Let f (n) be the number of permutations σ ∈ Sn such that all the sums
k + σ(k) (k = 1, . . . , n) are Fibonacci numbers. Via Mathematica we find that

( f (1), . . . , f (20)) = (1, 1, 1, 2, 1, 2, 4, 2, 1, 4, 4, 20, 4, 5, 1, 20, 24, 8, 96, 200).

For example, π = (2, 3)(4, 9)(5, 8)(6, 7) is the unique permutation in S9 such that all
the numbers k + π(k) (k = 1, . . . , 9) are Fibonacci numbers.
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Recall that those integers Tn = n(n + 1)/2 (n = 0, 1, 2, . . .) are called triangular
numbers. Note that Tn − Tn−1 = n ≤ Tn−1 for every n = 3, 4, . . .. Applying The-
orem 1.1 with (a1, a2, a3, . . .) = (2, T2, T3, . . .), we immediately get the following
corollary.

Corollary 1.2 For any n ∈ Z
+, there is a permutation π ∈ Sn with π2 = In such that

each of the sums k + π(k) (k = 1, . . . , n) is either 2 or a triangular number.

Remark 1.2 When n = 4, we may take π = (2, 4) to meet the requirement in Corol-
lary 1.2. Note that 1 + 1 = 3 = T2 and 2 + 4 = 3 + 3 = T3.

Our next theorem focuses on permutations involving powers of two.

Theorem 1.2 Let n be any positive integer. Then there is a unique permutationπn ∈ Sn
such that all the numbers k+πn(k) (k = 1, . . . , n) are powers of two. In other words,
for the n × n matrix A whose (i, j)-entry is 1 or 0 according as i + j is a power of
two or not, we have per(A) = 1.

Remark 1.3 Note that the number of 1’s in thematrix A given in Theorem1.2 coincides
with

�log2 n�+1∑

k=0

∑

1≤i, j≤n
i+ j=2k

1 =
�log2 n�∑

k=0

(2k − 1) +
n∑

i=2�log2 n�+1−n

1 = 2n − �log2 n� − 1.

Example 1.1 Here we list πn in Theorem 1.2 for n = 1, . . . , 11:

π1 = (1), π2 = (1), π3 = (1, 3), π4 = (1, 3), π5 = (3, 5), π6 = (2, 6)(3, 5),

π7 = (1, 7)(2, 6)(3, 5), π8 = (1, 7)(2, 6)(3, 5), π9 = (2, 6)(3, 5)(7, 9),

π10 = (3, 5)(6, 10)(7, 9), π11 = (1, 3)(5, 11)(6, 10)(7, 9).

Theorem 1.2 has the following consequence.

Corollary 1.3 For any n ∈ Z
+, there is a unique permutation π ∈ S2n such that

k + π(k) ∈ {2a − 1 : a ∈ Z
+} for all k = 1, . . . , 2n.

Now we turn to our results of new types.

Theorem 1.3 (i) Let p be any odd prime. Then there is no π ∈ Sp−1 such that all the
p − 1 numbers kπ(k) (k = 1, . . . , p − 1) are pairwise incongruent modulo p. Also,

per[i j−1]1≤i, j≤p−1 ≡ 0 (mod p). (1.2)

(ii)We have

per[i j−1]1≤i, j≤n ≡ 0 (mod n) for all n = 3, 4, 5, . . . . (1.3)
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Remark 1.4 In contrast with Theorem 1.3, it is well-known that

det[i j−1]1≤i, j≤n =
∏

1≤i< j≤n

( j − i) = 1!2! . . . (n − 1)!

and in particular

det[i j−1]1≤i, j≤p−1, det[i j−1]1≤i, j≤p �= 0 (mod p)

for any odd prime p.

In additive combinatorics, there are some interesting topics involving both permu-
tations and finite abelian groups, see, e.g., [7,8]. Belowwe present two novel theorems
on permutations involving groups.

Theorem 1.4 (i) Let a1, . . . , an be distinct elements of a torsion-free abelian group
G. Then there is a permutation π ∈ Sn such that all those kaπ(k) (k = 1, . . . , n) are
pairwise distinct.

(ii) Let a, b, c be three distinct elements of a group G such that none of them has
order 2 or 3. Then aσ(1) and bσ(2) are distinct for some σ ∈ S2. Also, aτ(1), bτ(2), cτ(3)

are pairwise distinct for some τ ∈ S3.

Remark 1.5 On the basis of this theorem, we will formulate a general conjecture for
groups in Sect. 4.

Theorem 1.5 For any n > 3 distinct elements a1, a2, . . . , an of a torsion-free abelian
group G, there is a permutation π ∈ Sn such that all the n sums

b1 + b2 + b3, b2 + b3 + b4, . . . ,

bn−2 + bn−1 + bn, bn−1 + bn + b1, bn + b1 + b2

are pairwise distinct, where bk = aπ(k) for k = 1, . . . , n.

Remark 1.6 ByRemark 1.2 of Sun [18], for any finite subset A of a torsion-free abelian
group with |A| = n > 2 wemaywrite A as {a1, . . . , an} such that a1+a2, . . . , an−1+
an, an + a1 are pairwise distinct.

We are going to prove Theorems 1.1–1.3 and Corollary 1.3 in the next section, and
show Theorems 1.4 and 1.5 in Sect. 3. We will pose some conjectures in Sect. 4.

2 Proofs of Theorems 1.1–1.3 and Corollary 1.3

Proof of Theorem 1.1 For convenience, we set a0 = 1 and A = {a1, a2, a3, . . .}. We
use induction on n ∈ Z

+ to show the desired result.
For n = 1, we take π(1) = 1 and note that 1 + π(1) = 2 = a1 ∈ A.
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Now let n ≥ 2 and assume the desired result for smaller values of n. Choose k ∈ N

with ak ≤ n < ak+1, and writem = ak+1 −n. Then 1 ≤ m ≤ 2ak −n ≤ 2n−n = n.
Let π( j) = ak+1 − j for j = m, . . . , n. Then

{π( j) : j = m, . . . , n} = {m, . . . , n},

and π(π( j)) = j for all j = m, . . . , n.

Case 1. m = 1.
In this case, π ∈ Sn and π2 = In .

Case 2. m = n.
In this case, ak+1 = 2n ≥ 2ak . On the other hand, ak+1 ≤ 2ak . So, ak+1 = 2ak

and ak = n. Let π( j) = n − j = ak − j for all 0 < j < n. Then π ∈ Sn and
j + π( j) ∈ {ak, ak+1} for all j = 1, . . . , n. Note that π2(k) = k for all k = 1, . . . , n.

Case 3. 1 < m < n.
In this case, by the induction hypothesis, for some σ ∈ Sm−1 with σ 2 = Im−1, we

have i +σ(i) ∈ A for all i = 1, . . . ,m − 1. Let π(i) = σ(i) for all i = 1, . . . ,m − 1.
Then π ∈ Sn and it meets our requirement. In view of the above, we have completed
the induction proof. 
�
Proof of Theorem 1.2 Applying Theorem 1.1 with ak = 2k for all k ∈ Z

+, we see that
for some π ∈ Sn with π2 = In all the numbers k + π(k) (k = 1, . . . , n) are powers
of two.

Below we use induction on n to prove that the number of π ∈ Sn with

{k + π(k) : k = 1, . . . , n} ⊆ {2a : a ∈ Z
+}

is exactly one.
The case n = 1 is trivial.
Now let n > 1 and assume that for each m = 1, . . . , n − 1 there is a unique

πm ∈ Sm such that all the numbers k + πm(k) (k = 1, . . . ,m) are powers of two.
Choose a ∈ Z

+ with 2a−1 ≤ n < 2a , and write m = 2a − n. Then 1 ≤ m ≤ n.
Suppose that π ∈ Sn and all the numbers k + π(k) (k = 1, . . . , n) are powers of

two. If 2a−1 ≤ k ≤ n, then

2a−1 < k + π(k) ≤ k + n ≤ 2n < 2a+1

and hence π(k) = 2a − k since k + π(k) is a power of two. Thus

{π(k) : k = 2a−1, . . . , n} = {m, . . . , 2a−1}.

If k ∈ {1, . . . , 2a−1 − 1} and 2a−1 < π(k) ≤ n, then

2a−1 < k + π(k) ≤ n + n < 2a+1,
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hence k + π(k) = 2a = m + n and thus m ≤ k < 2a−1. So we have

{π−1( j) : 2a−1 < j ≤ n} = {m, . . . , 2a−1 − 1}.

(Note that n − 2a−1 = 2a − m − 2a−1 = 2a−1 − m.)
By the above analysis, π(k) = 2a − k for all k = m, . . . , n, and

{π(k) : k = m, . . . , n} = {m, . . . , n}.

Thus π is uniquely determined if m = 1.
Now assume that m > 1. As π ∈ Sn , we must have

{π(k) : k = 1, . . . ,m − 1} = {1, . . . ,m − 1}.

Since k + π(k) is a power of two for every k = 1, . . . ,m − 1, by the induction
hypothesis we have π(k) = πm(k) for all k = 1, . . . ,m − 1. Thus π is indeed
uniquely determined.

In view of the above, the proof of Theorem 1.2 is now complete. 
�
Proof of Corollary 1.3 Clearly, π ∈ S2n and k + π(k) ∈ {2a − 1 : a ∈ Z

+} for
all k = 1, . . . , 2n, if and only if there are σ, τ ∈ Sn with π(2k) = 2σ(k) − 1 and
π(2k−1) = 2τ(k) for all k = 1, . . . , n such that k+σ(k), k+τ(k) ∈ {2a−1 : a ∈ Z

+}
for all k = 1, . . . , n. Thus we get the desired result by applying Theorem 1.2. 
�
Lemma 2.1 (Alon’s Combinatorial Nullstellensatz [1]) Let A1, . . . , An be finite sub-
sets of a field F with |Ai | > ki for i = 1, . . . , n where k1, . . . , kn ∈ {0, 1, 2, . . .}. If the
coefficient of the monomial xk11 · · · xknn in P(x1, . . . , xn) ∈ F[x1, . . . , xn] is nonzero
and k1 + · · · + kn is the total degree of P, then there are a1 ∈ A1, . . . , an ∈ An such
that P(a1, . . . , an) �= 0.

Lemma 2.2 Let a1, . . . , an be elements of a field F. Then the coefficient of
xn−1
1 . . . xn−1

n in the polynomial

∏

1≤i< j≤n

(x j − xi )(a j x j − ai xi ) ∈ F[x1, . . . , xn]

is (−1)n(n−1)/2per[a j−1
i ]1≤i, j≤n.

Proof This is easy. In fact,

∏

1≤i< j≤n

(x j − xi )(a j x j − ai xi )

= (−1)(
n
2) det[xn− j

i ]1≤i, j≤n × det[a j−1
i x j−1

i ]1≤i, j≤n

= (−1)(
n
2)

∑

σ∈Sn
sign(σ )

n∏

i=1

xn−σ(i)
i

∑

τ∈Sn
sign(τ )

n∏

i=1

aτ(i)−1
i xτ(i)−1

i .
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Therefore the coefficient of xn−1
1 . . . xn−1

n in this polynomial is

(−1)(
n
2)

∑

σ∈Sn
sign(σ )2

n∏

i=1

aσ(i)−1
i = (−1)n(n−1)/2per[a j−1

i ]1≤i, j≤n .

This concludes the proof. 
�

Remark 2.1 See [6] and [14, Lemma 2.2], for similar identities and arguments.

Proof of Theorem 1.3 (i) Let g be a primitive root modulo p. Then, there is a per-
mutation π ∈ Sp−1 such that the numbers kπ(k) (k = 1, . . . , p − 1) are pairwise
incongruent modulo p, if and only if there is a permutation ρ ∈ Sp−1 such that
gi+ρ(i) (i = 1, . . . , p − 1) are pairwise incongruent modulo p (i.e., the numbers
i + ρ(i) (i = 1, . . . , p − 1) are pairwise incongruent modulo p − 1).
Suppose that ρ ∈ Sp−1 and all the numbers i + ρ(i) (i = 1, . . . , p − 1) are pairwise
incongruent modulo p − 1. Then

p−1∑

i=1

(i + ρ(i)) ≡
p−1∑

j=1

j (mod p − 1),

and hence
∑p−1

i=1 i = p(p − 1)/2 ≡ 0 (mod p − 1) which is impossible. This
contradiction proves the first assertion in Theorem 1.3(i).

Now we turn to prove the second assertion in Theorem 1.3(i). Suppose that
per[i j−1]1≤i, j≤p−1 �= 0 (mod p). Then, byLemma2.2, the coefficient of x p−2

1 . . . x p−2
p−1

in the polynomial

∏

1≤i< j≤p−1

(x j − xi )( j x j − i xi )

is not congruent to zero modulo p. Applying Lemma 2.1 with F = Z/pZ and A =
{k + pZ : k = 1, . . . , p − 1}, we see that there is a permutation π ∈ Sp−1 such
that all those kπ(k) (k = 1, . . . , p − 1) are pairwise incongruent modulo p, which
contradicts the first assertion of Theorem 1.3(i) we have just proved.

(ii) Let n > 2 be an integer. Then

per[i j−1]1≤i, j≤n =
∑

σ∈Sn

n∏

k=1

kσ(k)−1

≡
∑

σ∈Sn
σ(n)=1

(n − 1)!
n−1∏

k=1

kσ(k)−2 = (n − 1)!
∑

τ∈Sn−1

n−1∏

k=1

kτ(k)−1

= (n − 1)! per[i j−1]1≤i, j≤n−1 (mod n).
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We want to prove that n | per[i j−1]1≤i, j≤n . This holds when n is an odd prime p,
because p | per[i j−1]1≤i, j≤p−1 by Theorem 1.3(i). For n = 4, we have

per[i j−1]1≤i, j≤4 ≡ 3!
∑

τ∈S3
1τ(1)−12τ(2)−13τ(3)−1

≡ 6
(
12−121−133−1 + 13−121−132−1

)
≡ 0 (mod 4).

Nowassume thatn > 4 is composite.By the above, it suffices to show that (n−1)! ≡
0 (mod n). Let p be the smallest prime divisor of n. Then n = pq for some integer
q ≥ p. If p < q, then n = pq divides (n − 1)!. If q = p, then p2 = n > 4 and hence
2p < p2, thus 2n = p(2p) divides (n − 1)!.

In view of the above, we have completed the proof of Theorem 1.3. 
�

3 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4 (i) The case n = 1 is trivial. Below we let n > 1. Note that the
subgroup H of G generated by a1, . . . , an is infinite, finitely generated and torsion-
free. Thus H is isomorphic to Z

r for some positive integer r . By algebraic number
theory (cf. [11]), we may take an algebraic number field K with [K : Q] = r and
hence H is isomorphic to the additive group OK of algebraic integers in K . Thus,
without any loss of generality, we may simply assume that G is the additive group C

of all complex numbers.
By Lemma 2.2, the coefficient of xn−1

1 . . . xn−1
n in the polynomial

P(x1, . . . , xn) :=
∏

1≤i< j≤n

(x j − xi )( j x j − i xi ) ∈ C[x1, . . . , xn]

is (−1)n(n−1)/2per[i j−1]1≤i, j≤n , which is nonzero since per[i j−1]1≤i, j≤n > 0.
Applying Lemma 2.1 we see that there are x1, . . . , xn ∈ A = {a1, . . . , an} with
P(x1, . . . , xn) �= 0. Thus, for some π ∈ Sn all the numbers kaσ(k) (k = 1, . . . , n) are
distinct. This ends the proof of part (i).

(ii) Let e be the identity of the groupG. Suppose that a = b2 and also a2 = b. Then
a = (a2)2 = a4, and hence a3 = e. As the order of a is not three, we have a = e and
hence b = a2 = e, which leads to a contradiction since a �= b. Therefore aσ(1) and
bσ(2) are distinct for some σ ∈ S2.

To prove the second assertion in Theorem 1.4(ii), we distinguish two cases.
Case 1. One of a, b, c is the square of another element among a, b, c.

Without loss of generality, we simply assume that a = b2. As a �= bwe have b �= e.
As b is not of order two, we also have a �= e. Note that b2 = a �= c. If b2 = a3, then
a = a3 which is impossible since the order of a is not two. If a3 �= c, then c, b2, a3

are pairwise distinct.
Now assume that a3 = c. As a is not of order three, we have b �= a2 and c �= e.

Note that a3 = c �= b and also a3 = c �= c2. If b �= c2, then b, c2, a3 are pairwise
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distinct. If b = c2, then a = b2 = c4 = (a3)4 and hence the order of a is 11, thus
a2 �= (a3)3 = c3 and hence b, a2, c3 are pairwise distinct.
Case 2. None of a, b, c is the square of another one among a, b, c.

Suppose that there is no τ ∈ S3 with aτ(1), bτ(2), cτ(3) pairwise distinct. Then
c3 ∈ {a, b2} ∩ {a2, b}. If c3 = a, then c3 �= b and hence a = c3 = a2, thus a = e = c
which leads to a contradiction. (Recall that none of a, b, c is of order 3.) Therefore,
c3 = b2. As c is not of order three, if b = e then we have c = e = b which is
impossible. So c3 = b2 �= b and hence b2 = c3 = a2. Similarly, a3 = b2 = c2. Thus
a3 = b2 = a2, hence a = e and b2 = a2 = e, which contradicts b �= a since b is not
of order two.

In view of the above, we have finished the proof of Theorem 1.4. 
�
Proof of Theorem 1.5 The subgroupofG generated bya1, . . . , an is a finitely generated
torsion-free abelian group. So we may simply assume that G = Z

r for some positive
integer r without any loss of generality. It is well known that there is a linear ordering
≤ on G = Z

r such that for any a, b, c ∈ G if a < b then −b < −a and a+ c < b+ c
(cf. [12]). For convenience, we suppose a1 < a2 < · · · < an without any loss of
generality.

If n = 4, then (b1, b2, b3, b4) = (a1, a2, a3, a4) meets the requirement since

a1 + a2 + a3 < a4 + a1 + a2 < a3 + a4 + a1 < a2 + a3 + a4.

Below we assume n ≥ 5.
Clearly

a1 + a2 + a3 < a2 + a3 + a4 < · · · < an−2 + an−1 + an .

For convenience we set

S := {ai−1 + ai + ai+1 : i = 2, . . . , n − 1},

and let min S and max S denote the least element and the largest element of S, respec-
tively. Note that

min S = a1 + a2 + a3 < an + a1 + a2 < an−1 + an + a1
< max S = an−2 + an−1 + an .

If {an + a1 + a2, an−1 + an + a1} ∩ S = ∅, then (b1, . . . , bn) = (a1, . . . , an) meets
the requirement. Obviously,

−an < −an−1 < · · · < −a2 < −a1
and (−a2) + (−a1) + (−an) = −(a1 + a2 + an).

So, it suffices to find a desired permutationb1, . . . , bn ofa1, . . . , an under the condition
an−1 + an + a1 ∈ S.
Case 1. n = 5.
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As a4 + a5 + a1 ∈ S, we have a4 + a5 + a1 = a2 + a3 + a4 and we may take
(b1, . . . , b5) = (a1, a2, a3, a5, a4) since

a1 + a2 + a3 < a4 + a1 + a2 < a2 + a3 + a4
= a5 + a4 + a1 < a2 + a3 + a5 < a3 + a5 + a4.

Case 2. n = 6.
As a5+a6+a1 ∈ S, the sum a5+a6+a1 is equal to a2+a3+a4 or a3+a4+a5. If

a5 +a6 +a1 = a2 +a3 +a4, then we may take (b1, . . . , b6) = (a1, a2, a5, a3, a4, a6)
since

a1 + a2 + a5 < a6 + a1 + a2 < a4 + a6 + a1 < a5 + a6 + a1 = a2 + a3 + a4
< a2 + a5 + a3 < a5 + a3 + a4 < a3 + a4 + a6.

If a5+a6+a1 = a3+a4+a5, then a6+a1 = a3+a4 and wemay take (b1, . . . , b6) =
(a1, a2, a3, a4, a6, a5) since

a1 + a2 + a3 <a5 + a1 + a2 < a6 + a1 + a2 = a2 + a3 + a4
<a3 + a4 + a5 = a6 + a5 + a1 < a3 + a4 + a6 < a4 + a6 + a5.

Case 3. n = 7.
As a6 + a7 + a1 ∈ S, the sum a6 + a7 + a1 is equal to a2 + a3 + a4 or a3 + a4 + a5

or a4 + a5 + a6. If a6 + a7 + a1 = a4 + a5 + a6, then a7 + a1 = a4 + a5 and we may
take (b1, . . . , b7) = (a2, a1, a4, a5, a3, a6, a7) since

a2 + a1 + a4 < a1 + a4 + a5 = a1 + a1 + a7 < a7 + a2 + a1
< a7 + a1 + a3 = a4 + a5 + a3 < a5 + a3 + a6
< a4 + a5 + a6 = a1 + a6 + a7 < a2 + a6 + a7 < a3 + a6 + a7.

If a6 + a7 + a1 = a2 + a3 + a4, then we may take (b1, . . . , b7) = (a1, a2, a3, a5, a4,
a6, a7) since

a1 + a2 + a3 < a7 + a1 + a2 < a5 + a7 + a1 < a6 + a7 + a1 = a2 + a3 + a4
< a2 + a3 + a5 < a3 + a5 + a4 < a5 + a4 + a6 < a4 + a6 + a7.

If a6+a7+a1 = a3+a4+a5 and a5+a6+a1 �= a2+a3+a4, then a6+a1 < a3+a4
and we may take (b1, . . . , b7) = (a1, a2, a3, a4, a7, a5, a6) since

a1 + a2 + a3 < a6 + a1 + a2 < min{a5 + a6 + a1, a2 + a3 + a4}
< max{a5 + a6 + a1, a2 + a3 + a4} < a1 + a6 + a7 = a3 + a4 + a5
< a3 + a4 + a7 < a4 + a7 + a5 < a7 + a5 + a6.
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If a6+a7+a1 = a3+a4+a5 and a5+a6+a1 = a2+a3+a4, then a7+a1 < a3+a4
and we may take (b1, . . . , b7) = (a1, a2, a3, a4, a6, a5, a7) since

a1 + a2 + a3 < a7 + a1 + a2 < a5 + a6 + a1 = a2 + a3 + a4
< a5 + a7 + a1 < a3 + a4 + a5 = a6 + a7 + a1
< a3 + a4 + a6 < a4 + a6 + a5 < a6 + a5 + a7.

Case 4. n > 7 and an + a1 + a2 /∈ S.
In this case, there is a unique 2 < i < n−1 with ai−1+ai +ai+1 = an−1+an+a1.

If i < n − 3, then we may take

(b1, . . . , bn) = (a1, . . . , ai−2, ai−1, ai , ai+2, ai+1, ai+3, . . . , an)

because

ai−2 + ai−1 + ai < ai−1 + ai + ai+1 = an−1 + an + a1 < ai−1 + ai + ai+2

< ai + ai+2 + ai+1 < ai+2 + ai+1 + ai+3

< ai+1 + ai+3 + ai+4 < · · · < an−2 + an−1 + an .

When i ∈ {n−2, n−3}, we have i ≥ n−3 > 4, and hence in the case a1+a2+an �=
ai−4 + ai−3 + ai−1, we may take

(b1, . . . , bn) = (a1, . . . , ai−4, ai−3, ai−1, ai−2, ai , ai+1, ai+2, . . . , an)

because

ai−4 + ai−3 + ai−2 < ai−4 + ai−3 + ai−1 < ai−3 + ai−1 + ai−2

< ai−1 + ai−2 + ai < ai−2 + ai + ai+1

< ai−1 + ai + ai+1 = an−1 + an + a1
< ai + ai+1 + ai+2 < · · · < an−2 + an−1 + an

and

an + a1 + a2 < (ai−2 + an−1 − ai+1) + an + a1
= ai−2 − ai+1 + (ai−1 + ai + ai+1) = ai−1 + ai−2 + ai .

If i ∈ {n − 2, n − 3} and a1 + a2 + an = ai−4 + ai−3 + ai−1, then we may take

(b1, . . . , bn) = (a1, . . . , ai−4, ai−3, ai , ai−2, ai−1, ai+1, ai+2, . . . , an)
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because

an + a1 + a2 = ai−4 + ai−3 + ai−1

< ai−4 + ai−3 + ai < ai−3 + ai + ai−2 < ai + ai−2 + ai−1

< ai−2 + ai−1 + ai+1 < ai−1 + ai + ai+1 = an−1 + an + a1
< ai−1 + ai+1 + ai+2 < · · · < an−2 + an−1 + an .

Case 5. n > 7 and an + a1 + a2 ∈ S.
In this case, for some 2 < j < i ≤ n − 2, we have

an−1 + an + a1 = ai−1 + ai + ai+1 > a j−1 + a j + a j+1 = an + a1 + a2.

If j + 1 = i , then

an−1 − a2 = (an−1 + an + a1) − (an + a1 + a2)

= ai−1 + ai + ai+1 − (ai + ai−1 + ai−2) = ai+1 − ai−2

which is impossible since i ≥ 4 and n > 6.
If i − j > 5, then

(b1, . . . , bn) = (a1, . . . , a j−1, a j , a j+2, a j+1, a j+3, . . . ,

ai−3, ai−1, ai−2, ai , ai+1, . . . , an)

meets the requirement since

a j−1 + a j + a j+1 = an + a1 + a2 < a j−1 + a j + a j+2

< a j + a j+2 + a j+1 < a j+2 + a j+1 + a j+3

< · · · < ai−3 + ai−1 + ai−2 < ai−1 + ai−2 + ai
< ai−2 + ai + ai+1 < ai−1 + ai + ai+1 = an−1 + an + a1
< ai + ai+1 + ai+2 < · · · < an−2 + an−1 + an .

If i − j = 5, then j + 4 = i − 1 and

(b1, . . . , bn) = (a1, . . . , a j−1, a j , a j+2, a j+1, ai−1, ai−2, ai , ai+1, . . . , an)

meets the requirement. If i − j = 4, then

(b1, . . . , bn) = (a1, . . . , a j−1, a j , a j+2, a j+3, a j+1, ai , ai+1, . . . , an)
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meets the requirement since

a j−1 + a j + a j+1 = an + a1 + a2
< a j−1 + a j + a j+2 < a j + a j+2 + a j+3

< a j+2 + a j+3 + a j+1 < a j+3 + a j+1 + ai
< a j+1 + ai + ai+1 < ai−1 + ai + ai+1 = an−1 + an + a1
< ai + ai+1 + ai+2 < · · · < an−2 + an−1 + an .

If i − j = 3, then

(b1, . . . , bn) = (a1, . . . , a j−1, a j , a j+2, a j+1, ai , ai+1, . . . , an)

meets the requirement since

a j−1 + a j + a j+1 = an + a1 + a2
< a j−1 + a j + a j+2 < a j + a j+2 + a j+1

< a j+2 + a j+1 + ai = ai−1 + ai−2 + ai < ai−2 + ai + ai+1

< ai−1 + ai + ai+1 = an−1 + an + a1
< ai + ai+1 + ai+2 < · · · < an−2 + an−1 + an .

If j > 4 and i = j + 2, then

(b1, . . . , bn) = (a1, . . . , a j−3, a j−1, a j−2, a j+1, a j , ai , ai+1, ai+2, . . . , an)

meets the requirement since

a j−4 + a j−3 + a j−1 < a j−3 + a j−1 + a j−2 < a j−1 + a j−2 + a j+1

< a j−2 + a j+1 + a j < a j−1 + a j + a j+1 = an + a1 + a2
< a j+1 + a j + ai < a j + ai + ai+1

< ai−1 + ai + ai+1 = an−1 + an + a1 < ai + ai+1 + ai+2.

If i = j + 2 ≤ n − 4, then

(b1, . . . , bn) = (a1, . . . , a j−2, a j−1, a j , ai , ai−1, ai+2, ai+1, ai+3, ai+4, . . . , an)

meets the requirement since

a j−2 + a j−1 + a j < a j−1 + a j + a j+1 = an + a1 + a2
< a j−1 + a j + ai < a j + ai + ai−1

< ai−1 + ai + ai+1 = an−1 + an + a1
< ai + ai−1 + ai+2 < ai−1 + ai+2 + ai+1

< ai+2 + ai+1 + ai+3 < ai+1 + ai+3 + ai+4

< · · · < an−2 + an−1 + an .
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If i ≥ n − 3, j ≤ 4 and i − j = 2, then 2 = i − j ≥ n − 3− 4 and hence n ∈ {8, 9}.
For n = 8, we need to consider the case i = 6 and j = 4. As a8 + a1 + a2 = a3 +

a4+a5 and a7+a8+a1 = a5+a6+a7, we have a8+a1 = a5+a6 = a3+a4+a5−a2.
If 2a5 �= a4 + a7, then a5 + a8 + a1 = 2a5 + a6 �= a4 + a6 + a7 and hence we may
take

(b1, . . . , b8) = (a1, a2, a3, a4, a6, a7, a5, a8)

since

a1 + a2 + a3 < a2 + a3 + a4 < a3 + a4 + a5 = a8 + a1 + a2 < a3 + a4 + a6

< min{a4 + a6 + a7, a5 + a8 + a1} < max{a4 + a6 + a7, a5 + a8 + a1}
< a6 + a7 + a5 = a7 + a8 + a1 < a7 + a5 + a8.

If 2a5 = a4 + a7, then a6 + a8 + a1 = a5 + 2a6 > a4 + a5 + a7 and we may take

(b1, . . . , b8) = (a1, a2, a3, a4, a5, a7, a8, a6)

since

a1 + a2 + a3 < a1 + a3 + a4 = a1 + a2 + a6 < a2 + a3 + a4
< a3 + a4 + a5 = a8 + a1 + a2 < a4 + a5 + a7 < a6 + a8 + a1
< a5 + a7 + a8 < a7 + a8 + a6.

When n = 8, i = 5 and j = 3, it suffices to apply the result for i = 6 and j = 4 to
the sequence

a′
1 = −a8 < a′

2 = −a7 < a′
3 = −a6 < a′

4 = −a5
< a′

5 = −a4 < a′
6 = −a3 < a′

7 = −a2 < a′
8 = −a1

since a′
7 + a′

8 + a′
1 = −(a1 + a2 + a8) = −(a2 + a3 + a4) = a′

5 + a′
6 + a′

7 and
a′
8 + a′

1 + a′
2 = −(a1 + a7 + a8) = −(a4 + a5 + a6) = a′

3 + a′
4 + a′

5.
Now it remains to consider the last case where n = 9, i = 6 and j = 4. As

a3+a4+a5 = a9+a1+a2 and a5+a6+a7 = a8+a9+a1, we have a3+a4 < a9+a1
and hence a3+a4+a6 < a3+a4+a7 < a7+a9+a1. If a7+a9+a1 = a4+a5+a6,
then

a8 − a7 = (a8 + a9 + a1) − (a7 + a9 + a1)

= a5 + a6 + a7 − (a4 + a5 + a6) = a7 − a4.

When 2a7 �= a8 + a4, we have a7 + a9 + a1 �= a4 + a5 + a6 and hence we may take

(b1, . . . , b9) = (a1, a2, a3, a4, a6, a5, a8, a7, a9)
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since

a1 + a2 + a3 < a2 + a3 + a4 < a3 + a4 + a5 = a9 + a1 + a2 < a3 + a4 + a6

< min{a4 + a5 + a6, a7 + a9 + a1} < max{a4 + a5 + a6, a7 + a9 + a1}
< a6 + a5 + a7 = a8 + a9 + a1 < a6 + a5 + a8

< a5 + a8 + a7 < a8 + a7 + a9.

If 2a7 = a8 + a4, then a5 + a6 + a7 < 2a7 + a6 = a4 + a6 + a8 and hence we may
take

(b1, . . . , b9) = (a1, a2, a3, a4, a6, a8, a5, a7, a9)

since

a1 + a2 + a3 < a2 + a3 + a4 < a3 + a4 + a5 = a9 + a1 + a2 < a3 + a4 + a6
< a9 + a1 + a6 < a7 + a9 + a1 < a8 + a9 + a1 = a5 + a6 + a7
< a4 + a6 + a8 < a6 + a8 + a5 < a8 + a5 + a7 < a5 + a7 + a9.

In view of the above, we have completed the proof of Theorem 1.5. 
�

4 Some conjectures

Motivated by Theorems 1.3(i) and 1.4, we pose the following conjecture for finite
groups.

Conjecture 4.1 Let n be a positive integer, and let G be a group containing no element
of order among 2, . . . , n + 1. Then, for any A ⊆ G with |A| = n, we may write
A = {a1, . . . , an} with a1, a22 , . . . , ann pairwise distinct.

Remark 4.1 (a) Theorem 1.4 shows that this conjecture holds when n ≤ 3 or G is a
torsion-free abelian group.

(b) For n = 4, 5, 6, 7, 8, 9 we have verified the conjecture for cyclic groups G =
Z/mZ with |G| = m not exceeding 100, 100, 70, 60, 30, 30 respectively.

(c) If G is a finite group with |G| > 1, then the least order of a non-identity element
of G is p(G), the smallest prime divisor of |G|.
Inspired by Theorem 1.3, we formulate the following conjecture.

Conjecture 4.2 Let n > 1 be an integer with n �≡ 2 (mod 4).

(i) We have

per[i j−1]1≤i, j≤n−1 ≡ 0 (mod n). (4.1)

(ii) If n ≡ 1 (mod 3), then

per[i j−1]1≤i, j≤n−1 ≡ 0 (mod n2). (4.2)
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Remark 4.2 We have checked this conjecture via computing per[i j−1]1≤i, j≤n−1 mod-
ulo n2 for n ≤ 17. The sequence an = per[i j−1]1≤i, j≤n (n = 1, 2, 3, . . .) is available
from [16, A322363].

Conjecture 4.3 (i) For any n ∈ Z
+, there is a permutation σn ∈ Sn such that kσn(k)+

1 is prime for every k = 1, . . . , n.
(ii) For any integer n > 2, there is a permutation τn ∈ Sn such that kτn(k) − 1 is

prime for every k = 1, . . . , n.

Remark 4.3 See [16, A321597] for related data and examples.

Conjecture 4.4 (i) For each n ∈ Z
+, there is a permutation πn of {1, . . . , n} such that

k2 + kπn(k) + πn(k)2 is prime for every k = 1, . . . , n.
(ii) For any positive integer n �= 7, there is a permutation πn of {1, . . . , n} such that

k2 + πn(k)2 is prime for every k = 1, . . . , n.

Remark 4.4 See [16, A321610] for related data and examples.

As usual, for k = 1, 2, 3, . . . we let pk denote the k-th prime.

Conjecture 4.5 For any n ∈ Z
+, there is a permutationπ ∈ Sn such that pk+ pπ(k)+1

is prime for every k = 1, . . . , n.

Remark 4.5 See [16, A321727] for related data and examples.

In 1973 Chen [4] proved that there are infinitelymany primes pwith p+2 a product
of at most two primes; nowadays such primes p are called Chen primes.

Conjecture 4.6 Let n ∈ Z
+. Then, there is an even permutation σ ∈ Sn with pk pσ(k)−

2 prime for all k = 1, . . . , n. If n > 2, then there is an odd permutation τ ∈ Sn with
pk pτ(k) − 2 prime for all k = 1, . . . , n.

Remark 4.6 See [16, A321855] for related data and examples. If we let b(n) denote
the number of even permutations σ ∈ Sn with pk pσ(k) −2 prime for all k = 1, . . . , n,
then

(b(1), . . . , b(11)) = (1, 1, 1, 1, 3, 6, 1, 1, 33, 125, 226).

Conjecture 2.17(ii) of Sun [15] implies that for any odd integer n > 1 there is a prime
p ≤ n such that pn − 2 is prime.

In 2002, Cloitre [5, A073112] created the sequence A073112 on OEIS whose n-th
term is the number of permutations π ∈ Sn with

∑n
k=1

1
k+π(k) ∈ Z. Recently Sun [17]

conjectured that for any integer n > 5 there is a permutation π ∈ Sn satisfying

n∑

k=1

1

k + π(k)
= 1,

and this was later confirmed by the user Zhao Shen at Mathoverflow via clever induc-
tion arguments.
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In 1982 Filz (cf. [9, pp. 160–162]) conjectured that for any n = 2, 4, 6, . . . there is
a circular permutation (i1, . . . , in) of 1, . . . , n such that all the n adjacent sums

i1 + i2, i2 + i3, . . . , in−1 + in, in + i1

are prime.
Motivated by this, we pose the following conjecture.

Conjecture 4.7 (i) For any integer n > 6, there is a permutation π ∈ Sn such that

n−1∑

k=1

1

π(k) + π(k + 1)
= 1. (4.3)

Also, for any integer n > 7, there is a permutation π ∈ Sn such that

1

π(1) + π(2)
+ 1

π(2) + π(3)
+ · · · + 1

π(n − 1) + π(n)
+ 1

π(n) + π(1)
= 1.

(4.4)

(ii) For any integer n > 7, there is a permutation π ∈ Sn such that

n−1∑

k=1

1

π(k)2 − π(k + 1)2
= 0. (4.5)

Remark 4.7 See [16, A322070 and A322099] for related data and examples. For the
latter assertion in Conjecture 4.7(i), the equality (4.4) with n = 8 holds if we take
(π(1), . . . , π(8)) = (6, 1, 5, 2, 4, 3, 7, 8). In a previous version of this paper posted
to arXiv, the author also conjectured that for any integer n > 5 there is a permutation
π ∈ Sn with

∑n−1
k=1

1
π(k)π(k+1) = 1; this, together with two other conjectures of the

author, was confirmed by Han [10].

Conjecture 4.8 (i) For any integer n > 1, there is a permutation π ∈ Sn such that

∑

0<k<n

π(k)π(k + 1) ∈ {2m + 1 : m = 0, 1, 2, . . .}. (4.6)

(ii) For any integer n > 4, there is a unique power of two which can be written as∑n−1
k=1 π(k)π(k + 1) with π ∈ Sn and π(n) = n.

Remark 4.8 Concerning part (i) of Conjecture 4.8, when n = 4 we may choose
(π(1), . . . , π(4)) = (1, 3, 2, 4) so that

3∑

k=1

π(k)π(k + 1) = 1 × 3 + 3 × 2 + 2 × 4 = 24 + 1.
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For any π ∈ Sn , if for each k = 1, . . . , n we let

π ′(k) =
{

π(π−1(k) + 1) if π−1(k) �= n,

π(1) if π−1(k) = n,

then π ′ ∈ Sn and

π(1)π(2) + · · · + π(n − 1)π(n) + π(n)π(1) =
n∑

k=1

kπ ′(k).

By the Cauchy–Schwarz inequality (cf. [13, p. 178]), for any π ∈ Sn we have

( n∑

k=1

kπ(k)

)2

≤
( n∑

k=1

k2
)( n∑

k=1

π(k)2
)

and hence

n∑

k=1

kπ(k) ≤
n∑

k=1

k2 = n(n + 1)(2n + 1)

6
.

If we let σ(k) = n + 1 − π(k) for all k = 1, . . . , n, then σ ∈ Sn and

n∑

k=1

kπ(k) =
n∑

k=1

k(n + 1 − σ(k)) = (n + 1)
n∑

k=1

k −
n∑

k=1

kσ(k)

≥ n(n + 1)2

2
− n(n + 1)(2n + 1)

6
= n(n + 1)(n + 2)

6
.

Thus

{ n∑

k=1

kπ(k) : π ∈ Sn

}
⊆ T (n) :=

{
n(n + 1)(n + 2)

6
, . . . ,

n(n + 1)(2n + 1)

6

}
.

(4.7)

Actually equality in (4.7) holds when n �= 3, which was first realized byM. Aleksevev
(cf. the comments in [2]). Note that |T (n)| = n(n2 − 1)/6 + 1.

Inspired by the above analysis, here we pose the following conjecture in additive
combinatorics.

Conjecture 4.9 Let n ∈ Z
+ and let F be a field with p(F) > n + 1, where p(F) = p

if the characteristic of F is a prime p, and p(F) = +∞ if the characteristic of F is
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zero. Let A be any finite subset of F with |A| ≥ n+δn,3, where δn,3 is 1 or 0 according
as n = 3 or not. Then, for the set

S(A) :=
{ n∑

k=1

kak : a1, . . . , an are distinct elements of A

}
, (4.8)

we have

|S(A)| ≥ min

{
p(F), (|A| − n)

n(n + 1)

2
+ n(n2 − 1)

6
+ 1

}
. (4.9)

Remark 4.9 One may compare this conjecture with the author’s conjectural linear
extension of the Erdős–Heilbronn conjecture (cf. [19]). Perhaps, Conjecture 4.9
remains valid if we replace the field F by any finite additive group G with |G| > 1
and use p(G) (the least prime factor of |G|) instead of p(F).

Recall that the torsion subgroup of a group G is given by

Tor(G) = {g ∈ G : g is of finite order}.

Conjecture 3.3(i) of the author [18] states that if A is an n-subset (with |A| = n > 2)
of an additive abelian group G of odd order then there is a numbering a1, . . . , an of
all the elements of A such that a1 + a2, . . . , an−1 + an, an + a1 are pairwise distinct,
this was verified by Yu-Xuan Ji (a student at Nanjing Univ.) for |G| < 30 in 2020.
Motivated by this and Theorem 1.5, we formulate the following conjecture.

Conjecture 4.10 Let G be an additive abelian group with Tor(G) cyclic or |Tor(G)|
odd. For any finite subset A of G with |A| = n > 3, there is a numbering a1, . . . , an
of all the elements of A such that the n sums

a1 + a2 + a3, a2 + a3 + a4, . . . ,

an−2 + an−1 + an, an−1 + an + a1, an + a1 + a2

are pairwise distinct.

Remark 4.10 (a) Conjecture 4.10 holds in the case A = G = Z/nZ = {ā = a + nZ :
a ∈ Z} with n > 3 and 3 � n since the natural list 0̄, 1̄, . . . , n − 1 of the elements
of Z/nZ meets the requirement.

(b) In 2008 the author [14] proved that for any three n-subsets A, B,C of an addi-
tive abelian group G with Tor(G) cyclic, there is a numbering a1, . . . , an of the
elements of A, a numbering b1, . . . , bn of the elements of B and a numbering
c1, . . . , cn of the elements ofC such that the n sums a1+b1+c1, . . . , an +bn +cn
are pairwise distinct.
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