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Abstract
Let X be a Q-factorial complete toric variety over an algebraic closed field of charac-
teristic 0. There is a canonical injection of the Picard group Pic(X) in the group Cl(X)

of classes of Weil divisors. These two groups are finitely generated abelian groups;
while the first one is a free group, the second one may have torsion. We investigate
algebraic and geometrical conditions under which the image of Pic(X) in Cl(X) is
contained in a free part of the latter group.

Keywords Q-factorial complete toric varieties · Cartier and Weil divisors · Pure
modules · Free and torsion subgroups · Localization · Completion of fans

Mathematics Subject Classification 14M25 · 20K15 · 20K10

1 Introduction

Let X be an irreducible and normal algebraic variety over an algebraic closed field
k of characteristic 0. Then, the group H0(X ,K∗/O∗) of Cartier divisors of X can
be represented as the subgroup of locally principal divisors of the group Div(X) of
Weil divisors [5, Rem. II.6.11.2]. Quotienting both these groups by their subgroup
of principal divisors one realizes the group CaCl(X) of classes of Cartier divisors as
a subgroup of the group Cl(X) of classes of Weil divisors. In addition it turns out
a canonical isomorphism between CaCl(X) and the Picard group Pic(X) of classes
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of isomorphic line bundles on X [5, Propositions II.6.13,15], so giving a canonical
injection

Pic(X) Cl(X) . (1)

For this reason, in this paper wewill not distinguish between linear equivalence classes
of Cartier divisors and isomorphism classes of line bundles, so identifying CaCl(X) =
Pic(X).

Assume now that Cl(X) is finitely generated. It is well known that a finitely gen-
erated abelian group decomposes (noncanonically) in a direct sum of a free part and
its torsion subgroup. Both Pic(X) and Cl(X) may have nontrivial torsion, and clearly,
(1) induces an injection Tors(Pic(X)) ↪→ Tors(Cl(X)). Then, the following natural
question arises:

(*) under which conditions on X there exist free parts FC and FW of Pic(X) and
Cl(X), respectively (see Definition 1), such that the injection (1) induces an injec-
tion

FC FW ? (2)

One should expect some geometric condition on X answering to question (*), but we
could not find anything, in the current literature.Motivated by algebraic considerations
(see Proposition 2) we call pure a normal, irreducible algebraic variety X such that
Cl(X) is finitely generated and there exist free parts FC and FW positively answering
problem (*) (see Definition 3). On the contrary if for each choice of free parts FC and
FW the injection (1) does not induce any injection (2), then X is called impure. Obvious
examples of pure varieties are given by those varieties X whose class group Cl(X)

is finitely generated and free, and by smooth varieties admitting a finitely generated
class group. Examples of impure varieties are in general more involved: Some of them
are given in Sect. 3.3.

In the present paper we will consider the easier case of a Q-factorial complete toric
variety X , essentially for three reasons:

(a) Cl(X) is a finitely generated abelian group (see, e.g., [2, Thm. 4.1.3])
(b) Pic(X) is free, i.e., Tors(Pic(X)) = 0 (see, e.g., [2, Prop. 4.2.5])
(c) locally principal divisors can be easily described by means of principal divisors

on affine open subsets of X(�) associated with maximal cones of the fan �.

Conditions (a) and (b) translate problem (*) in the following

(**) under which conditions on X there exists a free part F of Cl(X) such that (1)
induces an injection Pic(X) ↪→ F ?

Themain result of the present paper is a sufficient condition for aQ-factorial complete
toric variety to be a pure variety. This is given by Theorem 2 and can be geometrically
summarized as follows:
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Theorem 1 [see Theorem 2 and Remark 2] Let X(�) be a Q-factorial complete toric
variety of dimension n. Then, it admits a canonical covering Y (̂�) � X(�), unra-
mified in codimension 1, such that the class group Cl(Y ) is free (this follows by [8,
Thm. 2.2]). Both X and Y are orbifolds [2, Thm. 3.1.19 (b)]; let

{Uσ̂ }σ̂∈̂�(n)

be the collection of affine charts given by the maximal cones and covering Y . Calling
mult(̂σ ) the maximum order of a quotient singularity in the affine chart Uσ̂ (i.e., the
multiplicity of the cone σ̂ ∈ ̂�(n), see Definition 4), X is a pure variety if m� :=
gcd{mult(̂σ ) | σ̂ ∈ ̂�(n)} is coprime with the order of the Galois group of the covering
Y → X.

This is not a necessary condition: Example 2 gives a counterexample.
Section 3.3 is entirely devoted to give nontrivial examples of pure and impure

varieties. A big class of nontrivial examples of pure varieties is exhibited in Sect. 3.4:
Namely, it is given by

– all Q-factorial complete toric varieties whose small Q-factorial modifications
(sQm) are actually isomorphisms.

Here sQm of X means a birational map f : X ��� Y such that f is an isomorphism in
codimension 1 and Y is still a complete Q-factorial toric variety. By the combinatorial
point of view the previous geometric property translates in requiring that there is
a unique simplicial and complete fan � admitting 1-skeleton given by �(1). Our
proof that those varieties are pure (see Proposition 5) passes through showing that
every maximal simplicial cone generated by rays in �(1) and not containing any
further element of �(1) other than its generators (we call minimal such a maximal
simplicial cone) is actually a cone of a complete and simplicial fan. This fact produces a
completion procedure of fans looking to be of some interest by itself (see Lemma4 and
Sect. 3.4.1), when compared with standard completion procedures [3, Thm. III.2.8],
[4,6].

Further results of the present paper are given by:

– algebraic considerations given in Sect. 2; apart from the definition of a pure sub-
module given in Definition 2 and some consequences appearing in Proposition 2,
the rest of this section consists of original considerations, as far as we know;

– a characterization of Pic(X) as a subgroup of Cl(X), when X is a pure,Q-factorial,
complete, toric variety: In [7, Thm. 2.9.2] we gave a similar characterization in
the case of a poly weighted space (PWS: see Notation 3.1), that is, when Cl(X) is
free; a first generalization was given in [9, Thm. 3.2 (3)] which is here improved
in Sect. 4 and in particular by Theorem 3;

– an example of a four-dimensional simplicial fan whose completions necessarily
require the addition of some new rays (see Example 3): Ewald, in his book [3],
already announced the existence of examples of this kind (see the Appendix to
Chapter III in [3]), but wewere not able to recover it.We then believe that Example
3 may fill up a lack in the literature on these topics.
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This paper is structured as follows: The first section gives all needed algebraic
ingredients. Section 3 is devoted to state and prove themain result, given byTheorem2,
and produce examples of pure and impure varieties in the toric setup (see Sects. 3.3 and
3.4). Section 4 gives the above-mentioned characterization of Pic(X) as a subgroup
of Cl(X) when X is a pure, Q-factorial, complete, toric variety.

2 Algebraic considerations

Let A be a PID,M be a finitely generated A-module of rank r , and T = TorsA(M).

Definition 1 A free part of M is a free submodule L ⊆ M such that M = L ⊕ T .

It is well known that a free part ofM always exists.
Let H ⊆ M be a free submodule of rank h. In general it is not true that H is contained
in a free part of M. For example, let A = Z,M = Z ⊕ Z/2Z and let H = 〈(2, 1)〉.
Proposition 1 There exist elements a1, . . . , ah ∈ A such that a1|a2| . . . |ah satisfying
the following property: every free part L ofM has a basis f1, . . . , fr such that a1f1 +
t1, . . . , ahfh + th is a basis of H for suitable t1, . . . , th ∈ T .

Proof Let π : M → M/T the quotient map. The group M/T is free of rank r . The
restriction of π to H is injective, since H is free and ker(π) = T . Therefore, π(H)

is a subgroup of rank h of the free group M/T . By the elementary divisor theorem,
there exist a basis f̃1, . . . , f̃r and element a1, . . . , ah ∈ A such that a1|a2| . . . |ah
and a1 f̃1, . . . , ah f̃h is a basis of π(H). Let h1, . . . ,hh be the basis of H such that
π(hi ) = ai f̃i .
Now let L be a free part ofM. The decompositionM = L ⊕ T gives rise to a section
s : M/T → L , i.e., π ◦ s = id. By putting fi = s(f̃i ) we get a basis f1, . . . , fr of L
such that a1f1, . . . , ahfh is a basis of s(π(H)). For i = 1, . . . , h put ti = hi − ai fi .
Then, ti ∈ ker(π) = T , so that the claim is proved. 
�
Remark 1 When A = Z, the objectswhose existence is establishedbyProposition1 are
effectively computable. In fact, assume thatM = Zr⊕T , where T is a finite group, and
that g1+s1, . . . , gh+sh is a basis of H , with g1, ..., gh ∈ Zr and s1, . . . , sh ∈ T . LetG
be the h × r matrix having rows g1, ..., gh . It is possible to compute the Smith normal
form S of G and matricesU ∈ GLh(Z), V ∈ GLr (Z) such thatUGV = S. Then, the
rows of V−1 give the basis f1, . . . , fr , the diagonal entries of S give a1, . . . , ah ∈ Z.
Moreover, we recover the elements t1, . . . , th by putting (with the obvious notation)

⎛

⎜

⎝

t1
...

th

⎞

⎟

⎠ = U

⎛

⎜

⎝

s1
...

sh

⎞

⎟

⎠ .

The following definition is standard (see, for example, [10, Ex. B-3.6]):

Definition 2 Let M be an A-module. A submodule M′ ⊆ M is said pure if the
following property is satisfied:

if am ∈ M′ for some a ∈ A,m ∈ M, then there ism′ ∈ M′ such that am′ = am.
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Proposition 2 The following are equivalent:

(a) H is contained in a free part of M.
(b) The image of T in M/H is a free summand.
(c) The image of T in M/H is a pure submodule.
(d) Let L be a free part ofM and f1, . . . , fr be a basis of L as in Proposition 1; then,

for i = 1, . . . , h the element ti is divisible by ai in T , that is, there exists ui ∈ T
such that ti = aiui ;

Proof a) ⇒ b): Let L be a free part of M such that H ⊆ L . Then, M/H = (L ⊕
T )/H ∼= (L/H) ⊕ T .
The equivalence of (b) and (c) is a the well-known fact that, for modules finitely gen-
erated over a PID, pure submodules and direct summands coincide (see, for example,
[10, Ex. B-3.7 (ii)]).
c) ⇒ d): Since ai fi + ti ∈ H , the image of ai fi in M/H belongs to the image of T ,
for i = 1, . . . , r . By purity, there exists ui ∈ T such that the images of ai fi and −aiui
coincide inM/H , that is ai fi +aiui in H . But then ti −aiui ∈ H ∩T = {0}, because
H is free.
c)⇒ d): Let L ′ be the submodule ofM generated by f1+u1, . . . , fh+uh, fh+1, . . . , fr .
Then, L ′ is a free part of M containing H . 
�

Notice that since H is free, H ∩ T = {0}, so that the image of T in M/H is
isomorphic to T .

For every prime element p of A, we denote by A(p) the localization of A at the
prime ideal (p). IfM is an A-module, M(p) is the localized A(p)-module.

The localization of T at (p) coincide with the p-torsion of T , and T = ⊕

p T(p).
If L is a free part ofM andM = L ⊕ T is the corresponding decomposition, then

L(p) is a free part of M(p), that is, there is a decomposition M(p) = L(p) ⊕ T(p).
The natural mapM → M(p) is the sum of the injection L → L(p) and the surjection
T → T(p).

Proposition 3 H is contained in a free part ofM if and only if H(p) is contained in a
free part of M(p) for every prime element p ∈ A.

The proof of Proposition 3 is based on the next two lemmas:

Lemma 1 Let A be a commutative ring with unity, M be an A-module and N ⊆ M
be a submodule. Then, N is a direct summand of M if and only if there exists a map
ϕ : M → N such that ϕ|N = idN .

Proof Assume that a map ϕ : M → N as in the statement of the Lemma exists, and
set K = ker(ϕ). Then, K ∩ N = {0}, so that the map θ : N ⊕ K → M given by the
sum of the inclusions is injective. If m ∈ M, put n = ϕ(m) = ϕ(n); then, m − n ∈ K
and m = n + (m − n), and this shows that θ is surjective. The converse is obvious.
�
Lemma 2 Let A be a commutative ringwith unity,M be an A-module and N , K ⊆ M
be direct summands of M. Assume that the two ideals AnnA(N ), AnnA(K ) are
coprime. Then, N ⊕ K is a direct summand of M.
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Proof Firstly notice that by hypothesis there exist a ∈ AnnA(N ), b ∈ AnnA(K ) such
that a + b = 1. This shows that N ∩ K = {0}: If x ∈ N ∩ K , then x = ax + bx = 0.
Write M = N ⊕ N ′; let k ∈ K and write k = k1 + k2, with k1 ∈ N and k2 ∈ N ′.
Then, from bk = 0 we deduce

0 = bk1 = (1 − a)k1 = k1,

so that K ⊆ N ′. The composition

N ′ ↪→ K ⊕ K ′ � K

is the identity when restricted to K so that K is a direct summand of N ′. 
�

Proof of Proposition 3. Since localization is an exact functor, we have

M(p)/H(p) � (M/H)(p) .

Let T(p) be the p-torsion of T ; it coincides with the localization at (p) of T and it
is a direct summand of T . Moreover, the natural maps from T(p) in M/H and in
M(p)/H(p) are injective, so that we can regard T(p) as a submodule of M/H and of
M(p)/H(p).

Now assume that H is contained in a free part ofM. Then, T is a direct summand of
M/H , by Proposition 2, so that there is a mapM/H → T which is the identity over
T . Let p be a prime element in A; by localizing at (p) we find a map M(p)/H(p) →
T(p) which is the identity over T(p), so that T(p) results to be a direct summand of
M(p)/H(p); therefore, H(p) is contained in a free part of M(p).

Conversely, assume that H(p) is contained in a free part of M(p), for every prime
element p of A. Then, T(p) is a direct summand ofM(p)/H(p), so that there is a map
(M/H)(p) � M(p)/H(p) → T(p) which is the identity when restricted to T(p). If we
compose with the natural map M/H → (M/H)(p) we get a map M/H → T(p)

which is the identity over T(p). Then, T(p) is a direct summand of M/H for every
prime p. By Lemma 2, T = ∏

p T(p) is a direct summand of M/H , so that H is
contained in a free part ofM, again by Proposition 2. (Notice that the product above
is in fact a finite product since by hypothesis M and hence T , are finitely generated
modules.)

3 Application to toric varieties

As already mentioned in the Introduction, we put the following

Definition 3 Let X be an irreducible and normal algebraic variety such that Cl(X) is
finitely generated. Then, X is called pure if there exist free parts FC and FW of Pic(X)

and Cl(X), respectively, such that the canonical injection Pic(X) ↪→ Cl(X) descends
to give the following commutative diagram
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Pic(X) Cl(X)

FC FW

In particular, if X = X(�) is a n-dimensional toric variety whose n-skeleton �(n) is
not empty (see the following Sect. 3.1 for notation), then Pic(X) is free (see, e.g., [2,
Prop. 4.2.5]), meaning that X is pure if and only if Pic(X) is contained in a free part
of Cl(X).
If X is not pure, it is called impure.

Of course, if Cl(X) is free, then X is pure; moreover if X is smooth and Cl(X)

is finitely generated, then it is pure, because the injection Pic(X) ↪→ Cl(X) is an
isomorphism.
Conversely, producing examples of impure varieties is definitely more complicated
(see Example 1).

3.1 Notation on toric varieties

Let X = X(�) be a n-dimensional toric variety associated with a fan �. Calling T ∼=
(k∗)n the torus acting on X , we use the standard notation M , for the characters group
of T, and N := Hom(M, Z). Then, � is a collection of cones in NR := N ⊗R ∼= Rn .
�(i) denotes the i-skeleton of �, that is, the collection of i-dimensional cones in the
fan �. We shall use the notation τ � σ to indicate that the cone τ is a face of σ .

Given a toric variety X(�) we will denote by WT (X) ⊆ Div(X) the subgroup of
torus invariant Weil divisors and by CT (X) ⊆ WT (X) the subgroup of Cartier torus
invariant divisors. It is well known that

WT (X) =
⊕

ρ∈�(1)

Z · Dρ where Dρ := T · xρ

the latter being the closure of the torus orbit of the distinguished point xρ of the ray ρ

[2, § 3.2, § 4.1]. In particular the homomorphism D �→ [D], sending a Weil divisor
to its linear equivalence class, when restricted to torus invariant divisors still gives a
epimorphism dX : WT (X) � Cl(X) [2, Thm. 4.1.3].

In [7, Def. 2.7] we introduced the notion of a poly weighted space (PWS), which
is a Q-factorial complete toric variety Y whose class group Cl(Y ) is free. This is
equivalent to say that Y is connected in codimension 1 (1-connected); when k = C

this means that the regular locus Yreg of Y is simply connected, as Y is a normal
variety: Recall that π1(Yreg) ∼= Tors(Cl(Y )) = 0 [8, Cor. 1.8, Thm. 2.1]. As proved
in [8, Thm. 2.2], every Q-factorial complete toric variety X(�) is a finite quotient of
a unique PWS Y (̂�), which is its universal covering unramified in codimension 1 (1-
covering). The Galois group of the torus equivariant covering Y � X is precisely the
dual groupμ(X) = Hom(Tors(Cl(X)), k∗). At lattice level, the equivariant surjection
Y � X induces an injective automorphism β : N ↪→ N whose R-linear extension
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βR : NR ↪→ NR identifies the associated fans, that is βR(̂�) = �. Recall that one has
the following commutative diagram (see diagram (5) in [9])

0

0 0 ker(α) = T

0 M
divX

V T

βT

WT (X) = Z|�(1)| dX

Q⊕�

αIn+r

Cl(X) ∼= Zr ⊕ T

α

0

0 M
divY

̂V T
WT (Y ) = Z|̂�(1)| dY

Q
Cl(Y ) ∼= Zr 0

coker(βT ) ∼= T 0 0

0

(3)

where

– T = Tors(Cl(X)) ;
– divX , divY are the morphisms sending a character in M to the associated principal
divisor in WT (X),WT (Y ), respectively;

– dX , dY are the morphisms sending a torus invariant divisor in WT (X),WT (Y ),
respectively, to its class in Cl(X),Cl(Y ), respectively;

– α is the identification WT (X) ∼= WT (Y ) induced by inverse images of rays by
βR, that is,

α

⎛

⎝

∑

ρ∈�(1)

aρDρ

⎞

⎠ =
∑

β−1
R

(ρ)∈̂�(1)

aρDβ−1
R

(ρ)
;

– α is what induced by α on classes groups;
– V , ̂V are matrices whose transposed represent divX , divY , respectively, w.r.t. a
chosen a basis of M and standard bases of torus orbits of rays of WT (X) and
WT (Y ), respectively; since |�(1)| = |̂�(1)| = n + r , where

r = rk(Cl(Y )) = rk(Cl(X))

both V and ̂V are n × (n + r) integer matrices called fan matrices of X and Y ,
respectively; they turn out to be F-matrices, in the sense of [7, Def. 3.10], and
̂V is also a CF-matrix; notice that, still calling β the representative matrix of the
homonymous morphism β : N ↪→ N w.r.t. the basis dual to that chosen in M ,
there is the relation
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V = β · ̂V

(see [7, Prop. 3.1 (3)] and [8, Rem. 2.4]); concretely, both V and ̂V can be obtained
as matrices whose columns represent primitive generators of rays in �(1) and
̂�(1), respectively, w.r.t. the dual basis, i.e.,

V = (

v1 · · · vn+r
)

, ̂V = (

v̂1 · · · v̂n+r
)

where �(1) = {〈v1〉, . . . , 〈vn+r 〉}, ̂�(1) = {〈̂v1〉, . . . , 〈̂vn+r 〉}, being 〈v〉 the ray
generated by v in Rn ∼= NR ;

– Q is a matrix representing dY w.r.t. a chosen basis of Cl(Y ); it is a r × (n + r)
integer matrix which turns out to be a Gale dual matrix of both V and ̂V , in the
sense of [7, § 3.1] and aW -matrix, in the sense of [7, Def. 3.9]; it is called aweight
matrix of both X and Y ;

– the choice of a basis of Cl(Y ) as above determines a basis of a free part of Cl(X);
complete such a basis with a set of generators of the torsion subgroup T ⊆ Cl(X);
then, dX decomposes as dX = fX ⊕ τX where

Zr

WT (X)
dX

fX

τX

Cl(X) ∼= Zr ⊕ T ;
π1

π2

T

with respect to these choices, the weight matrix Q turns out to be a representative
matrix of fX , too, while morphism τX is represented by a torsion matrix � [9,
Thm. 3.2 (6)].

3.1.1 Some further notation

Let A ∈ M(d,m; Z) be a d × m integer matrix, then

Lr (A) ⊆ Zmdenotes the sublattice spanned by the rows of A;
Lc(A) ⊆ Zddenotes the sublattice spanned by the columns of A;
AI , AI for any I ⊆ {1, . . . ,m}, the former is the submatrix of A given by

the columns indexed by I and the latter is the submatrix of

Awhose columns are indexed by the complementary

subset {1, . . . ,m}\I ;

Given a fan matrix V = (v1, . . . , vn+r ) ∈ M(n, n + r; Z) then

〈V 〉 = 〈v1, . . . , vn+r 〉 ⊆ NR denotes the cone generated by the columns of V ;
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SF(V ) = SF(v1, . . . , vn+r ) is the set of all rational simplicial and complete

fans� such that�(1) = {〈v1〉, . . . , 〈vn+r 〉} ⊂ NR

(see [7, Def. 1.3]).

Given a fan � ∈ SF(V ) we put

I� = {I ⊆ {1, . . . , n + r} :
〈

V I
〉

∈ �(n)}.

3.2 A sufficient condition

This section is aimed to give a sufficient condition for a Q-factorial complete toric
variety to be a pure variety. Let us, first of all, outline some equivalent facts.

Proposition 4 Let X(�) be a Q-factorial complete toric variety, Y (̂�) � X(�) be
its universal 1-covering, V and ̂V be fan matrices of X and Y , respectively. Assuming
notation as in diagram (3), the following are equivalent:

(a) X is a pure variety;
(b) there is a decomposition WT (X) = Lr (̂V ) ⊕ F such that CT (X) ⊆ Lr (V ) ⊕ F;
(c) for every prime p there exists a Z(p)-module Fp and a decomposition

WT (X)(p) = Lr (̂V )(p) ⊕ Fp

such that CT (X)(p) ⊆ Lr (V )(p) ⊕ Fp.

Proof a) ⇒ b): If X is a pure variety, let Cl(X) = L ⊕ T be a decomposition such
that L is a free part and Pic(X) ⊆ L . We can identify L with Zr in the first row
of diagram (3). Let s : L → WT (X) be any section (i.e., Q ◦ s = idL ) and put
F = s(L). If x ∈ WT (X), write dX (x) = a + b, with a ∈ L and b ∈ T . Then,
Q(x−s(a)) = 0 so that x−s(a) ∈ Lr (̂V ); this proves thatWT (X) = Lr (̂V )⊕F .
If x ∈ CT (X), then write x = a + b with a ∈ Lr (̂V ) and b ∈ F ; since dX (x) ∈ L ,
we have � · x = � · a = 0, so that a ∈ Lr (V ).

b) ⇒ c) is obvious.
c) ⇒ a): Let p be a prime and put F ′

p = Fp ∩ CT (X)(p). We have

CT (X)(p) = Lr (V )(p) ⊕ F ′
p

so that

Cl(X)(p)/Pic(X)(p) = WT (X)(p)/CT (X)(p) ∼= (Lr (̂V )(p)/Lr (V )(p)
) ⊕

(

Fp/F
′
p

)

∼= T(p) ⊕
(

Fp/F
′
p

)

Then, we see that the image of T(p) is a direct summand in Cl(X)(p)/Pic(X)(p), so
that Pic(X)(p) is contained in a free part of Cl(X)(p) by Proposition 2 b). Since this
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holds for every p we can apply Proposition 3 and deduce that Pic(X) is contained
in a free part of Cl(X), so that X is pure.


�
Definition 4 Let � be a fan in Rn . For every simplicial cone σ ∈ �, letw1, . . . ,wk ∈
Zn be the set of minimal generators of σ . Let V be the subspace of Rn generated by
σ , and L = V ∩ Zn . The multiplicity of σ is the index

mult(σ ) = [L : Zw1 ⊕ . . . ⊕ Zwk].
If � is a simplicial fan we put

m� = gcd{mult(σ ) | σ is a maximal cone in �}.
Set, once for all, the following notation:

∀ I ⊆ {1, . . . , n + r} EI := {x = (x1, . . . , xn+r ) ∈ Zn+r | xi = 0,∀i /∈ I }. (4)

We are now in a position to state and prove the main result of the present paper.

Theorem 2 Let X = X(�) be a complete Q-factorial toric variety and Y = Y (̂�) be
its universal 1-covering; let ̂V be a fan matrix associated with Y , and V = β · ̂V be
a fan matrix associated with X. Suppose that (det(β),m

̂�) = 1. Then, X is a pure
variety.

Proof By Proposition 4, it suffices to show that for every prime p there exists a Z(p)-
module Fp and a decomposition WT (X)(p) = Lr (̂V )(p) ⊕ Fp such that CT (X)(p) ⊆
Lr (V )(p) ⊕ Fp. If p � | det(β), then Lr (V )(p) = Lr (̂V )(p) and we are done. Assume
that p| det(β); by hypothesis there exists a maximal cone σ̂ = σ̂ I ∈ ̂� such that
p � |mult(̂σ ) = det(QI ). Put Fp = EI ,(p), where EI is defined in (4). By definition
CT (X) ⊆ Lr (V ) ⊕ EI , so that CT (X)(p) ⊆ Lr (V )(p) ⊕ Fp. We claim that Zn+r

(p) =
Lr (̂V )(p) ⊕ Fp. The inclusion⊇ being obvious, assume that x ∈ Zn+r

(p) . Since det(QI )

is invertible inZ(p), there exists y ∈ EI such that Qx = Qy, that is, x−y ∈ ker(Q) =
Lr (̂V ). 
�
Corollary 1 Let Y = Y (̂�) be a poly weighted projective space such that m

̂� = 1.
Then, every Q-factorial complete toric variety having Y as universal 1-covering is
pure.

Remark 2 Geometrically the previous Theorem 2 translates precisely in Theorem 1
stated in the introduction. In fact aQ-factorial complete toric variety is an orbifold (see
[2, Thm. 3.1.19 (b)]) whose n-skeleton parameterizes a covering by affine charts. In
particular Y has only finite quotient singularities whose order is necessarily a divisor
of some multiplicity mult(̂σ ), for σ̂ ∈ ̂�(n). Moreover, the affine chartUσ̂ has always
a quotient singularity of maximum order mult(̂σ ). Hence Theorem 1 follows.

In particular the previous Corollary 1 gives the following

Corollary 2 Let Y be a n-dimensional, Q-factorial, complete toric variety admitting
a torus invariant, Zariski open subset U ⊆ Y , biregular to Cn. Then, Y is a PWS and
every Q-factorial complete toric variety having Y as universal 1-covering is pure.
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3.3 Examples

The present section is devoted to give some examples of pure and impure Q-factorial
complete toric varieties.

Example 1 Consider the fan matrix

̂V =
⎛

⎝

1 −1 2 −3 −1
1 −1 −1 2 −1
1 1 1 1 −5

⎞

⎠

The corresponding weight matrix is

Q =
(

3 1 10 6 4
3 2 0 0 1

)

.

One can check that |SF(̂V )| = 2. These two fans are given by taking all the faces of
the following lists of maximal cones:

̂�1 = {〈1, 2, 3〉, 〈1, 2, 4〉, 〈2, 4, 5〉, 〈1, 4, 5〉, 〈2, 3, 5〉, 〈1, 3, 5〉}
̂�2 = {〈1, 3, 4〉, 〈2, 3, 4〉, 〈2, 4, 5〉, 〈1, 4, 5〉, 〈2, 3, 5〉, 〈1, 3, 5〉}

We denote by 〈i, j, k〉 the cone generated by the columns vi , v j , vk of the matrix ̂V .
The list of multiplicities of maximal cones for the two fans is, respectively,

6, 10, 30, 20, 18, 12 and 7, 9, 30, 20, 18, 12,

so that

m
̂�1

= 2, m
̂�2

= 1.

Define

β :=
⎛

⎝

1 0 0
0 1 0
0 0 2

⎞

⎠

and

V := β · ̂V =
⎛

⎝

1 −1 2 −3 −1
1 −1 −1 2 −1
2 2 2 2 −10

⎞

⎠ .

A torsion matrix Γ with entries in Z/2Z such that Q ⊕ Γ represents the morphism
assigning to each divisor its class, as in the previous diagram (3), is given by

Γ = (

0 1 1 1 0
)

.
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Let �1 be the fan in SF(V ) corresponding to ̂�1. We show that X(�1) is an impure
variety. Using methods explained in [9, Thm. 3.2 (2)], we obtain that a basis of CT (X)

is given by the rows of the following matrix

CX =

⎛

⎜

⎜

⎜

⎜

⎝

40 0 0 0 0
0 60 0 0 0
0 0 3 0 0

−24 −24 0 1 0
−9 −47 −2 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

Then,

Q · CT
X =

(

120 60 30 −90 −90
120 120 0 −120 −120

)

, Γ · CT
X = (

0 0 1 1 1
)

Then, we see that Pic(X) is generated in Cl(X) ∼= Z2 ⊕ Z/2Z by elements

(120, 120), (60, 120), (30, 0) + [1]2, (90, 120) + [1]2.

the first and the last of them are obviously generated by the remaining two elements,
so that Pic(X) is generated by (60, 120) and (30, 0) + [1]2. Every free part of Cl(X)

contains an element z of the form (15, 0)+[a]2 for some a ∈ {0, 1}; therefore, it must
contain 2z = (30, 0); then, (30, 0)+[1]2 cannot belong to any free part, meaning that
X(�1) is impure.

Notice that purity is a property depending on the fan choice. In fact �2 satisfies
hypothesis of Theorem 2, as m�2 = 1. Then, X(�2) is pure.

The following is a counterexample showing that a converse of Theorem 2 cannot
hold.

Example 2 Let ̂V be the fan matrix of Example 1. Consider the matrix

β ′ =
⎛

⎝

1 0 0
0 2 0
0 0 1

⎞

⎠

and put

V ′ := β ′ · ̂V =
⎛

⎝

1 −1 2 −3 −1
2 −2 −2 4 −2
1 1 1 1 −5

⎞

⎠ .

A torsion matrix Γ ′ with entries in Z/2Z such that Q ⊕ Γ ′ represents the morphism
assigning to each divisor its class is given by

Γ ′ = (

0 0 0 1 1
)

. (5)
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Let �′
1 be the fan in SF(V ) corresponding to ̂�1 and X ′ = X(�′

1). In this case X ′ is
a pure variety. In fact, a basis of CT (X ′) is given by the rows of the following matrix

CX ′ =

⎛

⎜

⎜

⎜

⎜

⎝

40 0 0 0 0
0 60 0 0 0

−20 −30 3 0 0
−8 −48 0 2 0
15 37 −2 −1 1

⎞

⎟

⎟

⎟

⎟

⎠

.

Then,

Q · CT
X ′ =

(

120 60 −60 −60 60
120 120 −120 −120 120

)

, Γ ′ · CT
X ′ = (

0 0 0 0 0
)

Then, we see that Pic(X ′) is generated in Cl(X ′) ∼= Z2 ⊕ Z/2Z by the elements

(120, 120), (60, 120)

so that X ′ is pure. On the other hand m
̂�1

= 2 = det(β ′), so proving that a converse
of Theorem 2 cannot hold.

3.4 The case |SF(V)| = 1

The aim of this section is to exhibit a large class of pure toric varieties, by estab-
lishing the purity of every Q-factorial complete toric variety X = X(�) whose fan
matrix V admits a unique simplicial and complete fan given by � itself. Geometri-
cally, this property means that a small Q-factorial modification of X is necessarily an
isomorphism, as explained in the Introduction.

We need a few preliminary lemmas. If V is an F-matrix we put

IV ,tot = {I ⊆ {1, . . . , n + r} | |I | = r and det(V I ) �= 0}
IV ,min = {I ∈ IV ,tot | 〈V I 〉 does not contain any column of V

apart from its generators }.

Lemma 3 Put

mV ,tot = gcd{det(V I ) | I ∈ IV ,tot}
mV ,min = gcd{det(V I ) | I ∈ IV ,min};

then mV ,min = mV ,tot.

Proof Since IV ,min ⊆ IV ,tot we havemV ,tot|mV ,min We firstly show that the assertion
is true when mV ,tot = 1. Otherwise, there would exist a prime number p dividing
det(V I ) for every I ∈ IV ,min; and therewould exist I0 ∈ Itot such that p � | det(I0).We
choose such an I0 with the property that the number n0 of columns of V belonging to

123



Journal of Algebraic Combinatorics (2021) 53:553–573 567

〈V I0〉 isminimum.Letv1, . . . , vn be the columnsofV I0 and letv∗ ∈ 〈V I0〉be a column
of V different from vi for every i ; then, we can write v∗ = ∑n

i=1
ai
b vi with ai , b ∈ Z

and (a1, . . . , an, b) = 1. For i = 1, . . . , n let σi = 〈v1, . . . , vi−1, v∗, vi+1, . . . , vn〉.
Then, | det(σi )| = ( ai

b

)n | det(V I0)| and p divides det(σi )by theminimality hypothesis
on I0. It follows that p divides ai for i = 1, . . . , n; therefore, v∗ ∈ pZn and this is a
contradiction because V is a fan matrix, hence reduced (see [7, Def. 3.13]).
Suppose now that mV,tot �= 1. Then, by [7, Prop. 3.1 (3)] there exist a CF-matrix ̂V
such that V = β̂V for some β ∈ Mn(Z) ∩ GLn(Q); and m

̂V,tot = 1 by [7, Prop.
2.6], so that we can apply the first part of the proof to ̂V and deduce that m

̂V,min = 1.
Notice that IV,tot = I

̂V,tot, IV,min = I
̂V,min and det(V I ) = det(β) det(̂V I ) for every

I ∈ IV,tot, so that mV,min = det(β)m
̂V,min and mV,tot = det(β)m

̂V,tot. It follows that
mV,min = mV,tot = det(β). 
�
Lemma 4 Let �0 be a simplicial fan in Rn such that σ = |�0| is a full dimensional
convex cone. Let w1, . . . ,wk ∈ Rn be such that wi /∈ σ for i = 1, . . . , k. There exists
a simplicial fan � in Rn such that

(a) |�| = σ + 〈w1, . . . ,wk〉;
(b) �(1) = �0(1) ∪ {〈w1〉, . . . , 〈wk〉};
(c) �0 ⊆ �.

Proof By induction on k. For the case k = 0, we take � = �0. Assume that the result
holds true for k − 1. Let W ′ = σ + 〈w1, . . . ,wk−1〉, W = σ + 〈w1, . . . ,wk〉. By
inductive hypothesis there exists a simplicial fan �′ such that |�′| = W ′, �′(1) =
�0(1) ∪ {〈w1〉, . . . , 〈wk−1〉} and �0 ⊆ �′. We distinguish two cases:

– Case 1: wk ∈ W ′, so that W = W ′; let τ be the minimal cone in �′ containing
wk . We take � = s(wk, τ )�′, the stellar subdivision of �′ in direction wk (see
[3, Def. III.2.1]). Concretely, every m-dimensional cone μ = 〈x1, . . . , xm〉 ∈ �

containing wk is replaced by the set of the m-dimensional cones of the form
〈x1, . . . , xi−1,wk, xi+1, . . . , xm〉. Conditions a) and b) are immediately verified.
For condition c) notice that, since wk /∈ σ , τ is not a face of any cone in �0;
therefore, �0 ⊆ �.

– Case 2: wk /∈ W ′, so that W ′ � W . Let F be the set of facets f in �′(n − 1)
which are cut out by an hyperplane strictly separatingW ′ andwk ; that is f ⊆ ∂W ′,
f � ∂W and the cone τ f = 〈 f ,wk〉 is n dimensional. Notice that F �= ∅: In
factW ′ is a convex polyhedral cone and wk /∈ W ′; then, there is an hyperplane H
cutting a facet ϕ of W ′ and strictly separating W ′ and wk ; let f be a facet of �′
contained in ϕ; then, f ∈ F .

Consider the set of simplicial cones

� = �′ ∪ {τ | τ � τ f for some f ∈ F}.

We claim that� is a fan. By construction it is closed by faces, so that it suffices to show
that τ1∩τ2 is a face of both τ1 and τ2, whenever τ1, τ2 ∈ �. Let τ1, τ2 ∈ �. If they are
both in�′, then τ1∩τ2 is a face of τ1, τ2 because�′ is a fan. Assume that τ1 ∈ �′ and
τ2 /∈ �′; then, τ2 = 〈τ,wk〉, where τ is a face of some f ∈ F . Let H be the hyperplane
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cutting f ; then,wk lies on the other side of H with respect toW ′, so that τ1 ∩ τ2 ⊆ f .
Therefore, τ1 ∩ τ2 = τ1 ∩ τ ∈ �′, so that it is a face of both τ1 and τ by induction
hypothesis; but τ � τ1 so that τ1 ∩ τ2 � τ2. Finally, assume that both τ1 and τ2 are not
in �′. This means that there are facets f1, f2 in F and faces μ1 � f1, μ2 � f2 such
that τ1 = 〈μ1,wk〉 and τ2 = 〈μ2,wk〉. We show that τ1∩τ2 = 〈μ1∩μ2,wk〉 ∈ �. Let
x ∈ τ1∩τ2: Then, we can write x = y1+λ1wk = y2+λ2wk , where y1 ∈ μ1, y2 ∈ μ2
and λ1, λ2 ≥ 0. Without loss of generality we can assume λ1 ≥ λ2; put λ = λ1 − λ2;
then, y1 + λwk = y2. Let H be the hyperplane cutting f1; since f1 ∈ F , wk /∈ H , so
that there exists a vector n be a normal to H such that n · x ≤ 0 for every x ∈ W ′ and
n · wk > 0. Then, n · y2 ≤ 0 and n · (y1 + λwk) = n · λwk ≥ 0, so that λ = 0; this
implies y1 = y2 ∈ μ1 ∩ μ2 and x ∈ 〈μ1 ∩ μ2,wk〉.
Nowwe show that condition a) holds for�. By construction |�| = |�′|∪⋃

f ∈F τ f ⊆
W ′ + 〈wk〉 = W; conversely, let x ∈ W; if x ∈ W ′, then x ∈ |�′| ⊆ |�|; if x /∈ W ′,
then x = y+λwk for some y ∈ W ′ and λ > 0; up to replacing y by y+μwk for some
0 ≤ μ < λ we can assume that y+ εwk /∈ W ′ if ε > 0. Then, for every ε there exists
an hyperplane Hε cutting a facet ϕε ofW ′ which separatesW ′ and y+ εwk ; since the
facets of W ′ are finitely many, by the pigeonhole principle Hε, ϕε do not depend on
ε for ε → 0; call them H , ϕ, respectively. Let n be a normal vector to H such that
n · y ≤ 0 and n · (y + εwk) > 0 for ε → 0; the existence of such n implies n · y = 0
and n · wk > 0, so that y ∈ ϕ and wk /∈ H . Then, there is a facet f ∈ F such that
y ∈ f ; therefore, x ∈ τ f , and a) is proved. We showed that �\�′ �= ∅; and every
cone in �\�′ has wk as a vertex and all other vertices in �′(1). Then, condition b) is
verified. Condition c) is obvious since �0 ⊆ �′ ⊆ �. 
�
Corollary 3 Let V be a fan matrix. Then, for every I ∈ IV,min the cone 〈V I 〉 belongs
to a fan in SF(V ).

Proof It suffices to apply Lemma 4 in the case �0 = {τ | τ � 〈V I 〉} and w1, . . . ,wk

are the columns of VI . 
�
Corollary 3 has the following immediate consequence:

Corollary 4 Let V be a fan matrix such that SF(V ) contains a unique fan �. Then,
for every I ∈ IV,min the cone 〈V I 〉 belongs to �.

We are now in position to prove our purity condition:

Proposition 5 Let X be a Q-factorial complete toric variety and let V be a fan matrix
of X. Assume that SF(V ) contains a unique fan. Then, X is pure.

Proof Let Y = Y (̂�) be the universal 1-covering of X and let ̂V be a fan matrix
associated with Y . Then, ̂V is a CF-matrix, so that m

̂V,tot = 1 by [7, Prop. 2.6 and

Def. 2.7]. By Corollary 4, I� = Î� = I
̂V,min so that m

̂� = m
̂V,min and, by Lemma

3, the latter is equal to m
̂V,tot = 1. Then, X is pure by Corollary 1. 
�

Remark 3 Proposition 5 implies that the following toric varieties are pure:

– two-dimensional Q-factorial complete toric varieties
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– toric varieties whose universal 1-covering is a product of weighted projective
spaces.

Remark 4 In the case |SF(V )| = 1 the unique complete and Q-factorial toric variety
X whose fan matrix is V is necessarily projective. This is a consequence of the fact
that Nef(X) = Mov(X), recalling that the latter is a full dimensional cone, by [1,
Thm. 2.2.2.6].

3.4.1 An application to completions of fans

Lemma 4 can be applied to give a complete refinement � of a given fan �0 satisfying
the further additional hypothesis:

(*) assume that |�| = �0 + 〈w1, . . . ,wk〉 = Rn .

In particular, if we consider the fan �′ = �0 ∪ {〈w1〉 . . . , 〈wk〉}, then Lemma 4 gives
a completion � of �′ without adding any new ray.

The latter seems to us an original result. In fact, it is actually well known that every
fan �′ can be refined to a complete fan � (see [3, Thm. III.2.8], [4] and the more
recent [6]). Anyway, in general the known completion procedures need the addition
of some new ray, so giving �′(1) � �(1). As observed in the Remark following the
proof of [3, Thm. III.2.8], just for n = 3 “completion without additional 1-cones can
be found,” but this fact does no more hold for n ≥ 4: At this purpose, Ewald refers
the reader to the Appendix to section III, where he is further referred to a number
of references. Unfortunately we were not able to recover, from those references and,
more generally, from the current literature, as far as we know, an explicit example of
a four-dimensional fan which cannot be completed without adding some new ray. For
this reason, we believe that the following example may fill up a lack in the literature
on these topics.

Example 3 Consider the fan matrix

V =

⎛

⎜

⎜

⎝

1 0 0 0 0 −1 1
0 1 0 0 −1 −1 2
0 0 1 0 −1 0 1
0 0 0 1 −1 −1 1

⎞

⎟

⎟

⎠

and consider the fan � given by taking all the faces of the following three maximal
cones generated by columns of V

�(4) = {〈2, 3, 4, 6〉, 〈2, 4, 5, 7〉, 〈1, 4, 5, 6〉}

The fact that � is a fan follows immediately by easily checking that

〈2, 3, 4, 6〉 ∩ 〈2, 4, 5, 7〉 = 〈2, 4〉
〈2, 3, 4, 6〉 ∩ 〈1, 4, 5, 6〉 = 〈4, 6〉
〈1, 4, 5, 6〉 ∩ 〈2, 4, 5, 7〉 = 〈4, 5〉.
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Notice that � is not a complete fan since, e.g., the three-dimensional cone

〈2, 3, 6〉 =
〈
0 0 −1
1 0 −1
0 1 0
0 0 −1

〉

is a facet of the unique cone

〈2, 3, 4, 6〉 =
〈
0 0 0 −1
1 0 0 −1
0 1 0 0
0 0 1 −1

〉

∈ �(4).

Moreover, it cannot be completed since every further maximal cone admitting 〈2, 3, 6〉
as a facet does not intersect correctly the remaining cones in �(4). In fact

– 〈1, 2, 3, 6〉 ∩ 〈2, 4, 5, 7〉 � 〈2〉 : Consider, e.g.,

v = (

1 1 0 0
)T ∈ 〈1, 2〉 ∩ 〈5, 7〉

– 〈2, 3, 5, 6〉 ∩ 〈1, 4, 5, 6〉 � 〈5, 6〉 : Consider, e.g.,

w = (

0 −2 −1 −2
)T ∈ 〈3, 5〉 ∩ 〈1, 5, 6〉 but w /∈ 〈5, 6〉

– 〈2, 3, 6, 7〉 is not a maximal cone.

4 A characterization of Pic(X) for some pure toric variety

Let X = X(�) be a complete Q-factorial toric variety having V as a fan matrix; let Y
be its universal 1-covering, ̂V be a fan matrix associated with Y and V = β̂V . Recall
that a Weil divisor L = ∑n+r

j=1 a j D j is a Cartier divisor if it is locally principal, that
is,

∀I ∈ I� ∃mI ∈ M such that mI · v j = a j ,∀ j /∈ I .

Let CT (X) be the group of torus invariant Cartier divisors of X . Then,

CT (X) =
⋂

I∈I�

Lr (V
I ) =

⋂

I∈I�

(Lr (V ) ⊕ EI )

recalling notation (4). The Picard group Pic(X) of X is the image of CT (X) in Cl(X),
viamorphism dX (recall here and in the following, notation introduced in diagram (3)).
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In [7, Thm. 2.9.2] we showed that if Y is a PWS, then we can identify

Pic(Y ) =
⋂

I∈I�

Lc(QI ) ⊆ Zr . (6)

Let x ∈ Pic(Y ). For I ∈ I� we can write x = Q · aI where aI ∈ EI . If I , J ∈ I�

put

uI J = aI − aJ ∈ ker(Q) = Lr (̂V ). (7)

Let z ∈ CT (Y ) such that Q · z = x. By definition, for every I ∈ I� there is a unique
decomposition z = t(I ) + aI with t(I ) ∈ Lr (̂V ). Moreover,

z ∈ CT (X) ⇔ t(I ) ∈ Lr (V ),∀I ∈ I�. (8)

Proposition 6 x ∈ α(Pic(X)) if and only if x ∈ Pic(Y ) and uI J ∈ Lr (V ), for every
I , J ∈ I� , where uI J is defined by (7).

Proof Suppose that x ∈ α(Pic(X)). Then, there exists z ∈ CT (X) such that Q · z = x.
For every I ∈ I� consider the decomposition z = t(I )+aI with t(I ) ∈ Lr (V ). Then,
uI J = aI −aJ = t(J )− t(I ) ∈ Lr (V ) for every I , J ∈ I� . Conversely, suppose that
uI J ∈ Lr (V ) for every I , J ∈ I� . Let z′ ∈ CT (Y ) be such that Q · z′ = x. For every
I ∈ I� there is a decomposition z′ = t′(I ) + aI with t′(I ) ∈ Lr (̂V ). Fix I0 ∈ I�

and put z = z′ − t′(I0). We claim that z ∈ CT (X). Indeed, let I ∈ I� and decompose
z = t(I ) + aI with t(I ) ∈ Lr (̂V ) and t(I0) = 0. It follows that for every I ∈ I�

t(I ) = t(I ) − t(I0) = aI0 − aI = uI0 I ∈ Lr (V ).


�
Theorem 3 Let X be a pure Q-factorial complete toric variety and choose an iso-
morphism Cl(X) ∼= Zr ⊕ T such that Pic(X) is mapped in Zr . Then, the following
characterization of Pic(X) holds:

x ∈ Pic(X) ⇔ ∀ I , J ∈ I� x ∈
⋂

I∈I�

Lc(QI ) and uI J ∈ Lr (V )

where uI J is defined by (7).

Proof Define s : Zr → Zr ⊕T by s(a) = (a, 0). Then, α◦s = idZr and s ◦α|Pic(X) =
idPic(X). Then, we have for every x ∈ Zr

x ∈ α(Pic(X)) ⇔ s(x) ∈ Pic(X).

The result follows from Proposition 6 by identifying x and s(x). 
�
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Example 4 Let �′
1 be the fan defined in Example 2. Then,

I�′
1 = Î�1 = {{1, 3}, {2, 3}, {3, 5}, {1, 4}, {2, 4}, {4, 5}}.

so that

⋂

I∈I�′
1

Lc(QI ) = Z(30, 0) ⊕ Z(0, 60).

Let x = (30x, 60y) ∈ ⋂

I∈I�′
1
Lc(QI ), with x, y ∈ Z. For I ∈ I�′

1 we can write
x = Q · aI where aI ∈ EI . The aI ’s are easily calculated:

a{1,3} = ( 20y 0 3x − 6y 0 0 )

a{2,3} = ( 0 30y 3x − 3y 0 0 )

a{3,5} = ( 0 0 3x − 24y 0 60y )

a{1,4} = ( 20y 0 0 5x − 10y 0 )

a{2,4} = ( 0 30y 0 5x − 5y 0 )

a{4,5} = ( 0 0 0 5x − 40y 60y )

Notice that, with the notation of (7), uI J = uI K − uK J ; then, in order to calculate
uI J for every I , J ∈ I�′

1 it suffices to compute uI j I j+1 for a sequence I1, . . . , Is such

that 〈QI j 〉 and 〈QI j+1〉 have a common facet and I�′
1 = {I1, . . . , Is}; in this way, we

obtain vectors having at most r + 1 = 3 nonzero components:

u{1,3}{2,3} = ( 20y −30y −3y 0 0 )

u{2,3}{3,5} = ( 0 30y 21y 0 −60y )

u{3,5}{4,5} = ( 0 0 3x − 24y −5x + 40y 0 )

u{4,5}{1,4} = ( −20y 0 0 −30y 60y )

u{1,4}{2,4} = ( 20y −30y 0 −5y 0 )

Multiplying by the matrix �′ found in (5) we obtain

�′ · uT{1,3}{2,3} = 0; �′ · uT{2,3}{3,5} = −60y; �′ · uT{3,5}{4,5} = −5x + 40y;
�′ · uT{4,5}{1,4} = 30y; �′ · uT{1,4}{2,4} = −5y.

Recall that Γ ′ takes values in Z/2Z and that for every u ∈ Lr (̂V )

�′ · uT = 0 if and only if u ∈ Lr (V
′);

then, we see that uI J ∈ ker(�′) for every I , J ∈ I�′
1 if and only if x, y ∈ 2Z, that

is, if and only if x ∈ Z(60, 0) ⊕ Z(0, 120). By Theorem 3, Pic(X ′) can be identified
with the subgroup Z(60, 0) ⊕ Z(0, 120) in Cl(X ′) � Z2 ⊕ Z/2Z, according to what
we established in Example 2.
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