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Abstract
Let p be a prime number. Reducible cyclic codes of rank 2 overZpm are shown to have
exactly two Hamming weights in some cases. Their weight distribution is computed
explicitly. When these codes are projective, the coset graphs of their dual codes are
strongly regular. The spectra of these graphs are determined.
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1 Introduction

Since the seminal paper of Delsarte [9] two-weight codes have been studied in
symbiosis with combinatorial objects like strongly regular graphs (SRGs) [5,6,9] or
geometrical structures like caps in projective spaces [8]. An important class of codes
for construction of two-weight codes is that of irreducible cyclic codes [1,18]. In par-
ticular, it is conjectured that all two-weight projective irreducible cyclic codes are
known [12,18]. More recently, reducible cyclic codes have been used as a source of
construction of two-weight codes. The connection between SRG’s and two-weight
codes over finite fields was extended recently to two-weight codes over rings for the
homogeneous weight [6,7].
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In a companion paper [15], the authors have studied irreducible cyclic codes of rank
2 over Zpm that have two nonzero weights for the Hamming metric. In the present
paper, we study reducible cyclic codes of rank 2 over Zpm that have two nonzero
weights for the Hamming metric. Like in [13] the main enumeration technique is the
connection with second-order recurrences. An extra difficulty in comparison with the
finite field case is the size of the code which can be, in the casem = 2, either p4 or p3.
This difficulty is overcome by using the notion of residue and torsion codes which are
familiar in the domain of codes over rings [14]. Generalizing this approach to m > 2,
is possible but very technical. In the section, on codes over Zpm we will not make any
claims on the size of the code. Under amild condition (see Proposition 3), our codes are
projective, and thus SRGs can be constructed from them. Their size, degrees, their two
restricted eigenvalues with their multiplicities are determined explicitly. They provide
alternative coding constructions to some of the SRGs with parameters in Brouwer’s
table of SRGs [17].

The material is organized as follows. The next section collects notations, defini-
tions and basic facts. Section 3 studies codes over Zp2 . Section 4 deals with their
attached SRGs. Section 5 indicates how the material can be partially generalized to
Zpm . Section 5 recapitulates our results and presents some challenging open problems.

2 Definitions and notation

2.1 Linear codes over rings

Throughout the paper, let p be an odd prime. Let Zpm denote the ring of integers
modulo pm, and let Z×

pm denote its multiplicative group. The function φ() is Euler
totient function. If u and v are two coprime integers, the notation ou(v) means the
multiplicative order of v modulo u, or in other words, its order as an element of the
multiplicative group of the residue class ringZu .A linear code C of length n overZpm

is a submodule of Zn
pm . The residue and torsion codes of C ≤ Z

n
p2

, denoted R(C) and
Tor(C) are two codes of length n over Fp defined as

R(C) = {r ∈ F
n
p | ∃y ∈ C, y ≡ r (mod p)},

Tor(C) = {r ∈ F
n
p | pr ∈ C}.

Some elementary facts about these codes are as follows. For a proof of more general
statements in the context of chain rings see [14, Chap. 5].

Proposition 1 If C is a linear code over Zp2 , the following properties hold.

1. R(C) are linear codes;
2. R(C) ⊆ Tor(C);
3. |C | = |R(C)||Tor(C)|;
4. dim(Tor(C)) is at most the rank of C as a Zp2 -module.

Proof If r ∈ R(C), then there is s ∈ F
n
p such that r + ps ∈ C . Hence p(r + ps) =

pr ∈ C, and r ∈ Tor(C). That proves 2. To prove point 3, we apply the first
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isomorphism theorem to the map α : C → F
n
p, defined by x �→ x (mod p). Note

that α(C) = R(C) and that Ker(α) = pTor(C). This remark also shows point 1.
Point 4 is immediate from pTor(C) ⊆ C . 	


2.2 Weights

The Hamming weight of x ∈ Z
n
p2

is denoted by wH (x). The weight distribution of a
code C of length n over Zp2 is defined as the list

[〈0, 1〉, . . . , 〈wi , Ai 〉, . . . , 〈wn, An〉],

where Ai is the numbers of c ∈ C with wH (c) = wi . The number Ai is called
the frequency of the weight wi . The dual C⊥ of C is understood with respect to the
standard inner product. Theminimum distance of a linear code is its minimum nonzero
Hamming weight. A linear code is projective if any pair of columns of its generator
matrix are linearly independent.

2.3 Cyclic codes

A code is cyclic if it is linear and invariant under the cyclic shift. We consider cyclic
codes of the form 〈g(x)〉with g(x) a divisor of xn−1.All the cyclic codes in this paper
are reducible, in the sense that their check polynomial h(x) = xn−1

g(x) is not irreducible.
The parameters of a two-weight code C over an alphabet A of size q are listed as
[n, k, {w1, w2}]q if A is a finite field, andC is of dimension k, and (n, |C |, {w1, w2})q
if A is a finite ring, but not a finite field.

2.4 Graphs

A simple graph on v vertices is called a strongly regular graph with parameters
(v, η, λ, μ) if

1. each vertex is adjacent to η vertices;
2. for each pair of adjacent vertices, there are λ vertices adjacent to both;
3. for each pair of non-adjacent vertices, there are μ vertices adjacent to both.

An eigenvalue of a graph � (i.e., an eigenvalue of its adjacency matrix) is called
a restricted eigenvalue if there is a corresponding eigenvector which is not a multi-
ple of the all-one vector 1. Note that for an η-regular connected graph, the restricted
eigenvalues are simply the eigenvalues different from η. The two restricted eigenval-
ues of an SRG are usually denoted by r , s, with respective multiplicities f , g. The
spectrum of an SRG is then compactly denoted by {η1, r f , sg}. Given the spectrum,
the parameters λ, μ are uniquely determined by the formulas of [2, §1.1.1], or [5, Th.
1.3.1]. The coset graph of a projective code C ⊆ Z

n
pm has for vertices the cosets of C ,

two vertices being connected iff they differ by a coset of minimum Hamming weight
one.
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3 Codes

Let p an odd prime, and let N > 1 be a divisor of φ(pm) = pm−1(p − 1). Let a, b
be two distinct elements of Z×

pm , both of order a divisor of N . Let C(a, b) denote

the cyclic code of length N over Zpm of check polynomial h(x) = (1−ax)(1−bx)
ab . Its

generator matrix G can then be described as

G =
(
a a2 . . . aN

b b2 . . . bN

)
.

Different pairs (a, b) can construct equivalent codes C(a, b) as the next result shows.

Proposition 2 If (a, b) = λ(a′, b′) for some λ ∈ Z
×
pm , then C(a, b) and C(a′, b′) are

monomially equivalent. If (a, b) = (a′θ , b′θ ) for some θ ∈ Z
×
pm , coprime with N , then

C(a, b) and C(a′, b′) are permutation equivalent.

Proof If (a, b) = λ(a′, b′) then the column i of G is scaled by λi . Hence, coordinate
i of each codeword is scaled by λi . This is monomial equivalence with an identity
permutation part [11, §1.7]. The second assertion is a special case of multiplier equiv-
alence of cyclic codes [11, §4.3]. 	


For the next section, we need the following result.

Proposition 3 Assume m = 2. If a ≡ b (mod p), the code C(a, b) is not projective.
If a �= b (mod p), the code C(a, b) is a projective code iff ordp2(

b
a ) ≥ N .

Proof Suppose there is a nontrivial linear combination between the columns of indices
i and j of G of the form

λ

(
ai

bi

)
+ μ

(
a j

b j

)
= 0.

Four cases can occur depending on the invertibility of λ and μ.

1. Since both a and b are invertible, the two casesλ /∈ Z
×
p2

, μ ∈ Z
×
p2

, orλ ∈ Z
×
p2

, μ /∈
Z

×
p2

, cannot happen.

2. If both λ,μ ∈ pZ×
p2

, then letting λ = pλ′, and μ = pμ′ yields

λ′
(
ai

bi

)
+ μ′

(
a j

b j

)
≡ 0 (mod p).

(a) If a ≡ b (mod p), the system reduces to

λ′ai + μ′a j ≡ 0 (mod p).

Given i < j, it is easy to find λ′, μ′ that satisfy that equation. So the code is
not projective in that case.
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(b) If, on the other hand, a �= b (mod p), the system above forces λ′ = μ′ = 0,
entailing in turn λ = μ = 0.

3. If both λ,μ ∈ Z
×
p2

, then getting rid of λ, μ yields ( ba ) j−i = 1,which is impossible

if ordp2(
b
a ) ≥ N and j − i < N .

Case 2(a) proves the first assertion. Fromcases 2(b) and 3, the second assertion follows.
	


3.1 a �≡ b (mod p)

In this subsection, assume m = 2. We give next a case where C(a, b) is a two-weight
code, and, in that case, compute its weight distribution.

Theorem 1 Let e′ = ordp(
b
a ), and e = ordp2(

b
a ). Suppose that e′ = e, and that

a �= b (mod p). Then the code C(a, b) has nonzero weights {N − N
e , N }. Their

respective frequencies are

A1 = e(p2 − 1), A2 = (p2 − 1)(p2 − e + 1).

Proof Write c = (cn) for a codeword of C = C(a, b). By linearity cn = λan + μbn,
for some λ,μ ∈ Zp2 ..

1. μ �≡ 0 (mod p). Hence μ ∈ Z
×
p2

, and we can rewrite the equation for cn as

cn = μan
(

λ

μ
+ (

b

a
)n

)
.

If λ
μ

∈ 〈 ba 〉, this equation in n admits N
e solutions, and wH (c) = N − N

e .

If, on the other hand, λ
μ

/∈ 〈 ba 〉, it has no solution and wH (c) = N .

2. μ ≡ 0 (mod p), λ �≡ 0 (mod p). By reduction (mod p) we see that cn �= 0,
and wH (c) = N .

3. μ ≡ 0 (mod p), λ ≡ 0 (mod p).Thatmeans that c = pc′ for some c′ ∈ Tor(C).

But Tor(C) is a replication of a reducible cyclic code of dimension 2 overFp .Thus,

its possible nonzero weights are, by [15], {N ′, N ′ − N ′
e′ }, for some divisor N ′ of

N . Since e′ = e, we see that

N

N ′ {N ′, N ′ − N ′

e′ } = {N , N − N

e
}.

We claim that |C | = p4. This will be proved upon using Proposition 1 as follows.
Since R(C) ⊆ Tor(C) and dim R(C) = 2,we see that Tor(C) = R(C) (note that
the dimension of Tor(C) is at most 2 by point 4). Then |C | = |R(C)||Tor(C)| =
p2 × p2 = p4, by the above considerations.

123



178 Journal of Algebraic Combinatorics (2022) 55:173–184

We can now compute the weight distribution of C as a function of N and p. Since
a, b ∈ Z

×
p2

,we see that the dual distance ofC(a, b) is at least two. The frequencies
of the weights can then be computed by the first two Pless power moments [10,
§7.3]. They are thus solutions of the system

A1 + A2 = p4 − 1, (N − N

e
)A1 + N A2 = p2(p2 − 1)N . 	


Example For p = 3, N = 6 and a = 1 , b = 8, we have e = e′ = 2 and we obtain
the weight distribution

[〈0, 1〉, 〈3, 16〉, 〈6, 64〉].

The case e = N of Theorem 1 gives the best parameters.

Corollary 1 Let e′ = ordp(
a
b ), and e = ordp2(

a
b ). Suppose that e′ = e = N , and

that a �= b (mod p). Then the code C(a, b) is optimal.

Proof In that case, the minimum distance is N − 1. The code is MDR in the sense of
[14, Chap. 12]. 	

Example For p = 5, N = 4 and a = 24 , b = 7, we have e = e′ = 4 and we obtain
the weight distribution

[〈0, 1〉, 〈3, 96〉, 〈4, 528〉].

3.2 a ≡ b (mod p)

In this subsection, assume m = 2. We give a construction with hypotheses exclusive
from that of Theorem 1.

Theorem 2 Let e = ordp2(
a
b ). Suppose that a ≡ b (mod p). Then the code C(a, b)

has nonzero weights {N − N
e , N }. Their respective frequencies are

A1 = e(p − 1), A2 = (p − 1)(p2 + p + 1 − e).

Proof Write c = (cn) for a codeword of C = C(a, b). By linearity cn = λan + μbn,
for some λ,μ ∈ Zp2 . We have the same three cases as in the proof of Theorem 1, that
is

1. μ �= 0 (mod p);
2. μ ≡ 0 (mod p), λ �= 0 (mod p);
3. μ ≡ 0 (mod p), λ ≡ 0 (mod p).

Points 1 and 2 can be treated as in the proof of Theorem 1. To deal with case three,
we write c = pc′ with c′

n = λ′an + μ′bn . Now cn = 0 iff c′
n ≡ 0 (mod p), which

happens iff λ′ + μ′ ≡ 0 (mod p), since an ≡ bn (mod p), and an �≡ 0 (mod p).
Thus either c = 0 or c′

n �≡ 0, for all n = 1, 2, . . . , N . In that case wH (c) = N .
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We claim that |C | = p3. Indeed |R(C)| = p, by the condition a ≡ b (mod p).
That Tor(C) = R(C) is impossible since then the code would be generated by

(
a a2 . . . aN

pa pa2 . . . paN

)
,

which generates a one-weight code, contradicting the previous paragraph. Thus,
Tor(C) has dimension 2, by 4. of Proposition 1, and by 3. of Proposition 1 we
obtain

|C | = |R(C)||Tor(C)| = p × p2 = p3.

We can now compute the weight distribution of C . Since a, b ∈ Z
×
p2

, we see that
the dual distance of C(a, b) is at least two. The frequencies of the weights can then
be computed by the first two Pless power moments [11, §7.3]. They are thus solutions
of the system

A1 + A2 = |C | − 1, (N − N

e
)A1 + N A2 = N |C | (p

2 − 1)

p2
. 	


Example For p = 3, N = 6 and a = 1 , b = 4, or a = 1 , b = 7, we have e = 3 and
we obtain the weight distribution

[〈0, 1〉, 〈4, 6〉, 〈6, 20〉].

4 Strongly regular graphs

Define the graph �(a, b) as the coset graph of C(a, b)⊥. The codes of Theorem 1 give
the following graphs.

Theorem 3 Keep the notation and hypotheses of Theorem 1. Assume, furthermore, that
ordp2(

b
a ) ≥ N. Then the graph �(a, b) is a SRG on p4 vertices of degree N (p2 − 1).

Its restricted eigenvalues are N
e (q − e),−N of respective multiplicities A1, A2 of

Theorem 1.

Proof By Proposition 3 the code C(a, b) is projective, which shows that �(a, b) has
nomultiple edges. By Theorem 11.1.11 of [2], the restricted eigenvalues are computed
as λi = n(p2 − 1) − p2w′

i for i = 1, 2 with the weights w′
1 = N − N

e and w′
2 = N

from Theorem 1, and their multiplicities equal the frequencies of the corresponding
weights. 	

Examples

• For p = 3, N = 2 and a = 1 , b = 8, we have e = e′ = N = 2 and we
obtain a SRG of parameters (81, 16, 7, 2), and spectrum {161, 716,−264}. This
SRG is unique with these parameters from [17]. Alternative constructions include
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a [8, 4, {6, 9}]3. The fact that C(1, 8)⊥ = {0}, shows that it is a Hamming graph
H(2, 9), also called grid graph in [2, p.262].

• For p = 5, N = 4 and a = 24 , b = 7, we have e = e′ = N = 4 and we
obtain a SRG of parameters (625, 96, 29, 12), and spectrum {961, 2196,−4528}.
Alternative constructions from [17] are from a [24, 4, {15, 20}]5, and [3]. It
would be interesting to find a direct link between the [24, 4, {15, 20}]5, and our
(4, 252, {3, 4})25.

5 Generalization

In this section, we indicate briefly how the previous constructions generalize from
p2 to pm . The length of the codes considered is N | φ(pm) = pm−1(p − 1). The
generalization of Theorem 1 is as follows. Note that, since no claim is made on
|C(a, b)| we can do without the hypothesis a �= b (mod pm−1).

Theorem 4 Let m ≥ 2 be an integer, and put ei = ordpm−i ( ab ). Suppose that for all
i = 0, 1, . . . ,m − 1 we have ei = e. Then the code C(a, b) has nonzero weights
{N − N

e , N }. Their respective frequencies are

A1 = e

(
M

pm
− 1

)
, A2 = M − 1 − e

(
M

pm
− 1

)
,

where we have let M = |C(a, b)|.

Proof The proof goes by induction on m. The base point m = 2 of the induction is
Theorem 3 of [15]. Write c = (cn) for a codeword of C = C(a, b). By linearity
cn = λan + μbn, for some λ,μ ∈ Zpm . We have the same three cases as in the proof
of Theorem 1, that is

1. μ �≡ 0 (mod p);
2. μ ≡ 0 (mod p), λ �≡ 0 (mod p);
3. μ ≡ 0 (mod p), λ ≡ 0 (mod p).

Points 1 and 2 are exactly like before. To deal with case three, we write c = pc′
with c′

n = λ′an + μ′bn . In fact c′
n (mod pm) is a replication of a codeword in a code

C(a′, b′), of length N ′ | N with a′, b′ the remainders of a and b, respectively, under
division by pm−1. Thus, its possible nonzero weights are, by induction hypothesis,
{N ′, N ′ − N ′

e1
}, for some divisor N ′ of N . Since e1 = e0 = e, we see that
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N

N ′

{
N ′, N ′ − N ′

e1

}
=

{
N , N − N

e

}
.

Since a, b ∈ Z
×
pm , we see that the dual distance of C(a, b) is at least two. The

frequencies of the weights can then be computed by the first two Pless power moments
[11, §7.3]. They are thus solutions of the system

A1 + A2 = M − 1,

(
N − N

e

)
A1 + N A2 = NM

(pm − 1)

pm
.

	

The generalization of Theorem 2 is as follows.

Theorem 5 Let e = ordpm ( ab ). Suppose that a ≡ b (mod pm−1). Then the code

C(a, b) has nonzero weights {N − N
e , N }. Their respective frequencies are

A1 = e

(
M

pm
− 1

)
, A2 = M − 1 − e

(
M

pm
− 1

)
,

where we have let M = |C(a, b)|.
Proof Write c = (cn) for a codeword of C = C(a, b). By linearity cn = λan + μbn,
for some λ,μ ∈ Zpm . We have the same three cases as in the proof of Theorem 1, that
is

1. μ �≡ 0 (mod p);
2. μ ≡ 0 (mod p), λ �≡ 0 (mod p);
3. μ ≡ 0 (mod p), λ ≡ 0 (mod p).

Points 1 and 2 are exactly like before. To deal with case three, we write c = pc′
with c′

n = λ′an + μ′bn . Now cn = 0 iff c′
n ≡ 0 (mod pm−1), which happens iff

λ′ + μ′ ≡ 0 (mod pm−1), since an ≡ bn (mod pm−1), and an �≡ 0 (mod pm).

Thus either c = 0, or c′
n �≡ 0, for all n = 1, 2, . . . , N . In that case wH (c) = N .

The computation of the weight distribution is the same as in the proof of Theorem 4.
	


Denote by �(a, b) the coset graph for C(a, b)⊥.

Theorem 6 Keep the notation and hypotheses of Theorem 4. Assume, furthermore, that
C(a, b) is projective. Then the graph �(a, b) is a SRG on |C(a, b)| vertices of degree
N (pm − 1). Its restricted eigenvalues are N

e (q − e),−N of respective multiplicities
A1, A2 of Theorem 4.

The proof is similar to that of Theorem 3 and is omitted.
Example For p = m = 3, N = 2 and a = 1 b = 8, we have e = 2 and we obtain the
weight distribution

[〈0, 1〉, 〈1, 52〉, 〈2, 676〉],
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yielding a SRG of parameters (729, 52, 25, 2), with the spectrum {521, 2552,−2676}.
As per [17], the SRG is unique with these parameters and can be also constructed from
a [26, 6, {9, 18}]3. The fact that C(1, 8) = Z

2
27 shows that it is the Hamming graph

H(2, 27) in the notation of [5].

6 Double-root cyclic codes

Let p an odd prime, and let N > 1 be a divisor of pφ(pm) = pm(p − 1). Let a be an
element of Z×

pm . Let C((a)) denote the cyclic code of length pm(p − 1) over Zpm of

check polynomial h(x) = (
(1−ax)

a )2. Note that, since (1−ax)
a | xφ(pm ) − 1 its square

h(x) divides x pφ(pm ) − 1 = (xφ(pm ) − 1)p. Consider the punctured code Ca of length
p of C((a)) defined by its generator matrix Ga as

Ga =
(
a a2 . . . a p

a 2a2 . . . pa p

)
.

Theorem 7 The code Ca is a projective two-weight code of parameters (p, p2m, {p−
1, p}, with weight distribution

[〈1, 0〉, 〈p − 1, p(pm − 1)〉, 〈p, (pm − 1)(pm − p + 1)〉].

Proof The code is projective as can be seen by adapting the proof of Proposition 3.

Computing the determinant of

(
ai a j

iai ja j

)
, which equals ( j − i)ai+ j , modulo pm−1

concludes the last case of the proof.
The determination of the weights goes by induction on m. The base point m = 1

of the induction is Theorem 3 of [13]. Write c = (cn) for a codeword of C = Ca . By
linearity cn = (λ + μn)an, for some λ,μ ∈ Zpm . We have the same three cases as in
the proof of Theorem 1, that is

1. μ �≡ 0 (mod p);
2. μ ≡ 0 (mod p), λ �≡ 0 (mod p);
3. μ ≡ 0 (mod p), λ ≡ 0 (mod p).

In case 1, the equation cn = 0 has at most one solution in n. In that case, wH (c) =
p − 1 or wH (c) = p. Case 2 by reduction modulo p implies that cn �= 0. In case 3,
we write cn = pc′

n, where c′
n belongs to the code Ca over Zpm−1 and conclude by

induction hypothesis.
The weight distribution is determined by solving the system

A1 + A2 = p2m − 1, (p − 1)A1 + pA2 = pm(pm − 1)p. 	


Examples

1. For p = 3, m = 2 with a = 1, we obtain a code of weight distribution

[〈0, 1〉, 〈2, 16〉, 〈3, 64〉],
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and a SRG of parameters (81, 24, 9, 6) with spectrum {241, 616,−364}. An alter-
nate construction from [4] is by considering a [12, 4, {6, 9)]3.

2. For p = 3, m = 3 with a = 1, we obtain a code of weight distribution

[〈0, 1〉, 〈2, 78〉, 〈3, 650〉],

and a SRG of parameters (729, 78, 27, 6)with spectrum {781, 2478,−3650}.Alter-
nate construction from [17]: a [39, 6, {18, 27}]3.

3. For p = 5, m = 2 with a = 1, we obtain a code of weight distribution

[〈0, 1〉, 〈4, 120〉, 〈5, 504〉],

a SRG on parameters (625, 120, 35, 20) with spectrum {1201, 20120,−5504}. An
alternate construction from [17] is by considering a [30, 4, {20, 25)}]5.

7 Conclusion

In this paper, we have constructed projective two-weight codes from reducible cyclic
codes of rank 2 over the ringZpm . The weight distribution, and, in some cases, the size
of the code, have been determined explicitly. In particular, when the check polynomial
is a square, we have used a punctured code to construct projective two-weight codes.

In all these constructions, the same weight distributions are reached several times
for different values of a and b, or of a in the double-root case. It would be interesting
to know how many of the codes with the same weight distribution are permutation
inequivalent. Proposition 2 is a first step in that direction. From the projective two-
weight codes constructed SRGs have been built, giving rise to alternative realizations
of the parameters in [17], using shorter codes over larger alphabets. In such a case,
finding a direct link between the two codes involved in the spirit of [16] might be
illuminating.

At a more fundamental level, generalizing this work to other rings is a promising
direction of research.
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