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Abstract
In this paper, we give a characterisation for a class of edge-transitive Cayley graphs and
provide a method for constructing edge-transitive graphs of valency 4 with arbitrarily
large vertex stabiliser. In particular, in the last section, we obtain certain extensions of
the results of Li et al. (Tetravalent edge-transitive Cayley graphs with odd number of
vertices, J Comb Theory Ser B 96:164–181, 2006) on half-transitive graphs.
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1 Introduction

Graphs considered in this paper are assumed to be finite, simple, connected and undi-
rected. For a graphΓ , let VΓ , EΓ and AutΓ denote its vertex set, edge set and the full
automorphism group, respectively. If a subgroup X ≤ AutΓ acts transitively on VΓ

or EΓ , then the graph Γ is said to be X -vertex-transitive or X -edge-transitive, respec-
tively. A sequence v0, v1, . . . , vs of vertices of Γ is called an s-arc if vi−1 �= vi+1
for 1 ≤ i ≤ s − 1, and {vi , vi+1} is an edge for 0 ≤ i ≤ s − 1. The graph Γ is
called (X , s)-arc-transitive if X is transitive on the s-arcs of Γ ; if in addition X is
not transitive on the (s + 1)-arcs, then Γ is said to be (X , s)-transitive. In particu-
lar, a 1-arc is simply called an arc, and Γ is simply called X -arc-transitive if it is
(X , 1)-arc-transitive.

A graphΓ is called aCayley graph if there exists a groupG and a subset S ⊂ G\{1}
with S = S−1: = {g−1 | g ∈ S} such that the vertices of Γ may be identified with the
elements ofG in such a way that x is adjacent to y if and only if yx−1 ∈ S. The Cayley
graph Γ is denoted by Cay(G, S). Throughout this paper, denote by 1 the vertex of
Cay(G, S) corresponding to the identity of G.

It is well known that a graph Γ is a Cayley graph of a group G if and only if the
full automorphism group AutΓ contains a subgroup which is regular on vertices and
isomorphic to G. In particular, a Cayley graph Cay(G, S) is vertex-transitive, but of
course not necessarily edge-transitive. In the literature, the Cayley graphs which are
edge-transitive have received much attention, and special classes of edge-transitive
Cayley graphs have been well investigated. For instance, see [10,22,35,37] for those
with valency 4; see [23,32,33] for characterisations of edge-transitive Cayley graphs
of metacyclic Frobenius groups; see [5] for a classification of normal edge-transitive
Cayley graphs of Frobenius groups of order a product of two primes; see [26] for a
classification of cubic arc-transitive Cayley graphs on Frobenius groups. In this paper,
we investigate tetravalent edge-transitive Cayley graphs of Frobenius groups.

An edge-transitive graph Γ is called half-transitive if AutΓ is transitive on the
vertices but not on the arcs of Γ . In view of the fact that 4 is the smallest admissible
valency for a half-transitive graph, special attention has been given to the study of
tetravalent half-transitive graphs (for example, see [10–12,27,35,40]). In fact, many of
the interesting families of half-transitive graphs are constructed as metacirculants, see
[28,40] for reference. Kutnar et al. [18] gave one family of half-transitive graphs that
are not metacirculant. It is therefore worth mentioning some families of tetravalent
half-transitive graphs of non-metacirculants. The main results (Theorems 1.1, 1.2)
provide a generic construction of half-transitive graphs of valency 4, which are not
metacirculants. To state our results, we need more definitions.

A typical method for studying vertex-transitive graphs is taking certain quotients.
For an X -vertex-transitive graphΓ and a normal subgroup N�X , the normal quotient
graph ΓN induced by N is the graph that has vertex set VΓN = {uN

∣
∣ u ∈ VΓ } such

that uN and vN are adjacent if and only if u is adjacent in Γ to some vertex in vN . If
the valency of ΓN equals the valency of Γ , then Γ is called a normal cover of ΓN .

For an integer m ≥ 3, we denote by Cm[2] the lexicographic product of the empty
graph 2K1 of order 2 by a cycle Cm of size m, which has vertex set {(i, j) ∣

∣ 1 ≤
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i ≤ m, 1 ≤ j ≤ 2} such that (i, j) and (i ′, j ′) are adjacent if and only if i − i ′ ≡
±1 (modm).

A Frobenius groupG is a semidirect product of a normal subgroupW by a subgroup
H such that none of the non-identity elements of H centralises a non-identity element
of W , refer to Dixon and Mortimer [7].

Let F be a field, G a group and V a vector space over F such that G ≤ GL(V ).
Suppose that V = V1 ⊕ · · · ⊕ Vr (r > 1), where Vi are subspaces of V which are
transitively permuted by the action of G. We call G imprimitive on V if there exists
such a decomposition. Otherwise, G is called primitive on V . For positive integers p
and n, we call d the order of p modulo n if n divides pd − 1 but n does not divide
pi − 1 for i < d, and denote d by ordn(p).

Theorem 1.1 Let G = W :H ∼= Z
d
p:Zn be a Frobenius group, where d = ordn(p) for

a prime p and a positive integer n. Assume that Γ is a connected tetravalent X-edge-
transitive Cayley graph of G, where G ≤ X ≤ AutΓ . If X is soluble, then one of the
following statements holds:

(1) G is normal in X, and X1 ≤ D8;
(2) G ∼= D2p, Γ ∼= Cp[2] and AutΓ ∼= Z

p
2 :D2p;

(3) X = W :((N :H).O) with soc(X) = W × L, and X1 = N .O, where N ∼= Z
�
2 with

2 ≤ � ≤ d, L ∼= 1 or Z2, and O ∼= 1 or Z2, satisfying the following statements:

(i) there exist x1, . . . , xd ∈ W and τ1, . . . , τd ∈ N such that W = 〈x1, . . . , xd〉,
〈xi , τi 〉 ∼= D2p and N = 〈τi 〉 × CN (xi ) for 1 ≤ i ≤ d;

(ii) H does not centralise N, and H is imprimitive on W;
(iii) X/(WN ) ∼= Zn or D2n, and Γ is X-arc-transitive if and only if X/(WN ) ∼=

D2n;

(4) ΓW ∼= C n
2 [2], Γ is a normal cover of ΓW , and X = W :((NH).O) such that

(i) X1 ≤ N .O, N ∩ H ∼= Z2, and H normalises N, but H does not centralise
N, where N ∼= Z

�
2 with 2 ≤ � ≤ n/2, and O ∼= 1 or Z2;

(ii) W is the unique minimal normal subgroup of X, and H is imprimitive on W;
(iii) X/(WN ) ∼= Z n

2
or Dn, and Γ is X-arc-transitive if and only if X/(WN ) ∼=

Dn;

(5) X = ((WN ):H).O, X1 = N .O, and Γ is X-arc-transitive if and only if
X/(WN ) ∼= D2n, where W and N are 2-groups, and O ∼= 1 or Z2.

Remarks on Theorem 1.1.

(a) The Cayley graph Γ in part (1), called a normal edge-transitive graph, is studied
in [31]. Furthermore, if X = AutΓ , then Γ is called a normal Cayley graph,
introduced in [38].

(b) Note that ordn(p) = d if and only if H acts irreducibly on W (such n is called a
primitive divisor of pd − 1), refer to [6, Proposition 2.3].

(c) The group X satisfies part (3) or part (4) if and only if H is imprimitive onW , see
Lemmas 4.4 and 4.5. In addition, H is imprimitive onW if and only if there exists
some prime r dividing d such that n divides r(pd/r − 1), see [6, Proposition 2.8].
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Table 1 Insoluble
automorphism groups with
metacyclic Frobenius subgroups

X G X1

PSL(3, 3):Z2 D26 Z
2
3:GL(2, 3)

PGL(2, 7) D14, Z7:Z3, Z7:Z6 S4,D16,D8

PSL(2, 23) Z23:Z11 S4
PSL(2, 11) Z11:Z5 A4

PGL(2, 11) Z11:Z5, Z11:Z10 S4,A4

PGL(2, 11) × Z2 Z11:Z10 S4

(d) Constructions 3.3 and 3.5 show that the graph Γ indeed exists when the group X
satisfies part (3) or part (4) with O = 1.

Theorem 1.2 Using the notation defined in Theorem 1.1, if X is insoluble, then one of
the following holds:

(1) G ∼= Z
4
p:Z5, X = W .X and ΓW ∼= K5, where soc(X) ∼= A5;

(2) G ∼= Z
4
p:Z10, X = W .(X × Z2) and ΓW ∼= K5,5 − 5K2, where soc(X) ∼= A5;

(3) X is almost simple with one exception, and the triple (X ,G, X1) lies in Table 1.

Remarks on Theorem 1.2.

(a) Constructions 3.7 and 3.9 show that the graph Γ indeed exists when the group X
satisfies part (1) or part (2).

(b) Kuzman [19] classified all arc-transitive elementary abelian covers of the complete
graphK5, and in [9,39], Du et al. classified all regular covers of the graphKn,n −
nK2 with the covering transformation groupZ

2
p orZ

3
p. However, it seems difficult

at the moment to classify such graphK5,5−5K2 with the covering transformation
group Z

4
p.

Theorems 1.1 and 1.2 provide a method for characterising some classes of half-
transitive graphs of valency 4. The following theorem is such an example and
generalises some of the results in [22].

Theorem 1.3 LetG = W :〈h〉 ∼= Z
d
p:Zn be aFrobenius group,whereordn(p) = d > 1

is an odd integer, p is an odd prime, and n � ∣∣ r(pd/r −1) for any prime r dividing d. Let
Γ be a connected tetravalent edge-transitive Cayley graph of G. Then,AutΓ = G:Z2,
Γ is half-transitive, and Γ ∼= Γi = Cay(G, Si ), where 1 ≤ i ≤ � n−1

2 �, (n, i) = 1,
and

Si = {ahi , a−1hi , (ahi )−1, (a−1hi )−1}, where a ∈ W\{1}.

Moreover, if pki ≡ ± j (mod n) for some k ≥ 0, then Γi ∼= Γ j .

Remark If n
∣
∣ r(pd/r − 1) for some prime r dividing d, then 〈h〉 is imprimitive on W ,

refer to Detinko and Flannery [6, Proposition 2.8]. Construction 3.3 shows that there
exist infinite such groupsG, such that the Cayley graphsΓ ofG are not half-transitive.
Therefore, the condition that n � ∣∣ r(pd/r − 1) for any prime r dividing d is needed.
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2 Preliminary results

In this section, we collect the notation and elementary facts as well as some technical
lemmas. Some basic facts will be used in the sequel without further reference.

For a core-free subgroup H of group X and an element a ∈ X\H , let [X :H ] :=
{Hx | x ∈ X}, and define the coset graph

Γ := Cos(X , H , H{a, a−1}H)

with vertex set [X :H ] such that Hx and Hy are adjacent if and only if yx−1 ∈
H{a, a−1}H . The properties stated in the following lemma are well known.

Lemma 2.1 For a coset graph Γ = Cos(X , H , H{a, a−1}H), the following hold:

(i) Γ is X-edge-transitive;
(ii) Γ is X-arc-transitive if and only if HaH = Ha−1H, or equivalently, HaH =

HbH for some b ∈ X\H such that b2 ∈ H ∩ Hb;
(iii) Γ is connected if and only if X = 〈H , a〉;
(iv) the valency of Γ equals

val(Γ ) =
{

|H : H ∩ Ha | if HaH = Ha−1H ,

2|H : H ∩ Ha | otherwise.

Lemma 2.2 Let σ ∈ Aut(X). Then, σ induces an automorphism from Cos(X , H ,

H{a, a−1}H) to Cos(X , Hσ , Hσ {aσ , (aσ )−1}Hσ ). In particular, if σ ∈ NAut(X)(H),
then

Cos(X , H , H{a, a−1}H) ∼= Cos(X , H , H{aσ , (aσ )−1}H).

Proof LetΓ =Cos(X , H , H{a, a−1}H) andΓ ′ =Cos(X , Hσ , Hσ {aσ , (aσ )−1}Hσ ).
For any x, y ∈ X , we have xy−1 ∈ H{a, a−1}H if and only if xσ (yσ )−1 = (xy−1)σ ∈
Hσ {aσ , (aσ )−1}Hσ , and so {Hx, Hy} ∈ EΓ if and only if {Hσ xσ , Hσ yσ } ∈ EΓ ′.

��
The vertex stabiliser for s-arc-transitive graphs of valency 4 is known, refer to [36].

Lemma 2.3 Let Γ be a connected (X , s)-transitive graph of valency 4. Then, s and
the stabiliser Xu are listed in the following table,

s 1 2 3 4 7
Xu 2-group A4, S4 Z3 × A4, (Z3 × A4).Z2, S3 × S4 Z

2
3:GL(2, 3) [35]:GL(2, 3)

where [35] is a 3-group of order 35. In particular, |Xu | divides 24 · 36 if s ≥ 2.

Let Γ = (VΓ , EΓ ) be a connected graph. Assume that X ≤ AutΓ is transitive
on both VΓ and EΓ . By [1, Proposition 3.1] along with [21, Lemma 2.9], we have
the following conclusion.
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Lemma 2.4 Let N � X. Then, the valency of ΓN is a divisor of the valency of Γ . In
particular, if Γ is of valency 4 and X/N is insoluble, then Γ is a normal cover of ΓN .

For a Cayley graph Γ = Cay(G, S), let Aut(G, S) = {α ∈ Aut(G)
∣
∣ Sα = S}.

It is easily shown that Aut(G, S) is a subgroup of AutΓ that fixes the vertex 1 and
normalises the regular subgroup of AutΓ . Then, we have the following property.

Lemma 2.5 Let G = W :H = Z
d
p:Zn be a Frobenius group, where ordn(p) = d for a

prime p and an integer n. Let Γ = Cay(G, S) be connected of valency 4. Assume that
AutΓ has a subgroup X such that Γ is X-edge-transitive and G� X. Then, X1 ≤ D8.

Proof Since Γ is connected, we have 〈S〉 = G, and so Aut(G, S) is faithful on
S. Hence, Aut(G, S) ≤ S4. By [13, Lemma 2.1], we obtain X ≤ NAutΓ (G) =
G:Aut(G, S), and so X1 ≤ Aut(G, S) ≤ S4. Suppose that 3 divides |X1|. Then,
X1 is 2-transitive on S. Hence, Γ is (X , 2)-arc-transitive, and all elements in S are
involutions, see for example [20]. In particular, |G| is even. If p = 2, then 〈S〉 ≤ W <

G, which is a contradiction.
Thus, p > 2, and so |H | is even. For this case, G has a cyclic Sylow 2-subgroup,

and so all involutions of G are conjugate. Consequently, 〈S〉 = G ∼= Z
d
p:Z2. As W

is minimal normal in G, one has d = 1, namely, 〈S〉 = G ∼= D2p. Thus, Aut(G) ∼=
Zp:Zp−1. However, since X1 is 2-transitive on S, we have X1 ∼= A4 or S4, which is
impossible. Therefore, X1 ≤ D8. ��

We will also need to know about the order of themaximal p-elements in GL(d, p).

Lemma 2.6 [24, Lemma 2.5] Let p be a prime and d a positive integer. If d ≥ 2, then
the largest order pe of p-elements of GL(d, p) satisfies pe ≥ d > pe−1.

Finally, we quote a result about simple groups, which will be used later.

Lemma 2.7 (Kazarin [17]) Let T be a non-abelian simple group which has a 2′-Hall
subgroup. Then, T = PSL(2, p), where p = 2e−1 is a prime. Furthermore, T = GH ,

where G = Zp:Z p−1
2

and H = Dp+1 = D2e .

3 Existence of graphs satisfying Theorem 1.1 and Theorem 1.2

In this section, we first construct some examples of graphs satisfying Theorem 1.1.
The following construction produces edge-transitive graphs admitting a group X

satisfying part (3) of Theorem 1.1 with L ∼= Z2, and O = 1.

Hypothesis 3.1 Let p = 2�m + 1 be a prime, where m is an odd number and � is a
positive integer. Let d > 1 be an integer.

(i) For 1 ≤ i ≤ d, let Gi = 〈xi 〉:〈τi 〉 ∼= Zp:Zp−1 be a Frobenius group, and
Ci = 〈ci 〉 ∼= Z2.

(ii) Let Y = ((G1 × C1) × · · · × (Gd × Cd)):〈π〉 ∼= ((Zp:Zp−1) × Z2) � Zd =
((Zp:Zp−1) × Z2)

d :Zd , where (xi , τi , ci )π = (xi+1, τi+1, ci+1) (reading the
subscripts modulo d).
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Lemma 3.2 AssumeHypothesis3.1. If d dividesm, thenord2i md(p) = d for1 ≤ i ≤ �.

Proof Let ord2i md(p) = k for some k. Then, 2imd
∣
∣ pk − 1. As d is odd, we deduce

that

d
∣
∣ (pk−1 + pk−2 + · · · + p + 1). (1)

As d divides m, d divides p − 1, and so d divides p j − 1 for j ≥ 1. We derive from
(1) that d divides k. On the other hand, as 2imd divides pd − 1, one has k ≤ d, and
so d = k. ��

By Lemma 3.2, if d divides m, then ord2md(p) = d. Therefore, for convenience,
let

n = 2md, where d divides m. (2)

Construction 3.3 Assume Hypothesis 3.1 and (2). Let

X = W :(N :〈h〉) ∼= Z
d
p:(Zd

2 : Zn)

be a subgroup of Y , such that W ∼= Z
d
p, N ∼= Z

d
2 and 〈h〉 ∼= Zn satisfy

W =
d

∏

i=1

〈xi 〉, N =
d

∏

i=1

〈τ
p−1
2

i 〉 and h = c1τ
p−1
2m

1 π.

Let y = x1h. Set

Γ = Cos(X , N , N {y, y−1}N ).

Lemma 3.4 Let Γ be the graph constructed in Construction 3.3, and let G = W :〈h〉.
Then,Γ is a connected tetravalent X-edge-transitive Cayley graph of Frobenius group
G, and G is not normal in X.

Proof By the definition, N is core-free in X , and hence, X ≤ AutΓ . Now, X = GN
and G ∩ N = 1, and hence, G acts regularly on the vertex set [X :N ]. Thus, Γ is a
Cayley graph ofG. By Hypothesis 3.1, h does not centralise N , and soG is not normal
in X .

Let H = 〈h〉. It is easily shown that H is faithful on W . We claim that H acts
fixed-point-freely on W . Assume otherwise. Let U = 〈w ∣

∣ wh = w,w ∈ W 〉. Then,
U is a proper subgroup of W . By Maschke’s Theorem, W can be decomposed as
W = U × V such that H normalises both U and V . Note that H is fixed-point-free
on V . Let k = dimFp V . Then, k < d. Since o(h) = n = 2md, we deduce that 2md
divides pk − 1, contradicting Lemma 3.2. This establishes the claim. Thus, G is a
Frobenius group.
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Let τ = τ
(p−1)/2
1 · · · τ (p−1)/2

d . Note that y is defined in Construction 3.3. Then, as

[τ, c1] = [τ, π ] = [τ, τ
p−1
2m

1 ] = 1 and xτ
1 = x−1

1 , we have

yτ y−1 = (x1c1τ
p−1
2m

1 π)τ (x1c1τ
p−1
2m

1 π)−1 = x−2
1 ∈ 〈N , y〉.

Thus, as o(x1) = p with p odd, we have x1 ∈ 〈N , y〉. Since W is minimal normal
in G, all the xi belong to 〈N , y〉, and hence, 〈N , y〉 = X . So Γ is connected. Let
c = c1 · · · cd . Then, we calculate that c = hdmτ , and so c ∈ X . Therefore, soc(X) =
W × 〈c〉.

Finally, let σi = τ
p−1
2

i where 1 ≤ i ≤ d. Then, calculations show σ
y
i = σi+1 for

2 ≤ i ≤ d − 1, and σ
y
d = σ1. Since σ

x1
1 = x−2

1 σ1, we have

σ
y
1 = σ

x1c1τ
p−1
2m

1 π

1 = (x−2
1 σ1)

τ

p−1
2m

1 π = ((x−2
1 )τ

p−1
2m

1 σ1)
π = (x−2

2 )τ
p−1
2m

2 σ2 /∈ N .

Thus, N ∩ N y = 〈σ1, σ3, . . . , σd〉 ∼= Z
d−1
2 , and so |N : N ∩ N y | = 2. Since

X ≤ AutΓ , Γ is not a cycle. By Lemma 2.1, Γ is connected, X -edge-transitive and
of valency 4. ��
Remark The normal quotient ΓW induced by W is a cycle, see Lemmas 4.4 and 4.5.

As amatter of fact, there aremany Frobenius groupswhich satisfy Construction 3.3.
For example, G = Z

3
7:Z18, Z

3
13:Z18, Z

5
41:Z50 and so on.

The following construction produces edge-transitive graphs admitting a group X
satisfying part (4) of Theorem 1.1 with O = 1.

Construction 3.5 Assume Hypothesis 3.1 and (2). Let X = W :〈N , h〉 be a subgroup
of Y , such that W ∼= Z

d
p, N ∼= Z

d−1
2 and 〈h〉 ∼= Zn satisfy

W =
d

∏

i=1

〈xi 〉, N =
∏

i �=1

〈τ
p−1
2

i 〉 and h = τ
p−1
2m

1 π.

Let y = x1h. Set

Γ = Cos(X , N , N {y, y−1}N ).

Lemma 3.6 Let Γ be the graph constructed in Construction 3.5, and G = W :〈h〉.
Then,Γ is a connected tetravalent X-edge-transitive Cayley graph of Frobenius group
G, and G is not normal in X.

Proof Arguing similarly as in Lemma 3.4, G is a Frobenius group, and Γ is an X -
edge-transitive Cayley graph of G. By the definition, G is not normal in X .

Let σi = τ
p−1
2

i where 1 ≤ i ≤ d. Then, calculations show σ
y
i = σi+1 for 2 ≤

i ≤ d − 1, and σ
y
d = σ1. It follows that N ∩ N y = 〈σ3, σ4, . . . , σd〉 ∼= Z

d−2
2 , and so
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|N : N ∩ N y | = 2. Thus, Γ is of valency 4. Now, y−1 = π−1τ
− p−1

2m
1 x−1

1 , σπ−1

2 = σ1

and σ
x−1
1

1 = x21σ1, and we have

σ
y−1

2 = σ
π−1τ

− p−1
2m

1 x−1
1

2 = σ
x−1
1

1 = x21σ1 ∈ 〈N , y〉.

Since σ
y
d = σ1 ∈ 〈N , y〉, we obtain x1 ∈ 〈N , y〉. Since W is minimal normal in G,

all the xi belong to 〈N , y〉, and so 〈N , y〉 = X . Consequently, Γ is connected. Thus,
the statement follows. ��
Remark By the definition, h does not normalise N , and thus, X cannot satisfy the
properties in part (ii) of Lemma 4.4. However, h normalises 〈N , h

n
2 〉; namely, X

satisfies the properties in part (ii) of Lemma 4.5. Thus, ΓW ∼= C n
2 [2], where N ,W and

Γ appear in Construction 3.5.

We now construct an example of graph satisfying part (1) of Theorem 1.2.
Although arc-transitive elementary abelian covers of the complete graph K5 were

classified by Kuzman [19], we present here a distinct and independent construction
by using the techniques of groups, and building upon coset graphs.

Let p be a prime, such that 5 is a primitive divisor of p4 − 1. Set

V = 〈a1〉 × · · · × 〈a5〉 ∼= Z
5
p.

Let N = Alt({1, . . . , 5}). Then, for n ∈ N , n acts on V as follows:

(aλ1
1 · · · aλ5

5 )n
−1 = aλ1

1n · · · aλ5
5n , where 1 ≤ λi ≤ p.

Let ai = a5a
−1
i for 1 ≤ i ≤ 4. Set

W = 〈a1〉 × 〈a2〉 × 〈a3〉 × 〈a4〉.

Then, N is faithful on W , and so N can be embedded into GL(W ).

Construction 3.7 Let X = W :N ∼= Z
4
p:A5, and G = W :〈h〉 with h = (12345). Let

R = Alt({2, 3, 4, 5}) ∼= A4, and let g = a1(15)(24). Set

Γ = Cos(X , R, RgR).

Lemma 3.8 LetΓ be the graph constructed inConstruction3.7. Then,Γ is a connected
tetravalent (X , 2)-arc-transitive Cayley graph of Frobenius group G, and G is not
normal in X. In particular, Γ is a normal cover of ΓW and ΓW ∼= K5.

Proof Let H = 〈h〉. By the definition, H is fixed-point-free on W , and so G is a
Frobenius group. Noting that N has a decomposition HR, it implies that R is core-
free in X , and hence, X ≤ AutΓ . Now, X = GR and G ∩ R = 1, and so G is regular
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on the vertex set [X :R]. Thus, Γ is a Cayley graph of G. Obviously, G is not normal
in X .

Denote by u and v the vertices R and Rg, respectively. Then, Xu = R and Xv = Rg .
Since Xuv = Xu ∩ Xv , we have Xuv = 〈(234)〉, and so |R : R ∩ Rg| = 4. By
Lemma 2.1, Γ is of valency 4. Let x = (25)(34). Then, x ∈ R. Noting that g = a1hx ,
we deduce that a1h ∈ 〈R, g〉. Now, (a1h)x = (a5a

−1
1 h)x = a5x a

−1
1x h

x = a2a
−1
1 h−1,

so

a1h(a1h)x = (a5a
−1
1 h)(a2a

−1
1 h−1) = a5a

−1
1 a2h a

−1
1h

= a5a
−1
1 a3a

−1
2

= a1a2a
−1
3 ∈ 〈R, g〉.

Let y = (23)(45). Then, y ∈ 〈R, g〉. Similarly, we calculate that

(a1a2a
−1
3 )y = a1a

−1
2 a3a

−1
4 and (a1a

−1
2 a3a

−1
4 )xy = a1a

−1
2 a−1

4 .

The two equations above yield a3 ∈ 〈R, g〉, and so ai ∈ 〈R, g〉 for i = 1, 2, 4. Thus,
W ≤ 〈R, g〉. Since a1h ∈ 〈R, g〉, we have h ∈ 〈R, g〉, forcing X = 〈R, g〉. Thus, Γ
is connected. Notice that X/W is insoluble. By Lemma 2.4, Γ is a normal cover of
ΓW , and thus, ΓW ∼= K5 by [2, Theorem 1.2]. ��

We end this section by presenting an example satisfying part (2) of Theorem 1.2.
Let p be a prime for which p2 ≡ −1 (mod 10). Set

V = 〈a1, . . . , a5, a1′ , . . . , a5′ 〉 ∼= Z
10
p .

Let S = Sym({1, 1′, . . . , 5, 5′}) ∼= S10. Then, for t ∈ S, t acts on V as follows:

(aλ1
1 · · · aλ5

5 a
λ1′
1′ · · · aλ5′

5′ )t
−1 = aλ1

1t · · · aλ5
5t a

λ1′
(1′)t · · · a

λ5′
(5′)t where 1 ≤ λi , λi ′ ≤ p.

Let T = 〈(12345)(1′2′3′4′5′), (12)(1′2′)〉 and g = (11′) · · · (55′). Then, T ≤ S and
g ∈ S. Since g centralises T , we may set

N = T × 〈g〉 ∼= S5 × Z2.

Let ui = aia
−1
i ′ where 1 ≤ i ≤ 5. SetU = 〈u1, . . . , u5〉. It is straightforward to verify

that N is faithful onU , and so N can be embedded into GL(U ). Let a = a1 · · · a5 and
a′ = a1′ · · · a5′ . Then, 〈a(a′)−1〉 ≤ U . Let wi = ui 〈a(a′)−1〉 where 1 ≤ i ≤ 5. Set

W = U/〈a(a′)−1〉 = 〈w1, . . . , w4〉.

Then, W ∼= Z
4
p. Now, N normalises 〈a(a′)−1〉, and so N induces a faithful action on

W . Therefore, N can be embedded into GL(W ).

Construction 3.9 Let X = W :N ∼= Z
4
p:(S5 × Z2). Let R = 〈(1234)(1′2′3′4′),

(12)(1′2′)〉 ∼= S4 and y = w1w5(15)(1′5′)g. Set

Γ = Cos(X , R, RyR).
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Let G = W :H where H = 〈h, g〉 with h = (12345)(1′2′3′4′5′).

Arguing similarly as in Lemma 3.8, we have the following conclusion.

Lemma 3.10 Let Γ be the graph constructed in Construction 3.9. Then, Γ is a con-
nected tetravalent (X , 2)-arc-transitive Cayley graph of Frobenius group G, and G is
not normal in X. In particular, Γ is a normal cover of ΓW and ΓW ∼= K5,5 − 5K2.

4 Soluble automorphism groups

In this section, let G = W :H = Z
d
p:Zn be a Frobenius group, where ordn(p) = d

for a prime p and a positive integer n. Let Γ = Cay(G, S) be a connected tetravalent
X -edge-transitive Cayley graph, where G ≤ X ≤ AutΓ . We first handle the case
where X is soluble. Let G ∼= D2p with p an odd prime. By virtue of Li et al. [21,
Theorem 1.1], we have the following conclusions.

Lemma 4.1 LetΓ be a connected edge-transitive tetravalentCayley graph of G,where
G ∼= D2p with p an odd prime. Then, either

(i) Γ is arc-regular and AutΓ ∼= D2p:Z4, or
(ii) Γ ∼= Cp[2], and AutΓ ∼= Z

p
2 :D2p.

In the remainder of this section, assume that G � D2p, unless specified otherwise.
Let F be the Fitting subgroup of X . If X is soluble, then CX (F) ≤ F and F �= 1,

see [14]. For a prime q, by Fq we mean a Sylow q-subgroup of F .

Lemma 4.2 Use the notation defined above, then G ∩ F = W.

Proof By the definition, F � X and CX (F) ≤ F ; namely, F is self-centralising.
We claim thatW ≤ F . Suppose for a contradiction thatW � F . Then, G ∩ F = 1.

Since X = GX1, it follows that |F | divides |X1|. By Lemma 2.3, we deduce that F is
either a q-group with q = 2 or 3, or a {2, 3}-group. For convenience, let X = X/F ,
G = GF/F = W :H , and FX the Fitting subgroup of X .

Case 1: F is a q-group. Assume that ΓF is a cycle. By [30, Theorem 4.1], Γ is not
(X , 2)-arc-transitive. By Lemma 2.3, X1 is a 2-group. Noting that |F | divides |X1|, F
is a 2-group. Since K = FK1, K is also a 2-group, and hence, K = F . Noting that
W induces the identity on VΓF , we have W ≤ F , which is a contradiction.

Therefore, Γ is a normal cover of ΓF . Then, |F | divides |G|, and so |F | divides
pd or n. Suppose that |F | divides n. Let F = F/	(F). Then, F is an elementary
abelian group of order q�, where � is a positive integer. By Gorenstein [14, p.174,
Theorem 1.4], W induces a faithful action on F , and so H can be embedded into
Aut(F). Thus, Aut(F) contains an element of order q�. By Lemma 2.6, we deduce
that q�−1 < �. This is not possible.

Thus, |F | divides pd . Then, FX is a p′-group, and so FX ∩ G = 1. Therefore,
|FX | divides |X1|. It implies that |X1| is divisible by two distinct primes, and FX is
a r -group, where r �= p is a prime. Via Lemma 2.3, Γ is (X , 2)-arc-transitive. Let

 = ΓF . Then, 
 is (X , 2)-arc-transitive. Since G is transitive and faithful on V
,
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we deduce that |F | < pd . Note that W is the unique minimal normal subgroup of
G. By Praeger [30, Theorem 4.1], we derive that 
 is a normal cover of 
FX

, and so

|FX | divides |H |. Let FX = FX/	(FX ). Arguing as in the above paragraph, Aut(FX )

contains an element of order |FX |, which is impossible.
Case 2: F is a {2, 3}-group. Then, Γ is (X , 2)-arc-transitive, and so |F | divides

24 · 36. By Praeger [30, Theorem 4.1], Γ is a normal cover of ΓF , or ΓF = K2, or F
is transitive on VΓ .

Assume that Γ is a normal cover of ΓF . Pick u ∈ VΓF . Since G is regular on
VΓ , we deduce that |Gu | = |F |, and hence, ΓF is (G, 2)-arc-transitive. Note that
Gu is a Frobenius group. By Lemma 2.3, we conclude Gu ∼= A4, and so |F | = 12.
Thus, Aut(F) ≤ S3 × Z2, and so W centralises F , contradicting the fact that F is
self-centralising.

Assume that ΓF = K2. Then, |G| divides 25 · 36, and hence, p = 3. Since G is
a Frobenius group, we deduce that G = Z

2
3:Z4, Z

2
3:Z8 or Z

4
3:Z16. Noting that F is a

{2, 3}-group, we have F2 �= 1 and F3 �= 1. For this case, Γ is a normal cover of ΓF2 or
ΓF3 , and so |F | divides 22 ·32, 23 ·32 or 24 ·34 according to whetherG = Z

2
3:Z4,Z2

3:Z8
or Z

4
3:Z16. However, one can quickly verifies by Magma [3] that W centralises F ,

which is a contradiction. In a similar fashion, we exclude the case that F is transitive
on VΓ .

Consequently, W ≤ F , and so G ∩ F = W , completing the proof. ��
Lemma 4.3 With the notation before Lemma 4.1, the following statements hold:

(i) if p is an odd prime, then W � X;
(ii) if p = 2, then F = O2(X), and either

(a) W < F, ΓF is a cycle, and X = (F :H).O, where O = 1 or Z2, or
(b) W = F and further, W is characteristic in X.

Proof Let p be an odd prime. By Lemma 4.2, W ≤ F , and so W ≤ Fp. Let p > 3.
Then, as |FpG : G| = |Fp : W | divides |X1|, we conclude that W = Fp, and so
W � X . Let p = 3. If W < F3, then Γ is (X , 2)-arc-transitive, and so ΓF3 = K2.
Thus, |G| divides 2|F3|, and so |H | = 2. SinceW is minimal normal in G, we deduce
that G ∼= D6, contradicting our assumption. Thus, W = F3. So part (i) holds.

Let p = 2. By Lemma 4.2, W ≤ F2, and so either W = F2 � X or W < F2.
Assume that the latter case occurs. If F3 �= 1, then 3 divides |X1|. By Lemma 2.3, Γ
is (X , 2)-arc-transitive. By Praeger [30, Theorem 4.1], Γ is a normal cover of ΓF2 ,
and so F2 = W , which is a contradiction. Thus, F is a 2-group, and ΓF is a cycle. It is
easily shown that F is the kernel of X acting on VΓF . Consequently, X = (F :H).O
where O ∼= 1 or Z2. Thus, either ΓF is a cycle or W � X , as in part (ii). ��

We now assume that W � X . By virtue of Lemma 2.4, either the normal quotient
ΓW is a cycle, or Γ is a normal cover of ΓW . We first handle the case where ΓW is a
cycle.

Lemma 4.4 Let K be the kernel of X acting on VΓW . Then, the following hold.

(i) X = ((WK1):H).O, X1 = K1.O and W ∼= Z
d
2 , where O ∼= 1 or Z2;
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(ii) Assume p is an odd prime. Then, either

(1) G is normal in X, or
(2) G is not normal in X, and

(a) X = W :((K1:H).O), and H does not centralise K1 where K1 ∼= Z
�
2 with

2 ≤ � ≤ d, and O ∼= 1 or Z2;
(b) there exist x1, . . . , xd ∈ W and τ1, . . . , τd ∈ K1 such that W =

〈x1, . . . , xd〉, 〈xi , τi 〉 ∼= D2p, and K1 = 〈τi 〉 × CK1(xi ) for 1 ≤ i ≤ d;
(c) soc(X) = W × L, where L ∼= 1 or Z2;
(d) H is imprimitive on W.

Proof Let B be a vertex of ΓW . Then, W acts regularly on B. Thus, K = WK1 and
K ∩ H = 1, where K1 is a 2-group. For this case, ΓW is a connected Cayley graph
of G/W . Since H is of order n, ΓW is a cycle of size n. It follows that X/K ∼= Zn or
D2n . Further, Γ is X -arc-transitive if and only if X/K ∼= D2n .

Assume first that p = 2. Since (|K |, |H |) = 1, we conclude that K :H ≤ X .
Noting that X/K is isomorphic to a subgroup of D2n , it follows that X = (K :H).O
and X1 = K1.O where O ∼= 1 or Z2, as in part (i).

Assume now that p is an odd prime. Furthermore, we assume that G is not normal
in X . If K1 = 1, then K = W , and hence, G � X , which is a contradiction. Thus,
K1 �= 1.

LetU = NX (K1). Since K1 � X , it implies thatU �= X . Noting that (|W |, |K1|) =
1, we obtain that NX/W (K/W ) = NX/W (WK1/W ) = NX (K1)W/W = UW/W . It
follows from K/W � X/W that X = WU . Since W � X , W ∩U �U . Furthermore,
W ∩ U � W since W is abelian. Thus, W ∩ U � 〈U ,W 〉 = UW = X . If W ≤ U ,
then K = WK1 = W × K1, and hence, K1 � X , which is a contradiction. Thus,
W ∩ U < W . If W ∩ U �= 1, then CW (K1) �= 1, and so CW (K ) �= 1. Since W is
minimal in G, we deduce that CW (K ) = W , and so K1 � X , again a contradiction.
Thus, W ∩ U = 1, and so K ∩ U = WK1 ∩ U = (W ∩ U )K1 = K1. Now,
X/K = UW/K = UK/K ∼= U/(K ∩ U ) = U/K1, and hence, U = (K1.Ĥ).O,
where Ĥ ∼= Zn and O ∼= 1 or Z2. Since X = WU and (|U |, |W |) = 1, we conclude
that Hg ≤ U for some g ∈ W . For convenience, we may assume that H ≤ U , and
so U = (K1:H).O. Thus, X1 = K1.O. Furthermore, since G is not normal in X , it
follows that H does not centralise K1.

Set Y = W :(K1:H). Then, Y has index at most 2 in X , and Γ is Y -edge-transitive.
Clearly, Γ is not Y -arc-transitive. Hence, Γ = Cos(Y , K1, K1{y, y−1}K1), where
y ∈ Y is such that 〈K1, y〉 = Y and K1 ∩ K y

1 has index 2 in K1. We may choose
y ∈ G such that y = hx where x ∈ W and 〈h〉 = H . Then, K1 ∩ K y

1 = K1 ∩ K x
1 .

We claim that K1 ∩ K x
1 = CK1(x). For any σ ∈ K1 ∩ K x

1 , we have σ x−1 ∈ K1,

and so σ−1σ x−1 ∈ K1. Since x ∈ W and W � WK1, we obtain that σ−1σ x−1 =
(σ−1xσ)x−1 ∈ W . So σ−1σ x−1 ∈ W ∩K1 = 1, and σ x−1 = σ . Thus, σ centralises x .
It follows that K1∩K x

1 ≤ CK1(x). Clearly,CK1(x) ≤ K1∩K x
1 . SoCK1(x) = K1∩K x

1 ,
as required.

Noting that W is a minimal normal subgroup of X and X = WU , we obtain that
W = 〈xσ1〉 × 〈xσ2〉 × · · · × 〈xσd 〉 where σ1 = 1, σ2, . . . , σd ∈ U . Then, CK1(x

σi ) =
(CK1(x))

σi < K σi
1 = K1. The intersection ∩d

i=1CK1(x
σi ) ≤ CK (W ) = W , and
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hence, ∩d
i=1CK1(x

σi ) = 1. Since CK1(x
σi ) is a maximal subgroup of K1, the Frattini

subgroup 	(K1) ≤ ∩d
i=1CK1(x

σi ) = 1. Thus, K1 is an elementary abelian 2-group,
that is, K1 ∼= Z

�
2 for some � ≥ 1. Since ∩d

i=1CK1(x
σi ) = 1, it follows that � ≤ d.

Assume � = 1. Then, K1 ∼= Z2 and so K1 ≤ CX (H). Thus, G� X , which contradicts
the fact that G is not normal in X . Therefore, � > 1, as in part (a).

SinceCK1(x)has index 2 in K1, there exists some τ1 belonging to K1 such that K1 =
〈τ1〉 × CK1(x). Set x1 = x−1xτ1 . Then, x1 �= 1, xτ1

1 = x−1
1 and CK1(x) = CK1(x1),

and hence, K1 = 〈τ1〉 × CK1(x1). Noticing that W is a minimal normal subgroup of
X = WU , there exist μ1 = 1, μ2, . . . , μd ∈ U such thatW = 〈xμ1

1 〉× 〈xμ2
1 〉× · · ·×

〈xμd
1 〉. Let xi = xμi

1 and τi = τ
μi
1 , where i = 1, . . . , d. Then, Z�−1

2
∼= (CK1(x1))

μi =
CK

μi
1

(xμi
1 ) = CK1(xi ), and K1 = Kμi

1 = 〈τi 〉×CK1(xi ). Furthermore, xτi
i = xτ1μi

1 =
(x−1

1 )μi = x−1
i , and thereby, 〈xi , τi 〉 ∼= D2p, as in part (b).

Recall that W ∼= Z
d
p for an odd prime p. Since G is not normal in X , we conclude

that d > 1. Assume that X has a minimal normal subgroup L �= W . Then,W ∩L = 1,
and so LK/K � X/K ≤ D2n . It follows that either L ≤ K or L ∩ K = 1. If L ≤ K ,
then L is a 2-group. Since K1 is a Sylow 2-subgroup of K , we conclude that L � K1,
and thereby, L = 1, which is impossible. Thus, L ∩ K = 1, and so |L| divides |X1|.
Consequently, L ∼= Z2. So soc(X) = W × L , as in part (c).

By the previous paragraph, we obtain CX (W ) = W × L where L ∼= 1 or Z2. Let
X = X/L , G = GL/L and K 1 = K1L/L . Then, G ∼= G and K 1 ∼= K1. Write
G = W :H . Then, H normalises K 1, and H K 1 is faithful and irreducible on W . It is
well known that each irreducible representation of K 1 over Fp is of dimension 1. Via
Clifford’s Theorem, W can be decomposed as

W = W1 × · · · × Wt with Wi = Ue
i (1 ≤ i ≤ t),

such that K 1 normalises each Ui , and all the Ui are pairwise non-isomorphic irre-
ducible with respect to the action of K 1. Assume that t = 1. Since K 1 is faithful onW ,
we deduce that K 1 is faithful and irreducible onU1. By Gorenstein [14, Theorem 2.3,
p.65], K 1 is cyclic, which is a contradiction. Thus, t ≥ 2. Now, H normalises K 1, and
we conclude that H preserves such decomposition. Consequently, H is imprimitive
on W , and so H is imprimitive on W , as in part (d).

This completes the proof of Lemma 4.4. ��
We now handle the case where Γ is a normal cover of ΓW .

Lemma 4.5 Assume that Γ is a normal cover of ΓW . Then, either

(i) G is normal in X, or
(ii) G is not normal in X, and

(a) ΓW ∼= C n
2 [2];

(b) X = W :((NH).O), X1 ≤ N .O, N ∩ H ∼= Z2, and H normalises N, but H
does not centralise N, where N ∼= Z

�
2 with 2 ≤ � ≤ n/2, and O ∼= 1 or Z2;

(c) W is unique minimal normal in X, and H is imprimitive on W;
(d) X/(WN ) ∼= Z n

2
or Dn, and Γ is X-arc-transitive if and only if X/(WN ) ∼=

Dn.
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Proof Let H = G/W and X = X/W . We first note that ΓW is a Cayley graph of
H . By Baik et al. [2, Theorem 1.2], we deduce that H � AutΓW , or ΓW = K5 with
H = Z5, or ΓW = K5,5 − 5K2 with H = Z10, or ΓW = C n

2 [2].
Let H �AutΓW . Then, H � X , and so G � X . Let ΓW = K5 with H = Z5. Then,

AutΓW = S5. Since X is soluble, X is also soluble. Also, since H ≤ X , we deduce
that X ≤ Z5:Z4, and so H � X . Thus, G � X . Let ΓW = K5,5 − 5K2 with H = Z10.
Then, AutΓW = S5 × Z2. As above, we obtain that H � X , and so G � X .

Let ΓW = C n
2 [2]. Write n = 2m. Then, AutΓW ∼= Z

m
2 :Dn . Let K ∼= Z

m
2 be such

that K � AutΓW . Then, AutΓW = (K H):O, where O ∼= Z2. Let u be a vertex of ΓW

for which 1 ∈ u. Choose M ≤ K such that |M| = 2m−1 and (AutΓW )u = M :O.
Noting that X K/K ∼= H O/((H O) ∩ K ) where O = 1 or O, we conclude that

X = (X ∩ K )H O, and Γ is X -arc-transitive if and only if O = O. Let K̂ = X ∩ K .
Then, K̂ � X and K̂ ∩ H ∼= Z2. Thus, X = W .((K̂ H).O), where O ∼= O. Let K
be the preimage of K̂ under X → X/W . Note that W is of odd order. By Schur–
Zassenhaus’s Theorem, K = W :N , where N ∼= K̂ . It further implies that N ∼= Z

k
2,

where 1 ≤ k ≤ m.
Now, (|N |, |W |) = 1, we obtain X/W = NX/W (NW/W ) = NX (N )W/W , and

hence, X = WNX (N ). Since H ≤ X , we may assume without loss of generality that
H is a subgroup of NX (N ). Thus, X = W :((NH).O). By the previous paragraph, we
conclude that N ∩ H ∼= Z2. If k = 1, then NH = H , and so G � X . In what follows,
we assume that G is not normal in X . Thus, k ≥ 2, and so 2 ≤ k ≤ m.

SetY = W :(NH). SinceG ≤ Y , we haveY = GY1. Noting that |Y | = |W ||H ||N |
|H∩N | =

|G||Y1|, we have |Y1| = |N |
|N∩H | = |N |

2 . Let Y = Y/W . By the above paragraph, we

deduce that |Yu | = |N |
2 , and thus, Y1W/W = Y u . Since Yu = Y ∩ M ≤ K̂ and

K̂ = NW/W , it follows that Y1W/W ≤ NW/W . Consequently, Y1 ≤ NW . Via
Sylow’s Theorem, we may assume that Y1 is a subgroup of N , and so Y1 has index 2
in N . Thus, X1 ≤ N .O, and X1 has index 2 in N .O, as in part (b).

Let C : = CNH (W ). Then, C is normal in Y . In what follows, we prove that C = 1.
Suppose for a contradiction that C �= 1. Without loss of generality, we assume that C
is minimal in Y . Since H acts fixed-point-freely on W , we have C ∩ H = 1. Let C be
the image of C under X → X/W . Then, C is minimal normal in Y , and hence, C is
a subgroup of K̂ . It implies that C ∼= Z

�
2 for some �.

Let K = 〈σ1, . . . , σm〉. Note that H acts by conjugation transitively on
{σ1, . . . , σm}. Write H = 〈h〉. Then, h = σπ , where σ ∈ K , and π is a m-cycle.
Relabeling if necessary, we may take π−1 = (12 · · ·m). Let Ku = ∏

i �=1
〈σi 〉. Choose

v,w ∈ ΓW (u) for which K v = ∏

i �=2
〈σi 〉 and Kw = ∏

i �=m
〈σi 〉. Pick x ∈ C such that

x ∈ Ku , but x /∈ K v . Then,

x = σ2 · · · σi · · · σr , where 2 < · · · < i < · · · < r ≤ m.

Let t = m − r . We then calculate that

xh
t = σ2π t · · · σrπ t = σ(2+t) · · · σm .
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It follows that 〈x, xht 〉 ≤ Ku ∩ C , and hence ΓW is C :H -edge-transitive.
Let Z = (W ×C):H . By the previous paragraph, Γ is Z -edge-transitive. However,

Γ is not Z -arc-transitive. By Lemma 2.1, Γ = Cos(Z , Z1, Z1{g, g−1}Z1), where
Z = 〈Z1, g〉 and |Z1 : (Z1 ∩ Zg

1 )| = 2. By Lemma 2.2 along with Sylow’s Theorem,
we may assume that Z1 ≤ HC . Write H = 〈h〉. Since Z1 ∼= Z

�
2, we deduce that

Z1 ≤ R: = 〈C, hm〉, and hence, |Z1 ∩C | = 2�−1. Let L: = Z1 ∩C = 〈τ1, . . . , τ�−1〉.
Then, C = 〈τ1, . . . , τ�−1, τ�〉 for τ� ∈ C\Z1, and thereby,

Z1 = 〈τ1, . . . , τ�−1, τ�h
m〉.

Since C is minimal in Z , there exists τ ∈ L such that τ g = x�τ�, where x� ∈ L . If
(hm)g ∈ R, then Z ≤ R:〈g〉, which contradicts the fact that G is a Frobenius group.
Thus, (hm)g /∈ R, and so (τ�hm)g /∈ R. Let T = 〈τ g, (τ�hm)g〉. Then, T ∩Z1 = 1, and
thereby, Z1 ∩ Zg

1 has index at least 4 in Z1, which is a contradiction. Thus, C = 1, and
soW is the uniqueminimal normal subgroup of X . Arguing similarly as in Lemma 4.4,
we obtain that H is imprimitive on W , as in part (c).

Let M = WN . Then, ΓM is a cycle. Since X/M is transitive on VΓM , one has
X/M ∼= Zm or Dn . Further,Γ is arc-transitive if and only if X/M ∼= Dn , as in part (d).

��
With the above preparations, we are ready to embark on the proof of Theorem 1.1.

Proof of Theorem 1.1 If G � X , then by Lemma 2.5, we have X1 ≤ D8, as in Theo-
rem 1.1 (1). In what follows, we assume that G is not normal in X .

Suppose that p > 2. By Lemmas 4.1-4.5, if W is not normal in X , then G ∼= D2p,
Γ ∼= Cp[2] and AutΓ ∼= Z

p
2 :D2p, as in Theorem 1.1 (2). Now, we may assume thatW

is normal in X . If ΓW is a cycle, then part (3) of Theorem 1.1 occurs by Lemma 4.4.
If Γ is a normal cover of ΓW , it follows from Lemma 4.5 that part (4) of Theorem 1.1
follows.

Suppose that p = 2. By Lemmas 4.3 and 4.4, Theorem 1.1 (5) occurs. ��

5 Insoluble automorphism groups

Let G = W :H = Z
d
p:Zn be a Frobenius group where ordn(p) = d for a prime p and

an integer n. Assume thatΓ = (VΓ , EΓ ) is a connected X -edge-transitive tetravalent
Cayley graph of G, where G ≤ X ≤ AutΓ . In this section, we study the case where
the automorphism group X is insoluble.

Remark For any triple (X ,G, X1) listed in Table 2, the corresponding graph Γ does
exist, refer to Li et al. [21, Theorem 1.1].

We now determine the structure of insoluble group X . Denote by R(X) themaximal
soluble normal subgroup of X . We first treat the case where R(X) = 1.

Lemma 5.1 Let N be minimal normal in X. If R(X) = 1, then CX (N ) = 1.
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Table 2 Almost simple
automorphism groups

X G X1

PSL(3, 3):Z2 D26 Z
2
3:GL(2, 3)

PGL(2, 7) D14, Z7:Z3, Z7:Z6 S4,D16,D8

PSL(2, 23) Z23:Z11 S4
PSL(2, 11) Z11:Z5 A4

PGL(2, 11) Z11:Z5, Z11:Z10 S4,A4

Proof Note that N is minimal in X . Since R(X) = 1, we have N ∼= T k , where T is a
non-abelian simple group, and k is an integer. Clearly, Z(N ) = 1. Let C : = CX (N ).
Since N � X , we haveC� X . Suppose thatC �= 1. By our assumption,C is insoluble.
Noticing that N ∩G�G, we conclude that N ∩G = 1 orW ≤ N ∩G. For the former,
|N | divides |X1|, and so N is soluble, contrary to our assumption. Thus,W ≤ N ∩G.
Similarly, W ≤ C ∩ G. It follows that W ≤ N ∩ C , a contradiction. Thus, C = 1. ��
Lemma 5.2 If R(X) = 1, then X is almost simple.

Proof Suppose for a contradiction that X is not almost simple. Then, by our assump-
tion, there exists a minimal normal subgroup N of X , such that N = T1 × · · · × Tk ,
where Ti ∼= T is non-abelian simple and k ≥ 2. By [17], we obtain that T is one of
the following:

PSL(2, q)(q > 3), PSL(3, q)(q < 9), PSL(4, 2), PSp(4, 3),

PSU(3, 8) and M11. (3)

By Frattini argument, one has X = GXu , where u ∈ VΓ . By Lemma 2.3, either
Xu is a 2-group or |Xu | divides 24 · 36. Let r > 3 be a prime divisor of |T |. Noting
that r divides |X | and (|W |, |H |) = 1, we conclude that r divides either |W | or |H |.

Case 1: Suppose that r divides |W |. Let Wi = Ti ∩ W where 1 ≤ i ≤ k.
Then, Wi �= 1 for all i . Assume that N ∩ H = 1. Then, G ∩ N = W , and hence,

|N : W | divides |Xu |. So does
k∏

i=1
|Ti : Wi |. This implies that |T | has exactly three

prime divisors. By (3), together with [15, p. 12-14, 135-136], the only possibility is
that T is one of the following groups:

A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 17) and PSL(3, 3).

Let T = A5. Then, N ∩ G = Z
k
5, and so 22k · 3k divides |Xu |. Thus, k = 2. Since

X can be embedded into (S5 × S5):Z2, we deduce that G = Z
2
5:Z8. However, it is

easily shown that N ∩ G = Z
2
5:Z2, contradicting our assumption. Let T = A6. Then,

N ∩ G = Z
k
5, and so 2

3k · 32k divides |Xu |, which is impossible. In a similar fashion,
we can exclude the remaining cases.

Thus, N ∩H �= 1. Let Ĥ = N ∩H . Then,G∩N = W :Ĥ . Let Hi be the projection
of Ĥ on Ti where 1 ≤ i ≤ k. Let Gi = Wi :Hi . Since G is a Frobenius group, Gi is a
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Frobenius group, and so Ĥ is a diagonal subgroup of H1 × · · · × Hk . Hence, Ĥ ∼= Hi

for each i . Since X = GXu , we deduce that |N : (G ∩ N )| divides |Xu |.
Let T = PSL(2, q) with q > 3. Write q = se for a prime s and e ≥ 1. Let

f = (2, s − 1).
Assume that p = s. Then, |Wi | = p� where � ≤ e, and so |Hi | divides p� − 1.

If � < e, then |Hi | <
q−1
f . For this case, since (q − 1, q + 1) = f , we deduce that

|Ti : Gi | is divisible by three distinct primes. So is |Xu | for |Ti : Gi | divides |Xu |,
which is a contradiction. Thus, � = e. By Suzuki [34, Theorem 6.17], we conclude
that NTi (Wi ) ∼= Z

e
p:Z q−1

f
, and so Gi � Z

e
p:Z q−1

f
. Let M ∼= Z

ke
p :Z q−1

f
be a subgroup

of N . Then, G ∩ N can be embedded into M . Since |N : M | divides |Xu |, we deduce
that

(q + 1)k[ f −1(q − 1)]k−1 divides 24 · 36.

A straightforward calculation shows q = s = 5 and k = 2. Then, G ∩ N ∼= Z
2
5:Z2.

Since X can be embedded into (S5 × S5):Z2, we deduce that G = Z
2
5:Z8. By the

above discussion, 23 · 32 divides |Xu |, and so by Lemma 2.3, we deduce that either

X = (S5 × S5):Z2 and Xu = S3 × S4 or (4)

X = ((A5 × A5):Z2):Z2 and Xu = (Z3 × A4).Z2. (5)

Suppose that part (4) follows. Write X = (G1 × G2):〈π〉, where G1 ∼= G2 ∼= S5 and
π interchanges G1 and G2. By Magma [3], there is just one conjugacy class of G
and two conjugacy classes of Xu in X , such that X = GXu and G ∩ Xu = 1. Choose
v ∈ Γ (u). By Lemma 2.1, write Γ = Cos(X , Xu, XugXu), where g ∈ NX (Xuv)\Xu

and g2 ∈ Xuv . SinceΓ is X -arc-transitive, one has |Xu : Xuv| = 4, and so |Xuv| = 36.
However, one can quickly verifies by Magma [3] that there is no g ∈ NX (Xuv) such
that 〈Xu, g〉 = X ; namely, Γ is not connected. Similarly, part (5) does not occur.

Assume that p �= s. For 1 ≤ i ≤ k, let Li ∼= Z q+ε
f

be a subgroup of Ti , where ε =
±1.BySylow’s Theorem,Wi can be embedded into Li . BySuzuki [34, Theorem6.23],
we deduce that NTi (Wi ) ∼= D2(q+ε)

f
, and so Gi � D2(q+ε)

f
. Let M ∼= Z

k
q+ε
f

:Z2 be a

subgroup of N . Then, G ∩ N can be embedded into M . Since |N : M | divides |Xu |,
and hence, |N : M | divides 24 · 36, it follows that

qk(q − ε)k divides 25 · 36.

Calculations show that q = 4, k = 2 and ε = 1. Then, f = 1, and so G ∩ N = M =
Z
2
5:Z2. Note that X can be embedded into (S5 × S5):Z2. By the definition, we deduce

that G = Z
2
5:Z8. Arguing as above, one can prove that this case does not occur.

Let T = PSL(3, q) with q < 9. Assume that q = 2. By the Atlas [4], we
have Gi ∼= Z7:Z3 where 1 ≤ i ≤ k. Then, G ∩ N = W :Ĥ ∼= Z

k
7:Z3, and so

|N : (G ∩ N )| = 23k · 3k−1 dividing |Xu |, a contradiction. In a similar fashion, one
can prove that T �= PSL(3, q) with q ≥ 3. Let T = PSL(4, 2). By the Atlas [4],
we derive that 35 � ∣∣ |Gi | where i ≥ 1. It implies that 5 or 7 divides |Xu |, which is
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impossible. Let T = PSp(4, 3). By the Atlas [4], one has Gi ∼= Z
4
2:Z5, and so

G ∩ N ∼= Z
4k
2 :Z5. Thus, |N : (G ∩ N )| is divisible by 5, so is |Xu |, a contradiction.

Similarly, T can neither equal to PSU(3, 8) nor M11.
Case 2: Suppose that r divides |H |. If r � ∣∣ |Hi |, then r divides |Xu |, a contradiction.

Thus, r divides |Hi | for each i . Since G ∩ N = W :Ĥ with Ĥ ∼= Hi , r divides
|N : (G ∩ N )|, and so |Xu | is divisible by r , again a contradiction.

Therefore, X is almost simple. ��
Lemma 5.2 tells us that if X is insoluble and R(X) = 1, then X is almost simple.

The next two lemmas determine the graph Γ for the case where X is almost simple.

Lemma 5.3 Let X be an almost simple group with soc(X) = PSL(2, 7). If Γ is
not (X , 2)-arc-transitive, then X = PGL(2, 7) and (X1,G) = (D8, Z7:Z6) or
(D16, Z7:Z3).

Proof Denote by u the vertex 1. By Frattini argument, we have X = GXu . Since Γ is
not (X , 2)-arc-transitive, Xu is a 2-group. Note that G is a Frobenius group. Checking
the subgroups of PGL(2, 7) in the Atlas [4], we obtain G = Z7:Z6 or Z7:Z3.

Assume first that G = Z7:Z6. Since Z7:Z3 is maximal in soc(X), we have X =
PGL(2, 7). It follows that Xu = D8. Assume now that G = Z7:Z3. Furthermore,
assume that X = PSL(2, 7). Then, Γ is a connected tetravalent X -edge-transitive
Cayley graph, and Xu = D8 is a Sylow 2-subgroup of X . Choose v ∈ Γ (u). Then,
|Xu : Xuv| = 2 or 4. Since Γ is X -vertex-transitive, we write Γ as a coset graph
Cos(X , H , H{x, x−1}H), where H = Xu = D8 and x ∈ X is such that 〈H , x〉 = X ;
in particular, x /∈ H .

Suppose that |Xu : Xuv| = 4. Then, Γ is X -arc-transitive. By Lemma 2.1, we
choose x such that (u, v)x = (v, u), yielding x ∈ NX (Xuv) ∼= D8. In particular,
NX (Xuv) �= Xu . Then, |NXu (Xuv)| = 4.Hence,NXu (Xuv) is normal in bothNX (Xuv)

and Xu , and so NXu (Xuv) � 〈Xu,NX (Xuv)〉. Checking the subgroups of PSL(2, 7)
in the Atlas [4], we obtain that 〈Xu,NX (Xuv)〉 ∼= S4, which contradicts the fact that
〈Xu, x〉 = X .

Suppose that |Xu : Xuv| = 2. Then, |Xuv| = 4, and so Xuv � M : = 〈Xu, Xv〉.
Thus, M ∼= S4. By Lemma 2.1, we may choose x such that ux = v. Noting that
Xu and Xv are two Sylow 2-subgroups of M , there exists some y ∈ M such that
X y
u = Xv = Xx

u . Hence, xy
−1 ∈ NX (Xu) = Xu , so 〈Xu, x〉 ≤ 〈Xu, xy−1, y〉 ≤ M ,

again a contradiction. Thus, X = PGL(2, 7). ��
For a graph Γ , and X ≤ AutΓ , the permutation group induced by Xu on Γ (u) is

denoted by XΓ (u)
u , and the kernel (of Xu acting on Γ (u)) is denoted by X [1]

u . Then,
XΓ (u)
u

∼= Xu/X
[1]
u . For a positive integer n and a prime divisor p, denote by n p the

p-part of n. That is to say, n/n p is indivisible by p.

Lemma 5.4 If X is almost simple, then (X ,G, X1) is one of the triples listed in Table 2.

Proof Let T = soc(X). By Kazarin [17], we conclude that T is one of the following
groups:

PSL(2, q)(q > 3), PSL(3, q)(q < 9), PSL(4, 2), PSp(4, 3), PSU(3, 8) and M11.
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For convenience, denote by u the vertex 1 of Γ . Let Ĝ = G ∩ T . Since Xu is soluble,
we deduce that Ĝ �= 1, and so W ≤ Ĝ. By Lemma 2.3, Xu is either a 2-group or
a {2, 3}-group. Noting that |T : Ĝ| = |TG : G| divides |Xu |, it follows that |Ĝ| is
divisible by |T |

|T |2|T |3 . Since Ĝ is soluble, Ĝ contains a {2, 3}′-Hall subgroup R of T .

Let T = PSL(3, 3). Then, X = PSL(3, 3):Z2, G = D26, Xu = Z
2
3:GL(2, 3), and

the corresponding graph Γ does exist, refer to Li et al. [21, Theorem 1.1].
Let T = PSL(3, 4). Then, |R| = 35. However, T does not contain such R, a

contradiction occurs. Similarly, T is neither PSL(3, q)with 5 ≤ q ≤ 8 nor PSU(3, 8).
Let T = PSL(4, 2). Then, R is a subgroup of T of order 35. By the Atlas [4], R is
a cyclic subgroup of A7, a contradiction. Let T = PSp(4, 3). Note that 5 divides |Ĝ|
and Ĝ is a Frobenius group. By the Atlas [4], |Ĝ| divides 24 · 5, and so |Tu |3 = 34.
Thus, |Xu |3 = 34, contradicting Lemma 2.3. Let T = M11. Then, X = M11, and so
55 divides |G|. By theAtlas [4], we deduce that G = Z11:Z5, and so Xu = Z

2
3:Q8.2,

contrary to Lemma 2.3.
Let T = PSL(2, q) with q > 3. If q = 4 or 5, then as 5 divides |G|, we have

X = S5, G = D10 and Xu = A4. However, one can quickly verifies by Magma
[3] that there is no factorisation X = GXu . If q = 7, then 7 divides |G|. We check
using Magma [3] that X = PGL(2, 7), G = D14 and Xu = S4. If q = 11, then
55 divides |G|. By the Atlas [4], we deduce that Ĝ = Z11:Z5. By Magma [3],
X = PSL(2, 11).O, G = Z11:(Z5 × O1) and Xu = A4.O2, where O1O2 = O with
O = 1 or 2. If q = 23, then 11 · 23 divides |G|. By the Atlas [4], Ĝ = Z23:Z11. By
Magma [3], X = PSL(2, 23), G = Z23:Z11 and Xu = S4.

In what follows, we assume that q �= 4, 5, 7, 11 or 23. Write q = re for a prime r
and e ≥ 1. Let f = (2, q − 1). By [25, Proposition 4.1], either

Ĝ ≤ D2(re+1)
f

and Z
e
r � Tu ≤ Z

e
r :Z re−1

f
, or (6)

Z
e
r � Ĝ ≤ Z

e
r :Z re−1

f
and Tu ≤ D2(re+1)

f
. (7)

Assume that (6) follows. Then, re(re−1)
2 divides |T : Ĝ|. Since |T : Ĝ| divides |Xu |,

it follows that re(re−1)
2 | 24 · 36. We calculate re = 9, and so r = 3 and e = 2. Then,

Z
2
3 � Tu ≤ Z

2
3:Z4, and hence, T Γ (u)

u = Z3 or S3. Now T Γ (u)
u � XΓ (u)

u ≤ S4, and so

XΓ (u)
u = S3. By Lemma 2.3, this is a contradiction. Thus, (7) follows.
Case 1: Suppose that Tu is a {2, 3}-group. So does T Γ (u)

u . Since Tu ≤ D2(re+1)
f

and

T Γ (u)
u ≤ S4, we deduce that T

Γ (u)
u = S3. Consequently, X

Γ (u)
u = S3, a contradiction.

Case 2: Suppose that Tu is a 2-group. Then, |T : Ĝ| is a power of 2. By Guralnick
[16, Theorem 1], |T : Ĝ| = q + 1 = 2� for � ≥ 3. Thus, |Ĝ| = |T |

q+1 = q(q−1)
2 , and so

Ĝ contains a 2′-Hall subgroup of T . Then, G ∩ T contains a 2′-Hall subgroup of T .
By Lemma 2.7, we have that q = r = 2� −1, Ĝ = Zr :Z r−1

2
and Tu = Dr+1. Suppose

that � = 3. Then, q = 7. By Lemma 5.3, we are done. In what follows, we assume
that � ≥ 5.

Suppose that G = Ĝ. Then, as |Ĝ| is odd, by Li et al. [22, Theorem 1.1], X =
PGL(2, 7) and Xu = D16, contradicting our assumption. Thus, Ĝ < G. Noting that Ĝ
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ismaximal inT ,wededuce that X = PGL(2, r),G = Zr :Zr−1, and Xu = Tu = Dr+1.
Let v ∈ Γ (u). By Lemma 2.1, Xuv has index 2 or 4 in both Xu and Xv . Since � ≥ 5,
Xuv contains a subgroup C ∼= Z4. It is easily shown that C is normal in both Xu and
Xv , and so C � L: = 〈Xu, Xv〉. By Suzuki [34, p.417], both Xu and Xv are maximal
in T , and hence L = Xu = Xv . By the connectedness of Γ , L fixes each vertex of Γ ,
which is impossible.

This completes the proof of Lemma 5.4. ��
We now handle the case where R(X) �= 1.

Lemma 5.5 If R(X) ∩ G = 1, then G = Z11:Z10 and X = PGL(2, 11) × Z2.

Proof Write X = X/R(X), G = GR(X)/R(X) and X1 = X1R(X)/R(X). Then,
G ∼= G and X1 ∼= X1. Since X = GX1, we have X = G X1. Let 
 = ΓR(X). Noting
that X is insoluble, it follows from Lemma 2.4 that Γ is a normal cover of 
. Pick
u ∈ V
 such that 1 ∈ u, so that X1 ≤ Xu , and X = G Xu because G is transitive on
V
. Further, since G is not regular on V
, it follows that G ∩ Xu �= 1.

Assume that X is not almost simple. ByLemma 5.1, X has a uniqueminimal normal
subgroup N . Arguing as in the proof of Lemma 5.2, we only need to deal with the
case where N = A5 × A5. For this case, X can be embedded into (S5 × S5):Z2. By
the definition, G = Z

2
5:Z8, and so N ∩ G = Z

2
5:Z2. Thus, as |N : N ∩ G| divides

|Xu |
|G∩Xu | , 2

3 · 32 divides |Xu |
|G∩Xu | . Noting that G ∩ Xu �= 1, it follows that 24 · 32 divides

|Xu |, and so by Lemma 2.3, Xu = S3 × S4. For this case, X = ((A5 × A5):Z2):Z2,
and so G ∩ Xu ∼= Z2. By Magma [3], there is just one conjugacy class of Xu and
two conjugacy classes of G in X , such that X = G Xu and G ∩ Xu ∼= Z2. Choose
v ∈ 
(u). By Lemma 2.1, write 
 = Cos(X , Xu, XugXu), where g ∈ NX (Xuv)\Xu

and g2 ∈ Xuv . Since 
 is X -arc-transitive, we deduce that |Xu : Xuv| = 4, and
so |Xuv| = 36. However, one can quickly verifies by Magma [3] that there is no
g ∈ NX (Xuv) such that 〈Xu, g〉 = X ; namely, 
 is not connected. Thus, X is almost
simple.

Let T = soc(X). By Kazarin [17], we obtain that T is one of the following groups:

PSL(2, q)(q > 3), PSL(3, q)(q < 9), PSL(4, 2), PSp(4, 3), PSU(3, 8) and M11.

Let T = PSL(2, q)where q = 4, 5, 7, 11 or 23. If q = 4 or 5, then the only possibility
is that G ∼= Z5:Z4 by Li et al. [21, Theorem 1.1]. For this case, Γ is a Cayley graph
of order 20, and so by Pan et al. [29, Theorem 5.3], G is normal in X , which is a
contradiction. If q = 7, 11 or 23, then |G| is square-free. The same is true for G. By
Li et al. [21, Theorem 1.1], if q = 7 or 23, then X is almost simple, contradicting our
assumption, and if q = 11, then X = PGL(2, 11) × Z2, G = Z11:Z10, X1 = S4, and
the corresponding graph Γ does exist.

Let T be one of the remaining groups. Arguing as in the proof of Lemma 5.4 with
X = G Xu in the place X = GX1, we rule out these possibilities.

This completes the proof of Lemma 5.5. ��
Lemma 5.6 If R(X) ∩ G �= 1, then the following statements hold:
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(a) G ∼= Z
4
p:Z5, X = W .X and ΓW ∼= K5, where soc(X) ∼= A5;

(b) G ∼= Z
4
p:Z10, X = W .(X × Z2) and ΓW ∼= K5,5 − 5K2, where soc(X) ∼= A5.

Proof Let R = R(X) ∩ G. Then, R � G. By our assumption, R(X) ∩ G �= 1, and
thereby, R ≥ W because W is minimal normal in G. Since X/R(X) is insoluble, it
follows from Lemma 2.4 that Γ is a normal cover of ΓR(X), and so GR(X)/R(X) ≤
AutΓR(X).

Let Ĥ = HR(X)/R(X). Note that Γ is a Cayley graph of G, so ΓR(X) is a Cayley
graph of Ĥ . Thus, |R(X)||Ĥ | = |G|. Since |G| = |W ||H |, we calculate that

|R(X)| = |W ||R(X) ∩ H |.

It follows that R(X) ≤ G, and so R = R(X). This implies thatW�X . Let H = G/W .
By [2,Theorem1.2], eitherΓW ∼= K5 andH ∼= Z5, orΓW ∼= K5,5−5K2 andH ∼= Z10.
For the former, we have AutΓW ∼= S5, and for the latter, AutΓW ∼= S5 × Z2.

Let X = X/W . Since Γ is a normal cover of ΓW , we have X ≤ AutΓW . Let ΓW ∼=
K5. Noting that X is insoluble, we conclude that soc(X) ∼= A5. LetΓW ∼= K5,5−5K2.
Since H ∼= Z10, we obtain X = L × Z2 where soc(L) ∼= A5. Note that H ∼= Z5 or
Z10. By the definition, we deduce that d = 2 or 4. However, since GL(2, p) does not
contain A5, it follows that d = 4. Therefore, G ∼= Z

4
p:Z5 or Z

4
p:Z10. This completes

the proof. ��
The assertion of Theorem 1.2 follows from Lemmas 5.2–5.6.

6 Half-transitive graphs

In the last section, we apply Theorems 1.1 and 1.2 to prove Theorem 1.3.
Let p be an odd prime and d > 1 an odd integer. Let n be a primitive divisor of

pd − 1, such that n does not divide r(pd/r − 1) for any prime r dividing d. Set

G = W :〈h〉 = Z
d
p:Zn < AGL(1, pd).

Construction 6.1 Let i be coprime to n for 1 ≤ i ≤ n − 1, and let a ∈ W\{1}. Set
{

Si = {ahi , a−1hi , (ahi )−1, (a−1hi )−1},
Γi = Cay(G, Si ).

With this preparation, we are ready to embark on the proof of Theorem 1.3.

Proof of Theorem 1.3 Let X = AutΓ . Let Γ = Cay(G, S) be connected, edge-
transitive and of valency 4. By our assumption, 〈h〉 is primitive on W , d > 1 is
odd, and p is an odd prime. By Theorems 1.1–1.2, we obtain that G is normal in X .
By virtue of Godsil [13, Lemma 2.1], we have X = G:Aut(G, S).
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By Lemma 2.5, one has X1 = Aut(G, S) ≤ D8. By Doerk [8, Proposi-
tion 12.10], Aut(G) = A�L(1, pd) ∼= Z

d
p:(Zpd−1:Zd), and so Aut(G) has a

cyclic Sylow 2-subgroup. It follows that X1 = 〈σ 〉 ∼= Z4 or Z2. Thus, σ fixes
an element of G of order n, say f ∈ G such that o( f ) = n and f σ = f .
Then, G = W :〈 f 〉, and X = G:〈σ 〉 = (W :〈 f 〉):〈σ 〉. Moreover, since a Sylow
2-subgroup of Aut(G) is cyclic, all involutions of Aut(G) are conjugate. It is
easy to verify that every involution of Aut(G) inverts all non-identity elements of
W .

Since Γ is connected, 〈S〉 = G and Aut(G, S) is faithful on S. Assume that
S contains an involution. Noting that Γ is X -edge-transitive, S consists of involu-
tions. By the proof of Lemma 2.5, G ∼= D2p, against our assumption. Hence, S
does not contain an involution. For this case, we may write S = {x, x−1, y, y−1}
such that either o(σ ) = 2 and (x, y)σ = (y, x), or o(σ ) = 4 and (x, y)σ =
(y, x−1), refer to Praeger [31, Proposition 1]. Now, x = a f i , where a ∈ W
and i ≥ 0. Suppose that o(σ ) = 4. Then, y = xσ = (a f i )σ = aσ f i , and
a′ f −i = f −i a−1 = (a f i )−1 = x−1 = xσ 2 = aσ 2

f i = a−1 f i . It follows
that f 2i = 1, and hence, f i has order 1 or 2. If f i = 1, then x = a, and
y = xσ = aσ , belonging to W , and so 〈S〉 ≤ W < G, which is a contradiction.
Thus, f i has order 2. Noting that f i inverts each element of W , we conclude that x
has order 2, again a contradiction. Thus, σ is an involution, and so (x, y)σ = (y, x),
x = a f i , and y = xσ = aσ f i = a−1 f i . In particular, Γ is not arc-transitive, and
S = {a f i , a−1 f i , (a f i )−1, (a−1 f i )−1}.

Notice that f , h ∈ G with o( f ) = o(h) = n. Since (|W |, n) = 1, it
follows from Schur–Zassenhaus’s Theorem that there exists b ∈ W such that
hb ∈ 〈 f 〉. So f b

−1 = hr for some r coprime to n. Let τ = σ b−1
. Then,

as f σ = f , we have hτ = h, and so X = G:〈τ 〉. Moreover, Sb
−1 =

{ahir , a−1hir , (ahir )−1, (a−1hir )−1}. Let ir ≡ j (mod n) and 1 ≤ j ≤ n − 1.
Then, S j : = {ah j , a−1h j , (ah j )−1, (a−1h j )−1}. Since Γ ∼= Cay(G, S j ) is con-
nected, it follows from Li et al. [22, Lemma 6.2(ii)] that ( j, n) = 1. Let Γi

and Γ j be as in Construction 6.1 with (i, n) = ( j, n) = 1. Furthermore, if
pki ≡ j or − j (mod n) for some k ≥ 0, then Γi ∼= Γ j , refer to Li et al. [22,
Lemma 6.2(iii)].

This completes the proof of Theorem 1.3. ��
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