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Abstract
We study those multiplicative subgroups of F∗

2n which are Sidon sets and/or sum-
free sets in the group (F2n ,+). These Sidon and sum-free sets play an important role
relative to the exponents of APN power functions, as shown by a paper co-authored
by the first author.

Keywords Sidon sets · Sum-free sets · APN exponents · APN functions · Symmetric
cryptography

1 Introduction

The notions of Sidon set and of sum-free set are well known in combinatorics [1,6,8].

Definition 1.1 [1] A subset of an additive group (G,+) is a Sidon set if it does not
contain elements x, y, z, t , three of which are distinct and such that x + y = z + t .

Definition 1.2 [6,8] A subset S of an additive group (G,+) is a sum-free set if it does
not contain elements x, y, z such that x + y = z (i.e. if S ∩ (S + S) = ∅).

Note that these definitions are also relevant in characteristic 2, which will be our
framework; they simplify then: S is a Sidon set (resp. a sum-free set) in F

n
2 (or in
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F2n since it is always possible to endow F
n
2 with the structure of a field) if it does not

contain 4 distinct elements (resp 3 elements) whose sum is null.
Denoting z by x + a, a set S is a Sidon set if for every nonzero element a of G, the

condition “x ∈ S, x + a ∈ S, y ∈ S, y + a ∈ S” implies that x = y or x = y + a.
There exists a natural connection between those (n, n)-functions (from F

n
2 to itself)

in cryptography which are almost perfect nonlinear (in brief, APN; see the definition,
e.g. in [5]) and Sidon sets: by definition, an (n, n)-function is APN if and only if its
graph GF = {(x, F(x)); x ∈ F

n
2} is a Sidon set in the group (Fn

2 × F
n
2,+). In [5] is

shown another connection, between the exponents ofAPNpower functions F(x) = xd

over F2n (called APN exponents) and those multiplicative subgroups of F∗
2n which are

at the same time Sidon sets and sum-free sets in the group (Fn
2,+):

Theorem 1.3 [5] If d is an APN exponent, then for every integer j , the multiplicative
subgroup of order gcd(d − 2 j , 2n − 1) is a Sidon set and a sum-free set.

In this paper, wemake a study of thosemultiplicative subgroups ofF∗
2n which are Sidon

sets (resp. sum-free sets). The motivation for this work is twofold: it is theoretically
interesting to see how the structure of the field can help in finding new Sidon sets and
sum-free sets (of course, these notions are purely additive, but the determination of
Sidon sets and sum-free sets may benefit from the richer structure of the field1); it
is also practically useful to have as much information as possible on Sidon–sum-free
multiplicative subgroups of F∗

2n , for selecting candidates for a search of new infinite
classes of APN power functions (see [5]). Indeed, the result recalled from [5] and such
knowledge may allow discriminating better those exponents which are likely to be
new APN exponents. To this aim, we need to be able to determine the Sidon–sum-free
(SSF) multiplicative subgroups of F∗

2n for n larger than 34 (since for n ≤ 34, all APN
exponents are known) and it begins to be very difficult to obtain them with a computer
for n ≥ 32. In [5] is then defined and used the notion of approximate Sidon–sum-free
(ASSF) multiplicative subgroups of F∗

2n ; such a subgroup is called ASSF (resp. AS,
ASF) if none of the results in the present paper show that it is not Sidon–sum-free (resp.
not Sidon, not sum-free). This allows going further than n = 32. It is then important to
find not only sufficient but also necessary conditions for somemultiplicative subgroup
of F∗

2n to be SSF, for as many orders of such subgroups as possible (i.e. for as many
divisors of 2n −1 as possible) and this is what the present paper produces. The paper is
organized as follows. In Sect. 2, we study the characterization of Sidon and sum-free
sets by the Fourier transform of their indicator functions. In Sect. 3, we derive Sidon–
sum-free sets from the known classes of APN power functions. Sections 4 and 5 are
devoted to the study of Sidon and sum-free multiplicative subgroups of F∗

2n . Next, in
Sect. 6, we exhibit more Sidon and sum-free multiplicative subgroups of F∗

2n . Finally,
in Sect. 1, we present some computation results related to our study.

1 The same is true, in an extreme way, for APN functions in cryptography: the notion is purely additive,
but no construction of an APN function is known which does not use the field structure.
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2 Characterizations by the Fourier transform

For any set E , we shall denote E� = E \ {0} and |E | will denote the cardinality of E .
In this section, we study the characterization of Sidon and sum-free sets by the

Fourier transform of their indicator functions (or equivalently by theWalsh transforms
of their indicator functions). We are not yet able to deduce significant results on
Sidon and sum-free sets from these characterizations, but since many cryptographic
parameters can be characterized this way (and more and more are, see e.g. [3,4]), it is
important for further works to make such a study.
Let some inner product “·” be chosen in Fn

2. In this paper, we shall endow F
n
2 with the

structure of the fieldF2n ; the usual inner product in this field is defined asa·x = tr(ax),
where tr is the trace function from F2n to F2 defined by tr(x) = ∑n−1

i=0 x2
i
.

Given a numerical (i.e. R-valued) function f over Fn
2, the Fourier transform of

f is defined as f̂ (a) = ∑
x∈Fn2 f (x)(−1)a·x . The Fourier transform of the indicator

function 1S of a subset S of F2n equals then

1̂S(a) =
∑

x∈S
(−1)a·x .

It is possible to characterize Sidon sets by the Fourier transform; we restrict ourselves
to Fn

2 but this characterization can be made more general:

Proposition 2.1 For every subset S of Fn
2 , we have:

∑

a∈Fn2
1̂S

4
(a) ≥ 3 · 2n |S|2 − 2n+1|S|, (1)

or equivalently:

∑

a∈Fn2;a �=0

1̂S
4
(a) ≥ 3 · 2n |S|2 − 2n+1|S| − |S|4, (2)

and ∑

a∈Fn2
1̂S

3
(a) ≥ 0, (3)

or equivalently ∑

a∈Fn2;a �=0

1̂S
3
(a) ≥ −|S|3, (4)

and S is a Sidon set (resp. a sum-free set) in the additive group (Fn
2,+) if and only if

(1) or (2) is an equality (resp (3) or (4) is an equality).

Proof For every subset S ofFn
2, the number of (x, y, z, t) ∈ S4 such that x+y+z+t =

0 equals
∑

(x,y,z)∈(Fn2)
3 1S(x)1S(y)1S(z)1S(x + y + z). If x = y ∈ S and z ∈ S, or

x = z ∈ S and y ∈ S, or y = z ∈ S and x ∈ S, then we have 1S(x)1S(y)1S(z)1S(x +
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y + z) = 1. We deduce the inequality
∑

(x,y,z)∈(Fn2)
3 1S(x)1S(y)1S(z)1S(x +

y + z) ≥ 3 |S|2 − 2 |S| and that S is a Sidon set if and only if this inequal-
ity is an equality. The sum

∑
(x,y,z)∈(Fn2)

3 1S(x)1S(y)1S(z)1S(x + y + z) is

equal to 2−n ∑
a∈Fn2

∑
(x,y,z,t)∈(Fn2)

4 1S(x)1S(y)1S(z)1S(t)(−1)a·(x+y+z+t), that is, to

2−n ∑
a∈Fn2 1̂S

4
(a). This proves the first part of the statement, since 1̂S(0) = |S|

Similarly, we have
∑

(x,y)∈(Fn2)
2 1S(x)1S(y)1S(x + y) ≥ 0, which is equivalent to

2−n ∑
a∈Fn2 1̂S

3
(a) ≥ 0, and S is sum-free if and only if this inequality is an equality.

	

Remark 2.2 As recalled in [5], it is well known that the size |S| of a Sidon set S
in a group (G,+) cannot be such that

(|S|
2

) = |S| (|S|−1)
2 > |G| − 1, because the

number of pairs {x, y} included in S would then be strictly larger than the number of
nonzero elements of G. We deduce from the relation |S|2 − |S| − 2|G| + 2 ≤ 0 that

|S| ≤ 1+√
8|G|−7
2 . In the case of G = F

n
2, this gives |S| ≤ � 1+√

2n+3−7
2 
.

It is also well known that the size |S| of a sum-free set S in a group (G,+) cannot be
strictly larger than |G|

2 , because the two sets S+ S and S would have sizes whose sum
is strictly larger than the order of the group. As observed in [5], the size |S| of a sum-
free–Sidon set satisfies |S| (|S|+1)

2 ≤ |G| − 1, that is, |S|2 + |S| − 2|G| + 2 ≤ 0, which

implies that |S| ≤ −1+√
8|G|−7
2 . In the case ofG = F

n
2, this gives |S| ≤ �−1+√

2n+3−7
2 
.

For every subset S, we have the inverse Fourier transform formula:

∑

a∈Fn2
1̂S(a) = 2n1S(0),

and Parseval’s relation:

∑

a∈Fn2
1̂S

2
(a) = 2n

∑

a,x,y∈Fn2
1S(x)1S(y)(−1)a·(x+y) = 2n

∑

x∈Fn2
1S(x) = 2n |S|,

or equivalently:

∑

a∈Fn2;a �=0

1̂S
2
(a) = 2n |S| − |S|2.

Note that, for every Sidon–sum-free set S, we know then the precise values of the four
first power moments of the Fourier transform.

When S is a Sidon set, we have
∑

a∈Fn2;a �=0 1̂S
4
(a) = 3 · 2n |S|2 − 2n+1|S| − |S|4,

according to Proposition 2.1. Using the Cauchy–Schwartz inequality, we have
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∑

a∈Fn2;a �=0

1̂S
4
(a) ≥

(∑
a∈Fn2;a �=0 1̂S

2
(a)

)2

|{a ∈ F
n
2; a �= 0, 1̂S(a) �= 0}| (5)

≥
(∑

a∈Fn2;a �=0 1̂S
2
(a)

)2

2n − 1
= (2n|S| − |S|2)2

2n − 1

and we deduce 3 · 2n |S|2 − 2n+1|S| − |S|4 ≥ (2n |S|−|S|2)2
2n−1 , that is:

|S|3 − 2|S|2 − (2n+1 − 3) |S| + 2 · (2n − 1) ≤ 0. (6)

Observe that one has

|S|3 − 2|S|2 − (2n+1 − 3) |S| + 2 · (2n − 1) = (|S| − 1)
(|S|2 − |S| − 2 · (2n − 1)

)
.

The roots of X2− X −2 ·(2n −1) are 1−√
2n+3−7
2 and 1+√

2n+3−7
2 . Thus, |S|3−2|S|2−

(2n+1 − 3)|S| + 2(2n + 1) ≤ 0 if and only if |S| ∈ [
1,

⌊ 1+√
2n+3−7
2

⌋]
. We obtain then

the same bound as the one obtained at the previous section (for the size of Sidon sets
in F

n
2). Moreover, Relation (5) gives a stronger inequality, but which depends on the

size of the Fourier transform support of 1S .
If S is also sum-free, then we have

∑
a∈Fn2;a �=0 1̂S

3
(a) = −|S|3, accord-

ing to Proposition 2.1, which implies by the Cauchy–Schwartz inequality that
|S|6 = (

∑
a∈Fn2;a �=0 1̂S

3
(a))2 ≤ (

∑
a∈Fn2;a �=0 1̂S

2
(a))(

∑
a∈Fn2;a �=0 1̂S

4
(a)) = (2n|S|−

|S|2)(3 · 2n |S|2 − 2n+1|S| − |S|4) and then

|S|3 + 3|S|2 − (3 · 2n + 2)|S| + 2n+1 ≤ 0.

The polynomial f (X) = X3 + 3X2 − (3 · 2n + 2)X + 2n+1 has three distinct real
roots since its discriminant is 108 · 23n − 135 · 22n − 180 · 2n + 68 > 0 for n ≥ 1.
Let us denote by λ1 < λ2 < λ3 these three distinct roots. Now, the derivative f ′(X)

of this polynomial has two distinct real roots μ1 = − 1
3

√
9 · 2n + 15 − 1 < 0 and

μ2 = 1
3

√
9 · 2n + 15 − 1 > 0. Now, since f (0) = 2n+1 > 0 and f (1) = 2 − 2n <

0, one has necessarily λ1 < μ1 < λ2 < 1 < μ2 < λ3. Let us now compute

f
(√

8·2n−7−1
2

) = − 1
2

√
8 · 2n − 7 ·2n+ 13

2 ·2n−3
√
8 · 2n − 7−1 = − 1

2

√
8 · 2n − 7 ·

(
2n + 6

) + 13
2 · 2n − 1 < 0 when n ≥ 3 and is equal to 0 for n ∈ {1, 2} proving that

λ3 >
√
8·2n−7−1

2 when n ≥ 3.

Remark 2.3 Denoting by W f the Walsh transform of a Boolean function f : W f (a) =
∑

x∈Fn2 (−1) f (x)+a·x , we have, for every a �= 0 that 1̂S(a) = − 1
2W1S (a) (and for

a = 0 that 1̂S(0) = 2n−1 − 1
2W1S (0)).

Relation (2) is then equivalent to
∑

a∈Fn2 ,a �=0 W
4
1S

(a) ≥ 3 · 2n+4 |S|2 − 2n+5|S| −
24|S|4 and Relation (4) to

∑
a∈Fn2 ,a �=0 W

3
1S

(a) ≤ 23|S|3.
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Remark 2.4 In this paper, S will always be the multiplicative subgroup of F∗
2n of order

e = |S| and then invariant under multiplication by any element of S. We deduce
that for every s ∈ S, and every a ∈ F

∗
2n , we have 1̂S(sa) = ∑

x∈S(−1)tr(asx) =
∑

x∈S(−1)tr(ax) = 1̂S(a). Hence, the Fourier transform of the indicator of S will be
constant on every coset of S in F

∗
2n . Let U be a set of size 2n−1

e such that F∗
2n = US,

then according to Proposition 2.1, S is a Sidon set if and only if
∑

a∈U 1̂S
4
(a) =

3 · 2n · e− 2n+1 − e3. Note that since every element of S can be written in 2n−1
e ways

as x
2n−1
e , we have 1̂S(a) = e

2n−1

∑
x∈F∗

2n
(−1)

tr

(

ax
2n−1
e

)

.

3 The Sidon–sum-free sets deduced from the known classes of APN
power functions

The result from [5] recalled in the introduction and the knowledge of classes of APN
power functions (see e.g. [2,4]) give directly orders of multiplicative subgroups of F∗

2n

which are at the same time Sidon sets and sum-free sets; these orders depend on an
integer j , which can be any integer (concretely j = 0, . . . , n − 1):

• gcd(2i +1−2 j , 2n −1), where i is co-prime with n (related to the so-called Gold
APN functions F(x) = x2

i+1),
• gcd(22i −2i +1−2 j , 2n −1), where i is co-prime with n (related to the so-called
Kasami APN functions F(x) = x2

2i−2i+1),
• gcd(2

n−1
2 + 3 − 2 j , 2n − 1), where n is odd (related to the so-called Welch APN

functions F(x) = x
n−1
2 +3),

• gcd(2(n−1)/2 + 2(n−1)/4 − 1 − 2 j , 2n − 1), where n ≡ 1 (mod 4) (related to the
so-called Niho APN functions F(x) = x2

(n−1)/2+2(n−1)/4−1),
• gcd(2(n−1)/2 + 2(3n−1)/4 − 1− 2 j , 2n − 1), where n ≡ 3 (mod 4) (related to the
so-called Niho APN functions F(x) = x2

(n−1)/2+2(3n−1)/4−1),
• gcd(2n − 2 − 2 j , 2n − 1), where n is odd (related to the so-called inverse APN
functions F(x) = x2

n−2),
• gcd(24m + 23m + 22m + 2m − 1 − 2 j , 2n − 1), where n = 5m (related to the
so-called Dobbertin APN functions F(x) = x2

4m+23m+22m+2m−1).

We need to see if these classes are included in larger classes of Sidon (resp. sum-free)
sets (for instance, if the condition “i is co-prime with n” is necessary).

Remark 3.1 When d is invertible modulo 2n − 1, for every positive integer j , we have
{x ∈ F

∗
2n ; xd−2 j = 1} = {x ∈ F

∗
2n ; xd = x2

j } = {x ∈ F
∗
2n ; x = x2

j d ′ } = {x ∈
F

∗
2n ; x2

n− j = xd
′ } = {x ∈ F

∗
2n ; xd

′−2n− j = 1} where d ′ stands for the inverse of d
modulo 2n − 1.
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4 Study of Sidonmultiplicative subgroups of F∗
2n

In this section, we visit some infinite classes of exponents d for which we are able to
determine whether the multiplicative subgroup of F∗

2n equal to {x ∈ F
∗
2n ; xd = 1} of

order e = gcd(d, 2n−1) (and so equal to {x ∈ F
∗
2n ; xe = 1}) is a Sidon set in (F2n ,+).

Note that when dealing with a value d, we deal in fact with a whole equivalence class:
if two exponents d and d ′ are conjugate mod 2n −1 (i.e. if d ′ ≡ 2i d (mod 2n −1) for
some i), or if more generally d ′ ≡ kd (mod 2n − 1) where k is any number co-prime
with 2n − 1, then gcd(d ′, 2n − 1) = gcd(d, 2n − 1).

4.1 A characterization

Let us start with a preliminary result which is included in the proof of themain theorem
in [5] but not explicitly stated, and which will be useful in the sequel. For making the
paper self-contained, we include its proof.

Lemma 4.1 Let n and d be positive integers and let e = gcd(d, 2n − 1). The multi-
plicative subgroup Ge = {x ∈ F

�
2n | xd = 1} = {x ∈ F

�
2n | xe = 1} of order e is a

Sidon set if and only if the only solutions (x, y) ∈ G2
e of equation (x +1)d = (y+1)d

are the trivial solutions (x, y) such that x = y or x = 1
y .

Proof Writing z = x + a in Definition 1.1 shows that Ge is a Sidon set if and only if,
for every a, x, y ∈ F

∗
2n ,

xd = (x + a)d = yd = (y + a)d = 1 (7)

implies x = y or x = y + a.
Assume that the condition of Lemma 4.1 is satisfied and write x = au and y = av

in (7) with u ∈ F2n and v ∈ F2n . Then, (7) becomes:

ud = (u + 1)d = vd = (v + 1)d = 1

ad
. (8)

According to the equality between the first and the third terms in (8), one gets that
v = uz with z ∈ Ge. Considering the equality between the second and the fourth
terms in (8), one gets that uz + 1 = λ(u + 1) with λ ∈ Ge. If λ = z, we have
λ = z = 1; in this case, v = u and x = y. Assume from now on λ �= z. Then, we get
from uz + 1 = λ(u + 1) that u = λ+1

λ+z from which we deduce that u + 1 = z+1
z+λ

and

v + 1 = z(λ+1)
z+λ

+ 1 = λ(z+1)
z+λ

. One therefore must have the following equations from
ud = (v + 1)d , the equality between the first and fourth terms in equation (8),

(λ + 1)d

(λ + z)d
= (z + 1)d

(z + λ)d
⇐⇒ (λ + 1)d = (z + 1)d .
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That implies that λ = 1
z (since λ �= z), that is,

v = z( 1z + 1)

z + 1
z

= z(z + 1)

z2 + 1
= z

z + 1
,

from which we deduce that y = av = au + a = x + a.
Conversely, assume that Ge is a Sidon set. Let x ∈ Ge and y ∈ Ge be such that
(x+1)d = (y+1)d . There exists ρ ∈ Ge such that x+1 = ρ(y+1) = ρy+ρ. Now,
x, 1, ρy and ρ are four elements of Ge which is a Sidon set. Hence, either ρ = 1, that
is, x = y or ρ = x and ρy = 1, that is x = 1

y . 	


We deduce the following useful corollary, in which the polynomials are viewed in
F2n [X ]/(X2n + X):

Corollary 4.2 Let n and d be positive integers and e = gcd(d, 2n − 1). The multi-
plicative subgroup Ge = {x ∈ F

�
2n | xd = 1} = {x ∈ F

�
2n | xe = 1} of order e is a

Sidon set if and only if, for every dth-power u of an element of F∗
2n , the polynomial

gcd(Xd + 1, (X + 1)d + u) has at most two zeros in F2n . For u = ad where a ∈ F
�
2n ,

this condition is equivalent to: the set { x
a+x , x ∈ (a + Ge) ∩ Ge} has at most two

elements. Still equivalently, the polynomial gcd(Xd + 1, (X + 1)d + u, X2n + X) =
gcd(Xe + 1, (X + 1)e + u) has degree at most 2.

Proof According to Lemma 4.1, Ge is a Sidon set if and only if, for every u ∈ F2n ,
there exist in F2n at most two common zeros of Xd + 1 and (X + 1)d + u (and if
there are two such zeros, they are inverses of each other). Note that u can be taken
nonzero, since for u = 0 there is exactly one common zero. Furthermore, if u is not
the dth-power of an element of F2n then gcd(Xd + 1, (X + 1)d + u) has no zero in
F2n . Hence, Ge is a Sidon set if and only if, for every dth-power u of an element of
F

∗
2n , the polynomial gcd(Xd + 1, (X + 1)d + u) has as most two zeros in F2n .
For u = ad where a ∈ F

�
2n , an element y is a zero of gcd(Xd + 1, (X + 1)d + u) if

and only if y ∈ Ge and y = 1 + az for some z in Ge. Observe then that y = z−1y
a+z−1y

(since z−1y + a = z−1) and that z−1y ∈ (a + Ge) ∩ Ge.
Conversely, let y = x

a+x with x ∈ (a + Ge) ∩ Ge. Then, yd = 1 and (y + 1)d =
( a
a+x )d = ad proving that y is a zero of gcd(Xd + 1, (X + 1)d + ad).
Hence, the set of zeros of gcd(Xd +1, (X +1)d +ad) is { x

a+x , x ∈ (a+Ge)∩Ge}.
The rest of the proof is obvious: since X2n + X splits and its zeros are the elements
of F2n , we have for every polynomial P(X) ∈ F2n [X ] that gcd(P(X), X2n + X) =∏

v∈V (X + v), where V is the set of zeros of P(X) in F2n . We have then gcd(Xd +
1, X2n + X) = Xe + 1 and gcd((X + 1)d + u, X2n + X) = (X + 1)e + u. 	


Remark 4.3 Checking the condition on the number of zeros of the equation inCorollary
4.2 has complexity O(2n), while checking the last condition has average complexity
O(n), see [7].
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4.2 Study of some classical multiplicative subgroups of F∗
2n

4.2.1 Generalized Gold and Kasami exponents

We study first the exponents 2 j + 1, which we shall call generalized Gold exponents
(Gold exponents being equal to 2 j +1 with the additional condition that j is co-prime
with n so that 2 j + 1 can be an APN exponent).

Proposition 4.4 For every pair of positive integers n and j , let e = gcd(2 j +1, 2n−1),
then the multiplicative subgroup Ge = {x ∈ F2n ; x2

j+1 = 1} = {x ∈ F2n ; xe = 1}
of order e is a Sidon set.

Proof It is easily seen by applying the Euclidean algorithm that gcd(X2 j+1 + 1, (X +
1)2

j+1 + u) = gcd(X2 j+1 + 1, X2 j + X + u) = gcd(X2 j + X + u, X2 + uX + 1). 	

In particular, when j and n are such that 2 j + 1 divides 2n − 1, that is, when j ≥ 2

divides n and n
j is even, G2 j+1 is a Sidon set.

Remark 4.5 Let us see if this property allows the sizes of Sidon sets in (F2n ,+) to

reach values near the upper bound � 1+√
2n+3−7
2 
. Since 2 j +1 and 2 j −1 are co-prime,

The order of Ge equals gcd(2 j + 1, 2n − 1) = gcd(22 j−1,2n−1)
gcd(2 j−1,2n−1)

= 2gcd(2 j,n)−1
2gcd( j,n)−1

, which

equals 1 if gcd(2 j, n) = gcd( j, n) and 2gcd( j,n) + 1 otherwise. The largest possible
value of gcd(2 j +1, 2n −1) is then when n is even and j = n

2 ; it equals 2
n
2 +1, which

is not far from � 1+√
2n+3−7
2 
 but not close either.

Let us now study the other well-known class of exponents in symmetric cryp-
tography: the generalized Kasami exponents 4 j − 2 j + 1. Let n and j be positive
integers and let e = gcd(4 j − 2 j + 1, 2n − 1). We have: (4 j − 2 j + 1)(2 j + 1) =
(22 j −2 j +1)(2 j +1) = 23 j +1, and 4 j −2 j +1 then divides 23 j +1, which implies
Ge = {x ∈ F

�
2n | xd = 1} ⊆ Ggcd(23 j+1,2n−1). Any subset of a Sidon set being a

Sidon set, we deduce:

Corollary 4.6 For every pair of positive integers n and j , let e = gcd(4 j −2 j +1, 2n −
1), then the multiplicative subgroup Ge of order e is a Sidon set.

Let us briefly study the other divisors of 2 j + 1, obtained by factorizing 2 j + 1 in Z

differently from 23 j +1 = (2 j +1)(22 j −2 j +1). They will straightforwardly provide
Sidon sets; we mention them because of the possible applications to APN exponents.
A first example comes from the so-called Aurifeuillian factorization 24k+2 + 1 =
(22k+1 − 2k+1 + 1)(22k+1 + 2k+1 + 1), which shows that:

Corollary 4.7 For every pair of positive integers n and j , let e = gcd(22k+1 − 2k+1 +
1, 2n − 1) or e = gcd(22k+1 + 2k+1 + 1, 2n − 1), then Ge is a Sidon set.

Recall also that, for every positive integer k, the cyclotomic polynomial φk is the
unitary polynomial over Z whose zeros are all the primitive kth roots of unity in
C. Every φk is irreducible, and we have X j − 1 = ∏

k | j φk(X). If j is odd, then

X j + 1 = −((−X) j − 1) equals ±∏
k | j φk(−X) and every product of |φk(−2)| for

distinct divisors k of j is a divisor of 2 j + 1. Hence:
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Corollary 4.8 Let j be odd and e = ∏
k∈K |φk(−2)|, where K is a set of divisors of j ,

then Ge is a Sidon set.

Also, every product of φk(−2�) for distinct divisors k of j and some � is a divisor of
2 j� + 1.

4.2.2 Dillon-like exponents

Starting with e = 3 and increasing the value of e, the first value of e which is odd (so
that it can be a divisor of 2n − 1) and which is not a generalized Gold exponent equals
7 = 23 − 1. Let us study the exponents of the form 2 j − 1, that we call Dillon-like,
because Dillon in his thesis studied the bent functions of the form f (x) = tr(ax2

m−1)

where n = 2m. They behave very differently from the generalized Gold exponents,
since we have:

Proposition 4.9 Let n be a positive integer, let d = 2 j − 1 for some j and e =
gcd(d, 2n − 1). Then, Ge is a Sidon set if and only if gcd( j, n) ≤ 2. Equivalently, if
r is a divisor of n, then the multiplicative subgroup G2r−1 of order 2r − 1 is a Sidon
set if and only if r ≤ 2.

Proof We have e = gcd(2 j − 1, 2n − 1) = 2r − 1 with r = gcd( j, n), and Ge = F
∗
2r .

Hence, Ge is a Sidon set if and only if r ≤ 2. (Indeed, if r ≥ 3, then Ge contains a
2-dimensional affine subspace not containing 0 and if r ≤ 2, then it is clear that Ge is
a Sidon set.) 	

Remark 4.10 Let us see how Corollary 4.2 applies. For every u ∈ F

∗
2n , we

have gcd(X2 j−1 + 1, (X + 1)2
j−1 + u) = gcd(X2 j−1 + 1,

∑2 j−2
k=1 Xk + u) =

gcd(
∑2 j−2

k=1 Xk + u, (u + 1)(X + 1)), since (X + 1)(
∑2 j−2

k=1 Xk + u) = X2 j−1 +
1+ (u + 1)(X + 1). If u �= 1 then we deduce that gcd(X2 j−1 + 1, (X + 1)2

j−1 + u)

has at most one zero, whatever is j . If u = 1 then gcd(X2 j−1 +1, (X +1)2
j−1 +1) =

∑2 j−2
k=0 Xk = X2 j−1+1

X+1 has at most two zeros if and only if F∗
2 j ∩F

∗
2n \ {1} has at most

2 elements, that is, gcd( j, n) ≤ 2.

Remark 4.11 If gcd(n, j) = 2 then Ge = F
�
4 and, if gcd(n, j) = 1 then Ge = {1}. In

both cases Ge is a Sidon set.

4.2.3 Generalized Welch exponents

We are now interested in d = 2 j +3, which we shall call generalizedWelch exponent,
since for n odd and j = n−1

2 , this is the well-known Welch exponent.

Proposition 4.12 Let j and n be two positive integers and let e = gcd(2 j +3, 2n −1).
Then:

• If j ≡ 0 (mod 3) or j ≡ 1 (mod 3), then Ge is a Sidon set,
• If j ≡ 2 (mod 3), then Ge is a Sidon set if and only if n is not a multiple of 3.
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Proof According to Corollary 4.2, Ge is a Sidon set if and only if, for every u ∈ F
∗
2n ,

gcd(X2 j+3 + 1, (X + 1)2
j+3 + u) has at most two zeros in F2n . Applying the division

process of the Euclidean algorithm, we obtain gcd(X2 j+3 + 1, (X + 1)2
j+3 + u) =

gcd(X2 j+3 +1, X2 j+2 + X2 j+1 + X2 j + X3 + X2 + X +u) = gcd(X2 j+2 + X2 j+1 +
X2 j + X3 + X2 + X + u, X2 j + X4 + (u + 1)X + u + 1) = gcd(X2 j + X4 + (u +
1)X + u + 1, X6 + X5 + X4 + uX3 + X2 + X + 1).
Suppose that u = 1. Note that (X6+X5+X4+X3+X2+X+1)(X2+X) = X8+X
and:

X2 j + X4 (mod X8 + X) =
⎧
⎨

⎩

X4 + X if j ≡ 0 (mod 3)
X4 + X2 if j ≡ 1 (mod 3)
0 if j ≡ 2 (mod 3).

Hence, reducing X2 j + X4 (mod X8 + X) and continuing the Euclidean algorithm
one step further gives:

gcd(X2 j+3 + 1, (X + 1)2
j+3 + 1)

=
⎧
⎨

⎩

1 if j ≡ 0 (mod 3)
gcd(X4 + X2, X2 + X + 1) = 1 if j ≡ 1 (mod 3)
X6 + X5 + X4 + X3 + X2 + X + 1 if j ≡ 2 (mod 3).

By similar calculation, we can show when u �= 1 that

gcd(X2 j+3 + 1, (X + 1)2
j+3 + u)

=
⎧
⎨

⎩

gcd(X4 + uX + u + 1, (u + 1)X3 + u) if j ≡ 0 (mod 3)
gcd(X4 + X2 + (u + 1)X + u + 1, (u + 1)X3 + X2 + uX + 1) if j ≡ 1 (mod 3)
gcd(X6 + X5 + X4 + X3 + X2 + X + 1, (u + 1)X + u + 1) if j ≡ 2 (mod 3)

=

⎧
⎪⎪⎨

⎪⎪⎩

gcd((u + 1)X3 + u, u2
u+1 X + u + 1) if j ≡ 0 (mod 3)

gcd((u + 1)X3 + X2 + uX + 1, u
u2+1

X2 + u3+u2+u
u2+1

X + u3+u2+u
u2+1

) if j ≡ 1 (mod 3)

1 if j ≡ 2 (mod 3).

Hence, if j ≡ 0 (mod 3) or j ≡ 1 (mod 3), Ge is a Sidon set, and if j ≡ 2 (mod 3),
Ge is a Sidon set if and only if the polynomial X6+X5+X4+X3+X2+X+1 = X7+1

X+1
has at most two zeros, that is, |F2n ∩ F8| ≤ 4, that is, 3 does not divide n. 	


5 Study of sum-freemultiplicative subgroups of F∗
2n

5.1 A characterization

We start with characterizing the sum-free property in a similar way as in Corollary 4.2
(with polynomials viewed in F2n [X ]/(X2n + X)).
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Proposition 5.1 Let d and n be two positive integers and e = gcd(d, 2n−1). Then, Ge

is sum-free if and only if gcd(Xd + 1, (X + 1)d + 1) has no zero in F2n . Equivalently,
gcd(Xd + 1, (X + 1)d + 1, X2n + X) = gcd(Xe + 1, (X + 1)e + 1 = 1.

Proof We are going to show that Ge is not sum-free if and only if gcd(Xd + 1, (X +
1)d + 1) has at least one zero in F2n . Suppose that Ge is not sum-free. Then, there
exists x , y and z in Ge such that x = y + z. Observe then that r = z−1x = 1 + z−1y
is a zero of gcd(Xd + 1, (X + 1)d + 1) because rd = 1 and (r + 1)d = 1. Conversely,
suppose that gcd(Xd + 1, (X + 1)d + 1) has a zero r . One has r ∈ Ge and r + 1 = y
for some y ∈ Ge, that is, r = 1 + y ∈ Ge + Ge proving that Ge is not sum-free. The
rest of the proof is as in the proof of Corollary 4.2. 	


5.2 Study of some classical multiplicative subgroups of F∗
2n

5.2.1 Generalized Gold and Kasami exponents

We apply our characterization to d = 2 j +1. We have seen in the proof of Proposition
4.4 that:

gcd(X2 j+1 + 1, (X + 1)2
j+1 + u) = gcd(X2 j + X + u, X2 + uX + 1).

Using that gcd(A(X), B(X)) = gcd(A(X), B(X) (mod A(X)) for any polynomials
A, B and C over F2n , we have:

gcd(X2 j+1 + 1, (X + 1)2
j+1 + 1)

= gcd((X2 j + X + 1) (mod X2 + X + 1), X2 + X + 1).

Now,

X2 j + X + 1 (mod X2 + X + 1) =
{
1 if j is even
0 if j is odd

Hence,

gcd(X2 j+1 + 1, (X + 1)2
j+1 + 1) =

{
1 if j is even
X2 + X + 1 if j is odd

(9)

Proposition 5.2 Let n and j be two positive integers and e = gcd(2 j + 1, 2n − 1).
Then, Ge is sum-free if and only if n is odd or j is even.

Proof According to (9), gcd(X2 j+1 + 1, (X + 1)2
j+1 + 1) has no zero in F2n if and

only if j is even or n is odd (since 1+ X + X2 is irreducible over F2n if and only if n
is odd). 	


Since, for e = gcd(4 j − 2 j + 1, 2n − 1) and e′ = gcd(23 j + 1, 2n − 1), we have
Ge ⊆ Ge′ , and since any subset of a sum-free set is a sum-free set, we deduce that, if
n is odd or j is even, then Ge is sum-free. But we shall have a more precise and more
general result below in Proposition 6.3.

123



Journal of Algebraic Combinatorics (2022) 55:43–59 55

5.2.2 Dillon-like exponents

The proof of Proposition 4.9 shows that:

Proposition 5.3 Let n be a positive integer, let d = 2 j − 1 for some j and e =
gcd(d, 2n − 1). Then, Ge is sum-free if and only if gcd( j, n) = 1.

5.2.3 Generalized Welch exponents

We have made the necessary calculations in Sect. 4.2.3. We have:

gcd(X2 j+3 + 1, (X + 1)2
j+3 + 1)

=
⎧
⎨

⎩

1 if j ≡ 0 (mod 3)
or j ≡ 1 (mod 3)

X6 + X5 + X4 + X3 + X2 + X + 1 if j ≡ 2 (mod 3).

(10)

Hence, according to Proposition 5.1, if j ≡ 0 (mod 3) or j ≡ 1 (mod 3), Ge is a
sum-free set, and if j ≡ 2 (mod 3), Ge is a sum-free set if and only if the polynomial
X6 + X5 + X4 + X3 + X2 + X +1 = X7+1

X+1 has no zero in F2n , that is, F2n ∩F8 = F2,
that is, 3 does not divide n:

Proposition 5.4 Let j and n be two positive integers and e = gcd(2 j + 3, 2n − 1).
Then,

• If j ≡ 0 (mod 3) or j ≡ 1 (mod 3), Ge is sum-free,
• If j ≡ 2 (mod 3), Ge is sum-free if and only if n is not a multiple of 3.

Remark 5.5 Note that the conditions of Proposition 4.12 and Proposition 5.4 are the
same. That says that Ge is a sum-free Sidon set or not when e is a generalized Welch
exponent.

6 More Sidon and sum-freemultiplicative subgroups of F∗
2n in

relation with the result of [5]

Let d, i and n be positive integers such that d �≡ 2i (mod 2n − 1) Because of
Theorem 1.3, we are now interested in considering multiplicative groups of orders
of the form gcd(d − 2i , 2n − 1). To this end, according to Corollary 4.2 and
Proposition 4, we need to count the zeros of gcd(Xd−2i + 1, (X + 1)d−2i + u) (poly-
nomials viewed in F2n [X ]/(X2n + X)). Now, recall that, if gcd(a1, a2) = 1, then
gcd(b, a1a2) = gcd(b, a1) gcd(b, a2) for every b , where a1, a2, b can be integers or
polynomials. Hence, if gcd(b1, b2) = gcd(a1, a2) = 1, we have gcd(b1b2, a1a2) =∏

i, j=1,2 gcd(ai , b j ). We have:

Xd + X2i = (Xd−2i + 1)X2i

(X + 1)d + u(X + 1)2
i = ((X + 1)d−2i + u)(X + 1)2

i
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and, for u �= 0, gcd(Xd−2i + 1, X2i ) = gcd((X + 1)d−2i + u, (X + 1)2
i
) = 1, since

d �≡ 2i (mod 2n − 1) Hence, when u �= 0, we have:

gcd(Xd + X2i , (X + 1)d + u(X + 1)2
i
)

= gcd(Xd−2i + 1, (X + 1)d−2i + u) gcd(Xd−2i + 1, (X + 1)2
i
)

× gcd(X2i , (X + 1)d−2i + u) gcd(X2i , (X + 1)2
i
)

= gcd(Xd−2i + 1, (X + 1)d−2i + u) gcd(Xd−2i + 1, (X + 1)2
i
)

× gcd(X2i , (X + 1)d−2i + u).

Observe that the set of zeros of gcd(Xd−2i + 1, (X + 1)2
i
) is {1} while the unique

possible zero of gcd(X2i , (X + 1)d−2i + u) is 0 (more precisely, 0 is a zero if u = 1
and there is no zero in F2n otherwise).

On the other hand, if u �= 0, then neither 0 nor 1 is a zero of gcd(Xd−2i + 1, (X +
1)d−2i + u). Hence:

Lemma 6.1 Let d, i and n be positive integers such that d �≡ 2i (mod 2n − 1) and
u �= 0 in F2n . The zeros of gcd(Xd−2i + 1, (X + 1)d−2i + u) (polynomials viewed in
F2n [X ]/(X2n + X)) are those zeros of gcd(Xd + X2i , (X + 1)d + u(X + 1)2

i
) which

are not in F2.

From Theorem 1.3, Corollary 4.2, Proposition 5.1 and Lemma 6.1, we deduce:

Corollary 6.2 If d is an APN exponent, then for every integer i and for every u ∈
F2n \F2, the polynomial gcd(Xd + X2i , (X +1)d +u(X +1)2

i
) has at most two zeros

in F2n \ F2, and for u = 1, this same polynomial has no zero in F2n \ F2.

Let us take now d = 2 j + 1 where j is a positive integer. Suppose that u = 1.
Then, gcd(X2 j+1 + X2i , (X +1)2

j+1 + (X +1)2
i
) = gcd(X2 j+1 + X2i , X2 j + X) =

gcd(X2i + X2, X2 j + X). Hence, the set of zeros of gcd(X2 j+1 + X2i , (X +1)2
j+1 +

(X + 1)2
i
) is F2n ∩ F2 j ∩ F2i−1 = F2gcd(n, j,i−1) . Therefore, according to Proposition

5.1 and to Lemma 6.1, we have:

Proposition 6.3 Let n and j be positive integers and e = gcd(2 j − 2i + 1, 2n − 1).
Then, Ge is sum-free if and only if gcd(n, j, i − 1) = 1

For j = 2i , the condition becomes n odd or i even.
The calculations above show that a necessary condition for Ge to be a Sidon set is

that gcd(n, j, i − 1) ≤ 2. Suppose now that u /∈ F2. Then, gcd(X2 j+1 + X2i , (X +
1)2

j+1 + u(X + 1)2
i
) = gcd(X2 j+1 + X2i , X2 j + (u + 1)X2i + X + (u + 1)) =

gcd(X2 j+1+X2i , uX2i +X2+X+(u+1)) = gcd(X2 j+1+ 1
u X

2+ 1
u X+ u+1

u , uX2i +
X2 + X + (u + 1)). A common zero x of X2 j+1 + X2i and (X + 1)2

j+1 + u(X + 1)2
i

is then a common zero of X2 j+1 + X2i and X2 j + (u + 1)X2i + X + (u + 1), that is,
satisfies x2

j+1 = x2
i
and x2

j + x = (u + 1)(x2
i + 1). In other words, the function

x ∈ Ge \ {1} �→ x2
j +x

x2i +1
takes each of its values at most 2 times.
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7 Conclusions

In this paper, we have characterized by the gcd of polynomials when multiplicative
subgroups of F∗

2n are Sidon sets (resp. sum-free sets) in the group (F2n ,+). We have
deduced the determination of those Sidon (resp. sum-free) multiplicative subgroups
whose orders have the so-called Dillon-like form gcd(2i − 1, 2n − 1), Gold-like form
gcd(2i + 1, 2n − 1) and Welch-like form gcd(2i + 3, 2n − 1). These characterizations
show the interest of using amultiplicative structurewhen studying an additive property.
In the appendix we give two tables, taken from [5], and giving, respectively, the classes
of Sidon and sum-free multiplicative subgroups, and the corresponding superclasses
(called approximate) which result from the characterizations of the present paper.
These tables illustrate for n ≤ 15 that approximate Sidon–sum-free groups are good
approximation of Sidon–sum-free groups. This means that with our results, we cover
almost all cases of Sidon–sum-free multiplicative subgroups, for n ≤ 15.

Appendix

See Tables 1 and 2.

Table 1 Divisors of 2n − 1
which are Sidon/sum-free

n Specification Values

3 Sidon/sum-free 1

4 Sidon 1, 3, 5

Sum-free 1, 5

5 Sidon/sum-free 1

6 Sidon 1, 3, 9

Sum-free 1

7 Sidon/sum-free 1

8 Sidon 1, 3, 5, 17

Sum-free 1, 5, 17

9 Sidon/sum-free 1

10 Sidon 1, 3, 11, 33

Sum-free 1, 11

11 Sidon 1, 23

Sum-free 1, 23, 89

12 Sidon 1, 3, 5, 9, 13, 39, 65

Sum-free 1, 5, 13, 65

13 Sidon/sum-free 1

14 Sidon 1, 3, 43, 129

Sum-free 1, 43

15 Sidon 1, 151

Sum-free 1, 151
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Table 2 Approximate
Sidon/Sum-free calculations

n Specification Values

3 Approximate Sidon 1

Approximate sum-free 1

4 Approximate Sidon 1, 3, 5

Approximate sum-free 1, 5

5 Approximate Sidon 1

Approximate sum-free 1

6 Approximate Sidon 1, 3, 9

Approximate sum-free 1

7 Approximate Sidon 1

Approximate sum-free 1

8 Approximate Sidon 1, 3, 5, 17, 51, 85

Approximate sum-free 1, 5, 17, 85

9 Approximate Sidon 1, 73

Approximate sum-free 1, 73

10 Approximate Sidon 1, 3, 11, 33

Approximate sum-free 1, 11

11 Approximate Sidon 1, 23, 89

Approximate sum-free 1, 23, 89

12 Approximate Sidon 1, 3, 5, 9, 13, 39, 65, 117

Approximate sum-free 1, 5, 13, 65

13 Approximate Sidon 1

Approximate sum-free 1

14 Approximate Sidon 1, 3, 43, 129

Approximate sum-free 1, 43

15 Approximate Sidon 1, 151

Approximate sum-free 1, 151
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