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Abstract
A signed graph is a pair (G, τ ) of a graph G and its sign τ , where a sign τ is a
function from {(e, v) | e ∈ E(G), v ∈ V (G), v ∈ e} to {1,−1}. Note that graphs or
digraphs are special cases of signed graphs. In this paper, we study the toric ideal I(G,τ )

associated with a signed graph (G, τ ), and the results of the paper give a unified idea to
explain some known results on the toric ideals of a graph or a digraph.We characterize
all primitive binomials of I(G,τ ) and then focus on the complete intersection property.
More precisely, we find a complete list of graphs G such that I(G,τ ) is a complete
intersection for every sign τ .
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1 Introduction

Throughout the paper, a graph means a finite simple graph. A finite graph allowed
to have a multiple edge or a loop is called a multigraph. For a graph G, we set
V (G) = {v1, . . . , vn}, E(G) = {e1, . . . , em} and e = (e1, . . . , em) unless otherwise
specified. For a positive integer n, we denote {1, . . . , n} by [n]. For an integer vector
b, b+ (resp. b−) means the vector whose i th entry is max{bi , 0} (resp. −min{bi , 0}).
For an integer vector x = (x1, . . . , xm), ex means a monomial ex1

1 ex2
2 · · · exm

m .1

1 Throughout the paper, to denote a vector, we use a, b, c, etc. The standard bold type letters (a, b, c, etc.)
are for walks in a graph.
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Let K [e1, . . . , em] be a polynomial ring in m variables over a field K . For an n ×m
integer matrix A without zero columns, the ideal

IA =
〈
eb

+ − eb
− ∈ K [e1, . . . , em] | b ∈ Zm and Ab = 0

〉

is called the toric ideal associated with A. It is well known that a toric ideal is a prime
binomial ideal. For more details about toric ideals and related topics, see [11,25].

A (homogeneous) toric ideal not only defines a projective toric variety (see [6,
24]), but also provides wide applications in other areas, such as algebraic statistics,
dynamical system, hypergeometric differential equations, toric geometry, and graph
theory, see [5,14,25]. Toric ideals arising from various kinds of combinatorial objects
have been widely studied by many researchers, see [12,13,19,20] for some recent
results. Particularly, the toric ideal of a graph or a digraph, which is the toric ideal
associated with its vertex-edge incidence matrix, has been an interesting topic (see
[2–4,7,8,17,18,21,22]).

A major line of research on toric ideal arising from a combinatorial object focuses
on a ‘special’ set of binomials of the ideal (giving a combinatorial interpretation).
Among them, the set of primitive binomials, which is known to form the Graver basis,
was studied widely related to a problem initiated by Sturmfels, called true degree
problem. (See [23,25,26,28] for detail.) For a toric ideal IA, an irreducible binomial
B = B+ − B− of IA is primitive if there exists no other binomial B0 = B+

0 − B−
0 such

that B+
0 |B+ and B−

0 |B−. For the toric ideal of a graph, the primitive binomials and
some other important binomials were characterized in [22]. The primitive binomials
of the toric ideal of a digraph are nicely stated in [8,9]. See Sect. 2.2.1 for the primitive
binomials of the toric ideal of a graph/digraph.

Another important research direction on a toric ideal is about the complete inter-
section property. A toric ideal IA associated with an n × m integer matrix A has the
height ht(IA) = m − rank(A). We say IA is a complete intersection if it is generated
by ht(IA) elements (see [25]). A complete intersection toric ideal was first studied by
Herzog in [10], and it is known that the Hilbert series of the corresponding quotient
ring R/I can be computed easily when I is a complete intersection. The complete
intersection property of the toric ideal from a combinatorial object was also inves-
tigated by many researchers, see [1,2,7–9,15,16,21,27]. We summarize some known
results on the toric ideals of graphs/digraphs in Sect. 2.2.2.

In this paper, we consider toric ideals of signed graphs, as a generalization of graphs
and digraphs. An incidence of a graph G is a pair (e, v) of an edge e and a vertex v

such that v is an endpoint of e. A sign τ of G is a function from the set of all incidences
to the set {1,−1}, and a signed graph is a pair (G, τ ) of a graph G and its sign τ .
For a signed graph (G, τ ) with n vertices and m edges, the incidence matrix A(G, τ )

of (G, τ ) is an n × m matrix whose rows are labeled by the vertices v1, . . . , vn and
columns are labeled by the edges e1, . . . , em such that [A(G, τ )]i j = τ(e j , vi ) if vi

is incident to e j , and [A(G, τ )]i j = 0 otherwise. With an abuse of notation, we often
consider the codomain of τ is {+,−}. See Fig. 1 for an example.

We remark that if a sign τ is a constant function, then (G, τ ) is just a graph. If a
sign τ satisfies that τ(e, u)τ (e, v) = −1 for each edge e = uv, then (G, τ ) is equal to
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Fig. 1 A signed graph (G, τ ) and its incidence matrix A(G, τ )

a digraph. The toric ideal of a signed graph (G, τ ), denoted by I(G,τ ), is the toric ideal
associated with the incidence matrix A(G, τ ) in the polynomial ring K [e1, . . . , em]
over a field K .

As long as the authors are aware, the toric ideal of a signed graph is firstly con-
sidered in this paper, and so we start our research from a fundamental question on
generators. We completely characterize the primitive binomials of I(G,τ ) of a signed
graph (G, τ ) with graph theory language. This gives a way to explain the previous
results on graphs/digraphs in a unified idea. The latter part of the paper sheds light
on the complete intersection property of I(G,τ ). We give a necessary and sufficient
condition for a graph G to have a complete intersection I(G,τ ) for every sign τ , see
Theorems 3.9 and 3.10 .We emphasize that this result is more than unifying the results
of graphs/digraphs in [2,8], since there are infinitely many graphs G such that the toric
ideal of G and its every orientation are complete intersections but I(G,τ ) is not a com-
plete intersection for some sign τ (see Sect. 3). Lastly, we find a full list of such graphs
without assuming 2-connectedness, see Theorem 3.9.

2 Preliminaries

This section gives some basic notion and terminology in graphs and then summarizes
some known results on toric ideals of graphs and digraphs. In addition, we explain
how to define binomials from walks in a signed graph, which generate I(G,τ ).

2.1 Basic notion for walks in a graph

For a graph G, let w : vi1e j1 · · · e jt vit+1 be a walk or (vi1 , vit+1)-walk, which is an
alternating sequence of vertices vi ’s and edges e j ’s where e j� = vi�vi�+1 for each
� ∈ [t]. We call vi� (resp. e j�) the �th vertex (resp. edge) term of w. A vertex term is
said to be internal if it is neither first nor last. We let V (w) be the set of vertex terms
of w and E(w) be the multiset of the edge terms in w. We denote the multigraph with
the vertex set V (w) and the edge set E(w) by [w]. The underlying simple graph of
[w] is a subgraph of G, but [w] may not be a subgraph of G by multiple edges. See
Fig. 2.
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Fig. 2 A walk w in a graph G and V (w), E(w), and [w]

The length ofw is the number of edge terms inw. A subwalk ofw is a subsequence
of w which is a walk, and a section is a subwalk consisting of consecutive terms of w.
When we consider a subwalk or a section of a closed walkw, the terms are considered
cyclically so that the last edge term is consecutive to the first vertex term.

For two walks w and w′ in a graph, if the last vertex term of w and the first vertex
term of w′ are equal, then we denote by w + w′ the walk going through w and then
w′. If w0, . . . ,wk are sections of a walk w such that w = w0 + · · · +wk , then we call
this form a section decomposition of w. If every wi is a nontrivial walk, then we say
it is nontrivial.

The walk obtained by reading a walk w in the reverse order is denoted by w−1.
For a closed walk w : vi1e j1 · · · e jt vi1 (t ≥ 2), we say a vertex v ∈ V (w) is repeated
if v appears in vi1e j1vi2 · · · vit (e jt vi1 is deleted from w) at least two times. Note that
if a closed walk w has a repeated vertex v ∈ V (w), then w has a nontrivial section
decomposition w0 + w1 for some closed walks w0 and w1 (whose first vertex terms
are v).

2.2 Toric ideals of graphs and digraphs

Recall that the toric ideal IG of a graph (resp. digraph) G is the toric ideal I(G,τ ) when
τ is a constant function (resp. τ(e, u)τ (e, v) = −1 for every edge e = uv). In this
section, we summarize some previous results on the toric ideals of graphs/digraphs,
which will be used in this paper.

2.2.1 Primitive binomials

Let A be an n × m matrix without zero columns. An irreducible binomial of IA has a
form of eb

+ −eb
−
for someb ∈ Zm with Ab = 0. An irreducible binomial eb

+ −eb
−

is called primitive if there exists no other binomial ec
+ − ec

−
such that ec

+|eb+
and

ec
−|eb−

.
For a closed nontrivial walk w : vi1e j1 · · · vi2t e j2t vi1 of even length in a graph G,

let Bw = B+ − B−, where B+ = e j1e j3 · · · e j2t−1 and B− = e j2e j4 · · · e j2t . Here,
the same closed walk can be written in different ways but associated binomials differ
only in the sign. It is observed that (see [29]) IG is generated by those binomials
Bw. A necessary condition for the primitive binomials was firstly studied in [18] and
a necessary and sufficient condition was established in [22] as follows. When two
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graphs G and G ′ contain cliques K and K ′ of size k, respectively, a graph obtained
from G and G ′ by identifying K and K ′ is called a k-clique sum of G and G ′.

Theorem 2.1 [22, Theorem 3.2] For a closed walk w of even length in a graph, the
binomial Bw is primitive if and only if the following hold:

(i) The multigraph [w] is constructed by 1-clique sums of cycles of length at least
two such that every vertex of [w] belongs to at most two cycles.

(ii) For every nontrivial section decomposition w = w0 + w1 into two closed walks
w0 and w1, the length of each wi is odd.

In [22], other important sets of binomials in IG were also characterized and we
omit them here as it is not related to our main purposes.

Let G be a graph and D be its orientation. The primitive binomials of ID are much
more simply described. For every cycle w of G, we define Bw = B+ − B−, where
B+ is the product of the clockwise oriented edges and B− is the product of the other
edges.

Theorem 2.2 [8, Proposition 2] For a graph G, let D be its orientation. The primitive
binomials of ID are binomials Bw associated with cycles w of G.

2.2.2 The complete intersection property

Recall that the toric ideal IA is a complete intersection if it can be generated by ht(I )
elements, where ht(I ) is the height of I . It also holds that ht(IA) = m − rank(A). For
a connected graph G with n vertices and m edges, IG is a complete intersection if and
only if it is generated by r(G) binomials, where

r(G) =
{

m − n + 1 if G is bipartite,

m − n otherwise.

For a disconnected graph G, IG is a complete intersection if every connected compo-
nent of G has a complete intersection toric ideal. Let Gci be the set of all graphs with
complete intersection toric ideals. The bipartite graphs in Gci are nicely characterized
as follows.

Theorem 2.3 [9, Corollary 3.4] For a connected bipartite graph G, G ∈ Gci if and
only if G is a ring graph. Here, a ring graph is a graph whose nonedge block is
constructed by 2-clique sums of cycles.

A pseudo-code to check whether a graph is in Gci or not is given in [2], see
Algorithm 2.4. The algorithm relies on inductive idea, which may not give an exact
description on structures of graphs in Gci . Instead, useful structural properties are
provided in [2,27], and some are listed in Theorem 2.5. For a graph H , the number of
connected components which are bipartite is denoted by b(H).

123



1270 Journal of Algebraic Combinatorics (2021) 53:1265–1298

Algorithm 2.4 ([2])

Input: a simple graph G
Output: True if G ∈ Gci or False otherwise

H := G; B := ∅
while ∃v ∈ V (H) with degH (v) ≤ 2 do

if degH (v) = 2 and b(H − v) = b(H) then
W := {v} ∪ NH (v) ∪ {u ∈ V (H)|b(H − {u, v}) > b(H − u)}
if not exists a closed walk w of even length such that V (w) = W

then
return False

end if
Let w be a shortest closed walk of even length such that V (w) =

W .
B := B ∪ {Bw}

end if
H := H − v

end while
Let H1, . . . , Hs be the connected components of H .
if exists i such that Hi is neither odd band nor even Möbius band then

return False
end if
Let Bi be a minimal generating set of IHi for each 1 ≤ i ≤ s.
if IG is generated by B ∪ B1 ∪ · · · ∪ Bs then

return True
end if
return False

Theorem 2.5 [2, Theorem 3.6, Corollary 3.9, Lemma 6.2], [27, Theorem 3.1, Corol-
lary 5.6] Let G be a connected graph in Gci . Then, the following hold:

(i) If G is not bipartite, then 2|E(G)| ≤ 3|V (G)| − ∑
v∈V (G) b(G − v).

(ii) G has no K2,3 as a subgraph.
(iii) If G is 2-connected and has two cycles C and C ′ of odd length sharing exactly

one vertex v, then there is an edge e not incident to v which connects C and C ′.
(iv) If G is 2-connected and has disjoint two cycles C and C ′ of odd length, then there

are two disjoint edges e1 and e2 such that each ei connects C and C ′.
(v) G has at most two nonbipartite blocks.
(vi) Every induced subgraph of G belongs to Gci .

In [2], 3-regular graphswith complete intersection toric ideals are characterized, see
Theorem 2.6. Instead of giving the definitions of bands or Möbius bands, we note that
the complete graph K4 is an even Möbius band. For the definitions, see [2, Definition
4.2].

Theorem 2.6 [2, Theorem 4.4] For a 3-regular connected graph G, G ∈ Gci if and
only if it is an odd band or an even Möbius band.
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The following lists results on digraphs. For a connected graph G with n vertices
and m edges, and an orientation D of G, ID is a (binomial) complete intersection if
and only if it is generated by r(D) = m − n + 1 binomials. For an orientation D of
a disconnected graph, ID is a complete intersection if the toric ideal of the digraph
restricted to every connected component of G is a complete intersection. Let Gcio

be the set of graphs G such that ID is generated a complete intersection for every
orientation D of G.

Theorem 2.7 [8, Theorems 4 and 6, Corollary 4] Let G be a connected graph.

(i) G ∈ Gcio if and only if G is constructed by clique sums of complete graphs and/or
cycles.

(ii) Every induced subgraph of a graph in Gcio belongs to Gcio.

2.3 Even-signed walks in (G, �) and their associated binomials of I(G,�)

In this subsection, we explain how to define binomials associated with closed walks
in a signed graph, and this will play a key role in Sect. 3.

Definition 2.8 Letw : vi1e j1vi2 · · · e jt vit+1 be awalk in a signed graph (G, τ ) of length
at least two. An internal vertex term vi� ofw is unbalanced if τ(e j�−1 , vi� )τ (e j� , vi� ) =
1. As long asw is closed, we say vi1 (or vit+1 ) is unbalanced if τ(e jt , vi1)τ (e j1 , vi1) =
1. We define μ(w) = (−1)k , where k is the number of unbalanced vertex terms of w.
We also say w is even-signed if μ(w) = 1, and w is odd-signed if μ(w) = −1.

Throughout the paper, a walk/cycle with odd/even number of edge terms is said to
be a walk/cycle of odd/even length. A triangle means a cycle of length three.

A balanced section w0 of a walk w is a maximal section of w such that w0 has
no internal unbalanced vertex term. If w0 + · · · + wk is a section decomposition of
w such that each wi is a balanced section, then this form is called a balanced section
decomposition of w.

For a closed walk w, if it has no unbalanced vertex term, then it is even-signed
and has exactly one balanced section which is itself. Otherwise, its balanced section
decompositionw0+· · ·+wk is also unique up to cyclic permutations. So, by choosing
an unbalanced vertex as the first vertex term properly, we can denote by w = w0 +
· · · + wk .

Example 2.9 Consider a signed graph (G, τ ) in Fig. 3, and its two closed walks w and
w′, where

w : v3e3v4e4v5e5v1e6v3e2v2e1v1e6v3, w′ : v1e1v2e2v3e6v1e5v5e5v1.

For a closed walk w, the 2nd, 3rd, 4th, and 6th vertex terms are the unbalanced
vertex terms, which implies that w is an even-signed walk in (G, τ ) and the balanced
sections are

w0 : v2e1v1e6v3e3v4, w1 : v4e4v5, w2 : v5e5v1, w3 : v1e6v3e2v2.
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Fig. 3 A signed graph (G, τ ) and two closed walks w and w′

The walk has a balanced section decomposition w0 + w1 + w2 + w3. For the closed
walk w′, there are three unbalanced vertex terms, the 2nd, 4th, and 5th vertex terms,
which implies that w′ is odd-signed in (G, τ ) and its balanced sections are

w′
0 : v5e5v1e1v2, w′

1 : v2e2v3e6v1, w′
2 : v1e5v5,

and w′
0 + w′

1 + w′
2 is a balanced section decomposition of w′. Note that by taking

the first vertex term of w or w′ properly, we can write w = w0 + w1 + w2 + w3 or
w′ = w′

0 + w′
1 + w′

2.

Definition 2.10 Let w be an even-signed closed walk in a signed graph, and w0 +
w1 + · · · + w2k−1 be its balanced section decomposition (k ≥ 1). The binomial Bw
associated with w is Bw = B+

w − B−
w where

B+
w =

∏
i :even

∏
e∈E(wi )

e and B−
w =

∏
i :odd

∏
e∈E(wi )

e.

Ifw has no unbalanced vertex term, then it is defined by B+
w = ∏

e∈E(w) e and B−
w = 1.

Since w has an even number of unbalanced vertex terms, its binomial is unique up
to sign. That is, the binomial is either Bw or −Bw according to its balanced section
decomposition. For the even-signed closed walk w in (G, τ ) in Example 2.9, Bw =
e2e4e6 − e1e3e5e6 (one may say Bw = e1e3e5e6 − e2e4e6).

Observation 2.11 If w is an even-signed closed walk in a signed graph (G, τ ), then
Bw ∈ I(G,τ ).

Proof Let w : vi1e j1 · · · vit e jt vi1 be an even-signed closed walk in (G, τ ). We may
assume that the first vertex term is unbalanced, and let w = w0 + · · · + w2k−1 be a
balanced section decomposition of w. For each edge term e j� , we let κ(e j� ) = (−1)s

if e j� belongs to the section ws .
Let b = (be)e∈E(G) be a vector such that be = f +(e) − f −(e) for every edge e,

where

f +(e) = |{� | e j� = e and κ(e j� ) = 1}|, f −(e) = |{� | e j� = e and κ(e j� ) = −1}|.
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Then, the entry of Ab corresponding to a vertex v is

∑
e:v∈e

( f +(e) − f −(e))τ (e, v) =
∑
e:v∈e

∑
�:e j�=e

κ(e j� )τ (e, v)

=
∑

�:vi�=v

(
κ(e j�−1)τ (e j�−1 , v) + κ(e j� )τ (e j� , v)

)
.

If κ(e j� ) = κ(e j�−1), then τ(e j�−1 , v) = −τ(e j� , v), and if κ(e j� ) 	= κ(e j�−1), then
τ(e j�−1 , v) = τ(e j� , v). In both cases, the sum κ(e j�−1)τ (e j�−1 , v)+ κ(e j� )τ (e j� , v) is

0. This implies that eb
+ − eb

− ∈ I(G,τ ).
On the other hand, from the definition, ex(eb

+ −eb
−
) = Bw, where x = (xe)e∈E(G)

is the vector such that xe = min{ f +(e), f −(e)} for every edge e. Thus, Bw is an
element of I(G,τ ). 
�

It seems natural to have the following proposition from the definition of I(G,τ ).

Proposition 2.12 If (G, τ ) is a signed graph, then the toric ideal I(G,τ ) is generated
by

{Bw | w is an even-signed closed walk in (G, τ )}.

The above proposition immediately follows from Observation 2.11 and Proposi-
tion 2.13, and we leave the proof detail of Proposition 2.13 in Appendix.

Proposition 2.13 Let (G, τ ) be a signed graph, and b = (be)e∈E(G) be a nonzero
integer vector such that Ab = 0, where A = A(G, τ ). If we denote by (Gb, τb) the
signed multigraph induced by |be| copies of e for every edge e with its sign copied,
then each connected component D of Gb has an Eulerian wD which is an even-signed
closed walk in (G, τ ) and

eb
+ − eb

− =
∏

D:connected
component of Gb

B+
wD

−
∏

D:connected
component of Gb

B−
wD

.

3 Themain results

In this section, we state the main results of the paper. Section 3.1 focuses on the
primitive binomials of I(G,τ ), and Sect. 3.2 gives characterizations of graphs G with
a complete intersection I(G,τ ) for every sign τ .

3.1 Primitive binomials of I(G,�)

We characterize all primitive binomials in I(G,τ ).

Theorem 3.1 For an even-signed closed walk w in a signed graph, Bw is primitive if
and only if the following hold:
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Fig. 4 The multigraph [w],
where w is an even-signed
closed walk in a signed graph
(G, τ ). If (G, τ ) has no
even-signed cycle, then w is
primitive

Fig. 5 A signed graph (G, τ )

(i) The multigraph [w] is constructed by 1-clique sums of cycles of length at least
two such that every vertex of [w] belongs to at most two cycles.

(ii) For every nontrivial section decomposition w = w0 + w1 into two closed walks
w0 and w1, each wi is odd-signed in (G, τ ).

A proof of Theorem 3.1 is given in Sect. 5.1. We often say an even-signed closed
walk w in a signed graph (G, τ ) is primitive if Bw is primitive in I(G,τ ). Figure 4
shows an image of the multigraph [w] for a primitive walk w. Note that if w is a
primitive walk, then every cut vertex of [w] decomposes [w] into two parts, and each
part corresponds to an odd-signed closed walk in (G, τ ).2

Example 3.2 Consider a signed graph (G, τ ) in Fig. 5. Let w be a walk in (G, τ )

defined by

w : v1e1v2e2v3e3v1e4v4e5v5e6v6e7v7e8v5e9v8e10v1.

It has four balanced sections, and sow is an even-signed closed walk in (G, τ ). See the
vertex v5 which is repeated inw. Then,w has a nontrivial section decompositionw0+
w1 and each ofw0 andw1 is an even-signed closed walk, wherew0 : v5e6v6e7v7e8v5
and w1 : v5e9v8e10v1e1v2e2v3e3v1e4v4e5v5. Thus, its associated binomial Bw is not
primitive by Theorem 3.1(ii).

It is easy to see that Theorem 3.1 is a generalization of Theorem 2.1. Moreover,
if you consider an orientation of a cycle as a signed graph, then it is an even-signed
closed walk. Thus, every digraph has no odd-signed closed walk, which implies that
Theorem 3.1 is also a generalization of Theorem 2.2.

2 In the toric ideals of graphs, this was explained with a notion of ‘sink’ of a block, see [22].
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3.2 The complete intersection property of the toric ideal I(G,�)

We compute the rank of the incidence matrix of a connected signed graph first.

Proposition 3.3 Let (G, τ ) be a connected signed graph. Then,

rank(A(G, τ )) =
{

|V (G)| − 1 if there is no odd-signed closed walk in (G, τ ),

|V (G)| otherwise.

See Appendix for the proof of Proposition 3.3. Due to the proposition and from the
fact that ht(I(G,τ )) = m − rank(A(G, τ )), we define the following.

Definition 3.4 Let (G, τ ) be a connected signed graph. We say (G, τ ) is a complete
intersection when I(G,τ ) is a (binomial) complete intersection, i.e., I(G,τ ) is generated
by r(G, τ ) binomials, where

r(G, τ ) =
{

|E(G)| − |V (G)| + 1 if there is no odd-signed closed walk in (G, τ ),

|E(G)| − |V (G)| otherwise.

For a disconnected signed graph, it is said to be a complete intersection if every
connected component is a complete intersection. Let Gcis be the set of all graphs G
such that (G, τ ) is a (binomial) complete intersection for every sign τ . It is natural to
ask which graphs are in Gcis , and we start from basic observations.

Proposition 3.5 Every block of a graph in Gcis belongs to Gcis .

Proof Let G be a graph in Gcis having a block H such that H /∈ Gcis . We may assume
that G is connected. Then, there is a sign τ of H such that I(H ,τ ) cannot be generated
by r(H , τ ) binomials. Let t be the minimum number of binomials which generate
I(H ,τ ). Then, t > r(H , τ ).

Let τ ′ be the sign of G such that τ ′(e, v) = τ(e, v) for every e ∈ E(H) and
τ ′(e, v)τ ′(e, w) = −1 for every e = vw ∈ E(G) \ E(H). Let X = {v ∈ V (G) |
v is contained in a block other than H}. Since G ∈ Gcis ⊂ Gcio, it follows that
G[X ] ∈ Gcio by Theorem 2.7(ii). Note that (G[X ], τ ′|X ) can be understood as a
digraph, and so (G[X ], τ ′|X ) has no odd-signed cycle. Thus,

r(G, τ ′) = r(H , τ ) + (|E(G[X ])| − |X | + c) = r(H , τ ) + (|E(G)| − |E(H)| − |X | + c),

(3.1)

where c = |V (H) ∩ X |. Moreover, since G[X ] has at least c components, we need at
least |E(G)| − |E(H)| − |X | + c binomials to generate I(G[X ],τ ′|X ). Hence, in order
to generate I(G,τ ′), we need at least t + |E(G)| − |E(H)| − |X | + c binomials. Since
t + |E(G)| − |E(H)| − |X | + c > r(G, τ ′) by (3.1), we reach a contradiction to the
fact that G ∈ Gcis . 
�
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Fig. 6 A complete graph K4 and its three closed walks

Proposition 3.6 Let H be either a cycle or a K2. For a connected graph G, let G ′
be a 1- or 2-clique sum of G and H. Let τ ′ be a sign of G ′ such that τ = τ ′|V (G).
Suppose that H is even-signed in (G ′, τ ′) when H is a cycle. Then, I(G ′,τ ′) is a complete
intersection if and only if I(G,τ ) is a complete intersection.

Proof Suppose that H is a cycle. It is clear that r(G ′, τ ′) = r(G, τ ) + 1. Since C is
a primitive walk in (G ′, τ ′), its associated binomial generates I(G ′,τ ′) together with a
generating set of I(G,τ ). If H = K2, then r(G ′, τ ′) = r(G, τ ) for every sign τ ′ of
G ′ and the primitive walks of (G, τ ) and those of (G ′, τ ′) are the same. Thus, the
proposition holds. 
�

Proposition 3.6 implies that for a graph G, if G /∈ Gcis , then a graph constructed
by clique sums of G and cycles/K2 is not in Gcis . Thus, the following holds.

Corollary 3.7 For a graph G ∈ Gcis and an induced subgraph H of G, if G can be
constructed by clique sums of H and cycles/K2, then H belongs to Gcis .

Observation 3.8 A graph in Gcis is K4-free.

Proof First, we show that K4 /∈ Gcis . Following the labeling in Fig. 6, let τ be a sign
of K4 such that

τ(e4, v1) = τ(e5, v2) = τ(e6, v3) = −1,

and all the others have sign 1. By Theorem 3.1, there are only three primitive walks
w1, w2, w3, which are defined as Fig. 6.3 Then, we have Bw1 = e1e5 − e3e6, Bw2 =
e1e4 − e2e6, and Bw3 = e2e5 − e3e4. Note that each of three cannot be generated by
the others. However, r(K4, τ ) = 2, since (K4, τ ) has odd-signed cycles. Thus, I(K4,τ )

is not a complete intersection.
Suppose that there is a graph G in Gcis having K4 as a subgraph. We take such

G as a smallest one. By Proposition 3.5, a block of G with K4 is in Gcis . Thus, G
is 2-connected. Moreover, by the above argument, G 	= K4. Since G ∈ Gcio, G
is constructed by clique sums of cycles and/or complete graphs by Theorem 2.7(i).
Since G is 2-connected, it follows that every clique sum to construct G is not a 1-
clique sum. From the fact that G ∈ Gci , by Theorem 2.5(ii), it follows that every

3 We note that Observation 3.8 is not used in the proof of Theorem 3.1. Moreover, in Fig. 6 (also in the
following figures of the paper), we use dashed lines and gray color to draw the rest part of the graph not
belonging to [wi ] together to distinguish the walks easily.
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Fig. 7 Some graphs in Theorem 3.9

clique sum to construct G is a 2-clique sum. If G is constructed by clique sums of
exactly one K4 and cycles, then by Proposition 3.6 and the fact that K4 /∈ Gcis , it
follows that G /∈ Gcis , a contradiction. Thus, G has at least two K4, say K and K ′. By
Theorem 2.5(v), G[K ∪ K ′] is in Gci . By applying Theorem 2.5(i) to G[K ∪ K ′], we
know that G[K ∪ K ′] is a disjoint union of K and K ′. By Theorem 2.5(iv), every two
vertex disjoint cycles of length three from K and K ′ are connected by two disjoint
edges, which is a contradiction. 
�

We remark that Gcis is a subset of Gci ∩Gcio by definitions, and so Observation 3.8
tells us from Theorem 2.7(i) that the (connected) graphs in Gcis are constructed by
clique sums of cycles and/or K2. Among those graphs, we completely characterize all
graphs in Gcis . The following considers only 2-connected graphs in Gcis , and its proof
is given in Sect. 5.2.

Theorem 3.9 For a 2-connected graph G with at least three vertices, G ∈ Gcis if and
only if G is one of (G1)-(G5) for some m, n ≥ 3 (see Fig. 7):

(G1) A cycle Cn;
(G2) A 2-clique sum of two cycles Cn and Cm;
(G3) m n: the graph obtained from C3 by gluing Cm and Cn to two distinct edges of

C3 using 2-clique sum, respectively;
(G4) m n: the graph obtained from C4 by gluing Cm and Cn to two opposite edges of

C4 using 2-clique sum, respectively;
(G5) m n: the graph obtained from m n by adding a diagonal edge of the middle C4.

Now we characterize all graphs in Gcis . The proof of Theorem 3.10 is given in
Sect. 5.3, and see Fig. 8 for some graphs described in the theorem.

Theorem 3.10 For a graph G, G is in Gcis if and only if every connected component
G ′ of G is one of the following:

(i) G ′ is a tree.
(ii) G ′ has exactly one nonedge block and it is isomorphic to one of (G1)∼(G5).
(iii) G ′ has exactly two nonedge blocks B and B ′, each of which is isomorphic to (G1)

or (G2). When B is (G2), the vertex v of B closest to B ′ is on a triangle of B and
degB(v) = 2.

We remark that from the structures of the graphs in Theorem 3.10, it follows that
every induced subgraph of a graph in Gcis belongs to Gcis .

Now, we finish the section by noting that it is not difficult to find graphs inGci ∩Gcio

which are not in Gcis . A reader may already notice that K4 is such an example by
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Fig. 8 Examples of graphs in Gcis satisfying Theorem 3.10(iii)

Theorems 2.6 and 2.7 (i), and Observation 3.8. The following properties not only
are helpful to understand Example 3.12 but also may give an idea to find graphs in
(Gci ∩ Gcio) \ Gcis .

Let p : v0e1v1 · · · etvt be a path in G of length at least two such that v0vt /∈ E(G)

and degG(vi ) = 2 for each i ∈ [t − 1] as depicted in Fig. 22. We call such path an ear
of G, and we denote by G/p the graph obtained from G by deleting the vertices v1,
. . ., vt−1 and adding an edge between v0 and vt . We sometimes call G/p a contraction
of G by p. The proof of the following proposition is given in Appendix.

Proposition 3.11 Let p : v0e1v1 · · · etvt (t ≥ 2) be an ear of a graph G. Then, the
following hold:

(i) If G ∈ Gcis , then G/p ∈ Gcis . (Equivalently, if a graph is not in Gcis , then its
subdivision is not in Gcis .)

(ii) If t ≥ 3 and G/q ∈ Gcis , where q = p − vt , then G ∈ Gcis . (Equivalently, if
G /∈ Gcis , then the graph obtained by contracting an edge e = uv with degG(u) =
degG(v) = 2 is not in Gcis .)

Example 3.12 Let G be the graph in Fig. 9. Then, G /∈ Gcis and G ∈ Gci ∩ Gcio.
First, we consider the graph G0 in Fig. 9. Note that if G0 /∈ Gci then G0 /∈ Gcis ,

which also implies that by Proposition 3.11(i), G /∈ Gcis . Thus, it is sufficient to show
that G0 /∈ Gci by Algorithm 2.4. Note that for each i ∈ {1, 3, 5}, vertex vi of G0 has
degree two and b(G0 − vi ) = b(G0). We apply the algorithm to G0 with v1. Then,
W = {v1, v2, v4, v6} and a shortest closed walk w1 of even length with V (w1) = W
is a cycle of length 4. Its associated binomial is Bw1 = e1e8 − e6e7. Similarly, by
considering the vertex v3 and v5 one by one, finally, we have B = {Bw1 , Bw2 , Bw3}
where Bw2 = e2e8 − e3e9 and Bw3 = e4e9 − e5e7. It remains to check if IG = 〈B〉.
However, Bw4 cannot be generated byB, where Bw4 = e1e3e5−e2e4e6 is the primitive
binomial associated with w4 : v1e1v2e2v3e3v4e4v5e5v6e6v1. Thus, Algorithm 2.4
returns False, as a desired one.

Now, we will show that G ∈ Gci ∩ Gcio. Since G is constructed by clique sums of
cycles, G ∈ Gcio by Theorem 2.7(i). It remains to check that G ∈ Gci . Note that G
has exactly six primitive walks x1 ∼ x6, defined as Fig. 9. Then, one can check from
Corollary 4.5 that

Bx4 ∈ 〈
Bx1, Bx2

〉
, Bx5 ∈ 〈

Bx1, Bx3
〉
, Bx6 ∈ 〈

Bx2 , Bx3
〉
.

Thus, IG = 〈
Bx1 , Bx2 , Bx3

〉
, which implies that IG is a complete intersection.
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Fig. 9 Graphs G0, G and primitive walks in G

4 Properties of walks in a signed graph

In this section, we investigate properties of even-signed closed walks in a signed graph
(G, τ ), which play an important role in the following section.

Lemma 4.1 In a signed graph (G, τ ), for two closed walks w and w′ sharing a vertex,
μ(w + w′) = μ(w)μ(w′).

Proof If w or w′ is trivial, then it is clear. Suppose that both are nontrivial. Let
w : ue j1vi2 · · · e jt u and w′ : ue′

j1
v′

i2
· · · e′

jr
u. Since τ(e j1 , u)τ (e jt , u) = 1 (resp.

τ(e′
j1
, u)τ (e′

jr
, u) = 1) means that u is an unbalanced vertex term of w (resp. w′),

μ(w + w′) is equal to

(−τ(e j1 , u)τ (e jt , u))(−τ(e′
j1 , u)τ (e′

jr , u))μ(w)μ(w′)
(−τ(e jt , u)τ (e′

j1 , u))(−τ(e′
jr , u)τ (e j1 , u)) = μ(w)μ(w′).


�
Lemma 4.2 Let w be a (u, v)-walk in a signed graph (G, τ ). For any two (v, u)-walks
w1 and w2,

μ(w1 + w−1
2 ) = μ(w + w1)μ(w + w2).

Proof If u = v, then the lemma holds, since we have the following from Lemma 4.1:

μ(w1 + w−1
2 ) = μ(w1)μ(w−1

2 ) = μ(w1)μ(w2) = μ(w)μ(w1)μ(w)μ(w2)

= μ(w + w1)μ(w + w2).

Suppose that u and v are distinct. Then, each of w, w1, and w2 is nontrivial. Without
loss of generality, it is enough to consider the case when

w : ue1v2 · · · etv, w1 : ve′
1v

′
2 · · · e′

r u, w2 : ve′′
1v

′′
2 · · · e′′

s u

as depicted in Fig. 10.
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Fig. 10 An illustration for the
proof of Lemma 4.2

Note that τ(e′
r , u)τ (e′′

s , u) = 1 (resp. τ(e′
1v)τ(e′′

1 , v) = 1) means that u (resp. v)
is a new unbalanced vertex term of w1 + w−1

2 . Thus,

μ(w1 + w−1
2 ) = μ(w1)(−τ(e′

r , u)τ (e′′
s , u))μ(w2)(−τ(e′

1, v)τ (e′′
1 , v)).

Likewise,

μ(w + w1) = μ(w)(−τ(et , v)τ (e′
1, v))μ(w1)(−τ(e′

r , u)τ (e1, u)),

μ(w + w2) = μ(w)(−τ(et , v)τ (e′′
1 , v))μ(w2)(−τ(e′′

s , u)τ (e1, u)).

Therefore, μ(w1 + w−1
2 ) = μ(w1)μ(w2)τ (e′

r , u)τ (e′′
s , u)τ (e′

1, v)τ (e′′
1 , v) = μ(w +

w1)μ(w + w2). 
�

Lemma 4.3 Let w and w′ be two even-signed closed walks in a signed graph, whose
first vertex terms are the same. Then (by taking Bw and Bw′ properly) B+

w+w′ = B+
w B+

w′
and B−

w+w′ = B−
w B−

w′ .

Proof Letw = w0+· · ·+wr andw′ = w′
0+· · ·+w′

s be balanced section decomposi-
tions ofw andw′ for some odd integers r and s. By Lemma 4.1,wr +w′

0 is a balanced
sectionofw+w′ if andonly ifw′

s+w0 is a balanced sectionofw+w′. First, suppose that
wr +w′

0 is not a balanced section ofw+w′. Then,w0+· · ·+wr +w′
0+· · ·+w′

s is a bal-
anced section decomposition ofw+w′. By definition, it follows that B+

w B+
w′ = B+

w+w′
and B−

w B−
w′ = B−

w+w′ . Suppose that wr +w′
0 is a balanced section of w+w′. Letting

x = w′
s +w0 and y = wr +w′

0, we have a balanced section decomposition ofw+w′,

x + w1 + · · · + wr−1 + y + w′
1 + · · · + w′

s−1.

Then, we can obtain that B+
w B+

w′ = B+
w+w′ and B−

w B−
w′ = B−

w+w′ by redefining Bw
and Bw′ properly. 
�

Lemma 4.4 Let w be a (u, v)-walk in a signed graph without unbalanced vertex term.
For two (v, u)-walks w1 and w2, if w + wi is even-signed for each i = 1, 2, then
Bw1+w−1

2
belongs to the ideal

〈
Bw+w1 , Bw+w2

〉
.
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Proof For simplicity, let a, b, c, and d be closed walks such that

a = w + w1, b = w−1
2 + w−1, c = w1 + w−1

2 , d = w−1 + w.

Note that each of the four walks are even-signed (a and b are even-signed by the
assumptions, c and d are even-signed by Lemma 4.2). Moreover, the first vertex terms
of a and b are the same as u, and the first vertex terms of c and d are the same as v.

We consider two closedwalks a+b and c+d. Since a+b = w+w1+(w2)
−1+w−1

and c+d = w1 + (w2)
−1 +w−1 +w, they are the same walk and so ±Ba+b = Bc+d.

By Lemma 4.3, by taking binomials associated with four even-signed closed walks a,
b, c and d properly, we have

B+
a+b = B+

a B+
b , B−

a+b = B−
a B−

b , B+
c+d = B+

c B+
d , B−

c+d = B−
c B−

d .

Note that since w has no unbalanced vertex term, B+
d = B−

d , and we let X := B+
d .

Hence,

Bc=B+
c − B−

c = B+
c+d

B+
d

− B−
c+d

B−
d

= 1

X

(
B+
c+d − B−

c+d

)
= 1

X
Bc+d = ± 1

X
Ba+b = ± B+

a B+
b

X
∓ B−

a B−
b

X
.

Wemay assume that Bc = B+
a B+

b
X − B−

a B−
b

X . (The other case is similar.) Thus, X divides
both B+

a B+
b and B−

a B−
b . Moreover, sincew has no unbalanced vertex term, X divides

one of B+
a and B−

a , and one of B+
b and B−

b . Thus, X divides either B+
a and B−

b , or
B−
a and B+

b . If X divides B+
a and B−

b , then

Bc = B+
a B+

b
X

+
(

− B+
a B−

b
X

+ B+
a B−

b
X

)
− B−

a B−
b

X

=
(

B+
a B+

b
X

− B+
a B−

b
X

)
+

(
B+
a B−

b
X

− B−
a B−

b
X

)
= B+

a
X

Bb + B−
b

X
Ba.

Similarly, if X divides B−
a and B+

b , then

Bc = B+
a B+

b

X
+

(
− B−

a B+
b

X
+ B−

a B+
b

X

)
− B−

a B−
b

X
= B−

a

X
Bb + B+

b

X
Ba.

In any case, Bc belongs to the ideal 〈Ba, Bb〉, a desired conclusion. 
�
The following is from Lemma 4.4 by considering cases wherew is a walk of length

one.

Corollary 4.5 Let w1 and w2 be two even-signed closed walks in a signed graph,
starting with u, e, v for an edge e = uv. Then, Bw′ ∈ 〈

Bw1 , Bw2

〉
, wherewi = uev+w′

i

for i = 1, 2 and w′ = w′
1 + w′

2
−1.

The following lemma may fail if we drop the assumption on oddness of sign of w
or w′.
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Lemma 4.6 Let w and w′ be two odd-signed closed walks in a signed graph (G, τ ),
whose first vertex terms are the same. Then, w + w′ and w−1 + w′ are even-signed
closed walks in (G, τ ) and Bw−1+w′ = ±Bw+w′ .

Proof Note that w + w′ and w−1 + w′ are even-signed by Lemma 4.1, since
μ(w−1) = μ(w) = μ(w′) = −1,μ(w+w′) = μ(w)μ(w′) = 1, andμ(w−1+w′) =
μ(w−1)μ(w′) = 1. Let w0 + · · · + w2r be a balanced section decomposition of w
for some nonnegative integer r . We assume that w0 contains the first vertex term v.
Then, y is a nontrivial walk and x may be trivial, and w + w′ and w−1 + w′ have the
following section decompositions (the parts w1 + · · · + w2r and w

−1
2r + · · · + w1 are

dropped if r = 0):

w + w′ = y + w1 + · · · + w2r + x + w′,
w−1 + w′ = x−1 + w−1

2r + · · · + w−1
1 + y−1 + w′.

Then, we make a binomial Bw+w′ = B+ − B− by putting the edges in E(y) to B+,
the edges in E(w1) to B−, the edges in E(w2) to B+, and so on. Let U+ and U− be
the (multi)set so that

B+ =
∏

e∈U+
e and B− =

∏

e∈U−
e.

Then, by a way to make the binomial Bw+w′ ,

U+ ⊃ E(y) ∪
( ⋃

i>0: even
E(wi )

)
, U− ⊃

( ⋃
i : odd

E(wi )

)
∪ E(x).

Similarly, we also make a binomial Bw−1+w′ = B ′+ − B ′− by putting the edges in
E(x−1) to B ′−, the edges in E(w−1

2r ) to B+, and so on. Let W + and W − be the
(multi)set so that

B ′+ =
∏

e∈W+
e and B ′− =

∏

e∈W−
e.

Then, by a way to make the binomial Bw−1+w′ ,

W + ⊃ E(y) ∪
( ⋃

i>0: even
E(wi )

)
, W − ⊃

( ⋃
i : odd

E(wi )

)
∪ E(x).

Note that it is sufficient to show that for the first edge term e′
j1
of w′, e′

j1
∈ U+ if and

only if e′
j1

∈ W +. In the following, let e j1 be the first edge term of w (i.e., the first
edge term of y), and e j∗ be the last edge term of w. We note e j1 ∈ E(y) ⊂ W +.
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(Case 1) Suppose that x is nontrivial. Then, e j∗ is the last edge term of x and x + y is
a balanced section of w. Thus,

τ(e j∗ , v) = −τ(e j1 , v). (4.1)

We also note that e j∗ ∈ E(x) ⊂ U−. Then, where the second biconditional is from
(4.1),

e′
j1 ∈ U+ ⇔ τ(e j∗ , v) = τ(e′

j1 , v) ⇔ − τ(e j1 , v) = τ(e′
j1 , v) ⇔ e′

j1 ∈ W +.

(Case 2) Suppose that x is trivial. Then, the first vertex term v ofw is unbalanced, and
so

τ(e j∗ , v) = τ(e j1 , v). (4.2)

We also note that e j∗ ∈ E(w2r ) ⊂ U+. Then, where the second biconditional is
from (4.2),

e′
j1 ∈ U+ ⇔ τ(e j∗ , v) = −τ(e′

j1 , v) ⇔ τ(e j1 , v) = −τ(e′
j1 , v) ⇔ e′

j1 ∈ W +.


�

5 Proofs of themain results

5.1 Proof of Theorem 3.1

Proof of Theorem 3.1 The following is directly derived from Lemma 4.3.

Claim 5.1 For an even-signed closed walk w in a signed graph, if Bw is primitive, then
w has no proper nontrivial section that is an even-signed closed walk.

Let w : vi1e j1vi2 · · · vir e jr vi1 be an even-signed closed walk in a signed graph
(G, τ ). First, we show the ‘only if’ part. Suppose that Bw is primitive in I(G,τ ). Note
that (ii) holds by Claim 5.1, and so we will show (i).

Claim 5.2 Let w = w0 + w1 + w2 + w3 be a nontrivial section decomposition of w.
Then, at least one of w0 + w1 and w1 + w2 is not a closed walk.

Proof Suppose to contrary that each of w0 + w1 and w1 + w2 is a closed walk. First,
we will show that bothw3 +w0 andw3 +w−1

1 are odd-signed closed walks in (G, τ ).
Let v be the first vertex term of w0 and u be the first vertex term of w1. Then, w3 is
a (u, v)-walk, and each of w0 and w−1

1 is a (v, u)-walk. Hence, both w3 + w0 and
w3+w−1

1 are closed walks. Then,w3+w0 is clearly a proper closed section ofw, and
so it is odd-signed by Claim 5.1. In a closed walk w∗ = w−1

1 +w−1
0 +w2 +w3, note

that w3 + w−1
1 is a proper closed section. By Lemma 4.6, w∗ is also an even closed
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walk such that Bw = Bw∗ , and so Bw∗ is also primitive. It follows from Claim 5.1 that
w3 + w−1

1 is odd-signed in (G, τ ). Then,

μ(w0 + w1) = μ(w0 + (w−1
1 )−1) = μ(w3 + w0)μ(w3 + w−1

1 ) = 1,

where the second equality is from Lemma 4.2 and the last one is from the fact that
both w3 +w0 and w3 +w−1

1 are odd-signed. Hence, w0 +w1 is a proper even-signed
closed section of w, a contradiction to Claim 5.1. 
�
Claim 5.3 Let v be a vertex repeated in w. Then, v is repeated exactly twice in w and
is a cut vertex of [w] such that [w] − v has exactly two connected components and
each block of [w] is a cycle of length at least two.

Proof We may assume that the first vertex term is v. First, we claim that there is no
vertex repeatedmore than twice. Suppose that there are k and � such that 1 < k < � ≤ r
and v = vik = vi� . Let w = w0 + w1 + w2 where each wt is a nontrivial closed walk
whose first vertex term is v. Then, μ(w0)μ(w1)μ(w2) = μ(w) = 1 by Lemma 4.1,
which implies that at least one of w0, w1, and w2 is an even-signed closed walk in
(G, τ ), and say w0. This contradicts to Claim 5.1. Hence, v is repeated twice and so
we let w = w0 +w1 where wt is a nontrivial closed walk whose first vertex term is v.

By Claim 5.2, every internal vertex term u ofw0 is not appeared inw1 at all. Hence
v is a cut vertex of [w]. Moreover, since v is repeated twice, [w] − v has exactly two
connected components and every block of [w] containing v contains exactly two edges
incident to v. Thus, each block is a cycle. 
�

By Claim 5.3, it is clear that every vertex belongs to at most two blocks, which
implies (i).

We show the ‘if’ part. Suppose that an even-signed closed walkw in (G, τ ) satisfies
(i) and (ii).

Claim 5.4 For each edge e ∈ E(w), e divides exactly one of B+
w and B−

w .

Proof Suppose to contrary that an edge e ∈ E(w) divides both B+
w and B−

w . Then, e is
repeated inw and so e is on a cycle of length two in [w] by (i). Moreover,w has at least
two balanced sections, and let w0 + · · ·+w2k−1 be a balanced section decomposition
of w. Then, we may assume that both w0 and w2i−1 contain e for some i ∈ [k]. Then,
there are section decompositions w0 = x0 + y0 and w2i−1 = x2i−1 + y2i−1 such that
the first edge term of y0 and the last edge term of x2i−1 are e. Consider the section
w′ of w so that the first and the last edge terms are e. Then, by the structure of [w]
from (i) and (ii), w′ is a closed walk and w′ = y0 + w1 + · · · + w2i−2 + x2i−1 is a
balanced section decomposition (w1 + · · · +w2i−2 is dropped if i = 1). Hence, w′ is
an even-signed closed section of w, a contradiction to (ii). 
�
Let A = A(G, τ ). ByClaim 5.4, from the sameway in (the proof of) Observation 2.11,
we can find an integer vectorb = (be)e∈E(G) such that eb

+ −eb
− = Bw andGb = [w]

(Gb is themultigraph inProposition 2.13). Suppose to contrary that Bw is not primitive.
Then, there is a binomial ec

+ − ec
−
in I(G,τ ) (for some c = (ce)e∈E(G), other than b)
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such that ec
+|eb+

, ec
−|eb+

. It also holds Ac = 0. By Proposition 2.13, each connected
component of Gc has an even-signed Eulerian. Now consider twomultigraphs Gb and
Gc. Note that Gc is a proper subgraph of Gb. By the condition (i) on Gb, each block
B of Gb is a cycle and so each block of Gc is also a block of Gb. Thus, Gc is made
by taking some blocks of Gb.

Let d = (de)e∈E(G) be a vector such that de = be − ce for every edge e. By
definition,

ed
+ = eb

+

ec+ and ed
− = eb

−

ec− ,

and Gd is the graph obtained from Gb by deleting the edges of blocks of Gc. Take a
nontrivial connected component D of Gd. Since Ad = 0, by Proposition 2.13, D has
an even-signed Eulerian wD . However, wD is a nontrivial section of w, which is an
even-signed closed walk in (G, τ ). This is a contradiction to (ii). 
�

5.2 Proof of Theorem 3.9

We often use the fact that a graph in Gcis satisfies all statements in Theorem 2.5, since
Gcis ⊂ Gci .

Proof of Theorem 3.9 We show the ‘only if’ part first. Suppose to contrary that G is a
2-connected graph in Gcis , none of (G1)-(G5) in Theorem 3.9. Since Gcis ⊂ Gcio, by
Theorem 2.7(i) and Observation 3.8 it follows that G is constructed by clique sums
of cycles. Note that since G is 2-connected, 1-clique sum cannot be done to make G.
Thus, G is constructed by 2-clique sums of cycles. By Corollary 3.7, every induced
subgraph which is constructed by 2-clique sums of cycles belongs to Gcis . Not to be
(G1) or (G2), G is constructed by clique sums of at least three cycles.

Claim 5.5 For each edge e, there are at most two induced cycles containing e.

Proof of Claim 5.5 Suppose that there are three induced cycles C (1), C (2), and C (3)

of G, containing the edge e. Let H = G[V (C (1)) ∪ V (C (2)) ∪ V (C (3))]. Since H
is constructed by 2-clique sums of cycles, H ∈ Gcis by Corollary 3.7. Moreover,
all vertices of H except the endpoints of e have degree two in the graph H . By
Proposition 3.11(i), by contracting ears of H , we obtain a graph H∗ ∈ Gcis , which is
a 2-clique sum of three triangles at one edge. But H∗ contains K2,3, a contradiction
to Theorem 2.5(ii).

Claim 5.6 An induced cycle of G shares an edge with at most two induced cycles.

Proof For an induced cycle C of G, suppose that there are three induced cycles C (1),
C (2), C (3) of G, each of which shares an edge with C . Then, for each i ∈ [3] there
is a unique edge ei which belongs to both C and C (i). By Claim 5.5, e1, e2, e3 are
distinct. Now let H = G[V (C)∪V (C (1))∪V (C (2))∪V (C (3))], and then H ∈ Gcis by
Corollary 3.7. In addition, all vertices of H , except the endpoints of ei ’s, have degree
two in the graph H . By Proposition 3.11(i), by contracting ears of H , we obtain a graph
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Fig. 11 Some graphs not in Gcis

H∗ ∈ Gcis . Note that H∗ is 2-connected with three triangles. By Theorem 2.5(iii) and
(iv), it follows that H∗ must be the graph G0 in Fig. 9. By Example 3.12, G0 /∈ Gci

and so G0 /∈ Gcis , a contradiction. 
�
By Claims 5.5 and 5.6 , there are induced cycles C (1), C (2), . . ., C (m) (for some

m ≥ 3) such that G is constructed by 2-clique sums of those m cycles, where for each
i ∈ [m − 1], C (i) and C (i+1) share an edge ei . Note that e1, . . ., em−1 are distinct. For
each i ∈ [m−2] and � ∈ {2, . . . , m−i +1}, let H (i)

� = G[V (C (i))∪V (C (i+1))∪· · ·∪
V (C (i+�−1))]. Note that H (i)

� ∈ Gcis by Corollary 3.7. In addition, Proposition 3.11(i)

says that by contracting two ears of H (i)
� lying on the cycles C (i) and C (i+�−1), we

obtain a graph F (i)
� in Gcis . In F (i)

� , the cycles corresponding to C (i) and C (i+�−1) are
triangles.

Claim 5.7 Let i ∈ [m − 2]. Then, C (i+1) has length at most four. Moreover, if C (i),
C (i+1), and C (i+2) share a vertex v, then C (i+1) is a triangle and there is no more
induced cycle containing v.

Proof Wefirstly show the ‘moreover’ part. Suppose thatC (i),C (i+1), andC (i+2) share
a vertex v. If C (i+1) is not a triangle, then by contracting ears of F (i)

3 properly, we can
obtain G1 in Fig. 11, and note that G1 /∈ Gci by Theorem 2.5(iii). Hence, C (i+1) is a
triangle.

Suppose that there is another induced cycle C ( j) containing the vertex v. Since
G is 2-connected, we may assume that j = i + 3. By the above argument, both
C (i+1) and C (i+2) are triangles. Then, F (i)

4 has four triangles and so |V (F (i)
4 )| = 6

and |E(F (i)
4 )| = 9. By deleting the vertex v, it becomes a bipartite graph, and so∑

x b(F (i)
4 − x) ≥ 1. Applying Theorem 2.5(i), we have 2|E(F (i)

4 )| < 3|V (F (i)
4 )|, a

contradiction.
It remains to show that C (i+1) has length at most 4. Suppose that C (i+1) has length

at least 5. Then, by the previous argument, C (i), C (i+1), and C (i+2) do not share one
common vertex. By contracting ears of F (i)

3 properly, we obtain G2 in Fig. 11. By
Theorem 2.5(iv), G2 /∈ Gci , a contradiction. 
�

Suppose that C (2) is a cycle of at least length 4. By Claim 5.7, C (2) has length 4.
By the moreover part of Claim 5.7, C (1) and C (3) do not share a vertex. Not to be
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Fig. 12 Graphs (G1′)-(G5′)

Fig. 13 All possible primitive walks in (G, τ ) when G is (G3′)

(G4), m ≥ 4, and so consider F (1)
4 . Then, the triangles corresponding to C (1) and C (4)

in F (1)
4 are disjoint by Claim 5.7. Then, there are no two disjoint edges connecting

those two triangles, which is a contradiction to Theorem 2.5(iv). Suppose that C (2) is
a triangle. By Claim 5.7, not to be (G5), m ≥ 5. Consider F (1)

5 and then there are no

two disjoint edges connecting two triangles corresponding to C (1) and C (5) in F (1)
5 , a

contradiction to Theorem 2.5(iv).
Now we prove the ‘if’ part of Theorem 3.9. By Proposition 3.11(ii), if (Gi ′) is in

Gcis then (Gi) is in Gcis , where (G1′)-(G5′) are shown in Fig. 12. Let G be one of
(G1′)-(G5′), and τ be its sign.
(G1′) and (G2′) It is trivial that the graph (G1′) is in Gcis , since either I(G,τ ) = {0}
and the triangle w is odd-signed in (G, τ ), or I(G,τ ) = 〈Bw〉 and w is even-signed in
(G, τ ). Suppose that G is (G2′). Let w and w′ be two triangles of G. If one of w and
w′ is even-signed in (G, τ ), then I(G,τ ) is a complete intersection by Proposition 3.6.
Suppose that w and w′ are odd-signed in (G, τ ). Then, (G, τ ) has only one primitive
walk, by Theorem 3.1, which is the cycle w′′ of length four. Thus, I(G,τ ) = 〈Bw′′ 〉,
and so I(G,τ ) is a complete intersection.
(G3′) Suppose that G is (G3′). If one of triangles having a vertex of degree two is
even-signed in (G, τ ), then I(G,τ ) is a complete intersection by Proposition 3.6, since
we already show that the graph in (G2′) is in Gcis . Hence, suppose that both triangles
having a vertex of degree two are odd-signed in (G, τ ). We will find 2(= r(G, τ ))

binomials which generate I(G,τ ).
By Theorem 3.1, the set of primitive walks is a subset of {w1, . . . ,w5}, where

w1, . . . ,w5 are the closed walks in Fig. 13. If the trianglew1 is even-signed in (G, τ ),
then G has only three primitive walks w1, w2 and w3, and Bw3 ∈ 〈

Bw1 , Bw2

〉
by

Corollary 4.5. If w1 is odd-signed in (G, τ ), then G has only three primitive walks
w3, w4 and w5, and Bw3 ∈ 〈

Bw4 , Bw5

〉
by Corollary 4.5.

(G4′) Suppose that G is (G4′). Similar to previous case, by Proposition 3.6, we may
assume that two triangles are odd-signed in (G, τ ). Then, we will find 2(= r(G, τ ))

binomials which generate I(G,τ ). Note that the six walks defined as Fig. 14 are all
possible primitive walks.

If w1 is even-signed in (G, τ ), then (G, τ ) has only four primitive walks w1, w2,
w3 and w4, and Bw3 , Bw4 ∈ 〈

Bw1 , Bw2

〉
by Corollary 4.5. If w1 is odd-signed in
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Fig. 14 All possible primitive walks in (G, τ ) when G is (G4′)

Fig. 15 Five closed walks in G when G is (G5′), where x1 ∼ x3 are even-signed in (G, τ )

Fig. 16 Six primitive walks when G is (G5′)

(G, τ ), then (G, τ ) has only four primitive walks w3, w4, w5 and w6, and Bw3 , Bw4 ∈〈
Bw5 , Bw6

〉
by Corollary 4.5.

(G5′) Suppose that G is (G5′). Similar to previous case, by Proposition 3.6, we may
assume that two triangles having a vertex of degree two are odd-signed in (G, τ ). We
will find 3(= r(G, τ )) binomials which generate I(G,τ ). Consider closed walks a, b,
x1, x2, and x3, defined as Fig. 15.

We consider cases according to μ(a) and μ(b), and then, in each case we will
define six walks w1 ∼ w6 as Fig. 16.4 Then, (G, τ ) has only 9 primitive walks, w1,
. . ., w6, x1, x2, and x3, and then Bw1, Bw2 , Bw3 generate I(G,τ ), since it follows from
Corollary 4.5 that

Bw4 ∈ 〈
Bw1 , Bw2

〉
, Bw5 ∈ 〈

Bw1 , Bw3

〉
, Bw6 ∈ 〈

Bw2 , Bw3

〉
,

Bx1, Bx2 ∈ 〈
Bw3 , Bw4

〉
, Bx3 ∈ 〈

Bw1 , Bw6

〉
.


�
4 The case where μ(a) = 1 and μ(b) = −1 is similar to the second case of Fig. 16.
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Fig. 17 Eight graphs G1 ∼ G8 whose toric ideals are not complete intersections

5.3 Proof of Theorem 3.10

First,we note that each ofG1 ∼ G8 in Fig. 17 does not belong toGci byAlgorithm2.4.5

Therefore, those eight graphs are not in Gcis .

Proof of Theorem 3.10 It is sufficient to consider only connected graphs. We first show
the ‘only if’ part. Suppose that G is a connected graph in Gcis . For a nonedge block
F of G, F is one of (G1)–(G5) by Proposition 3.5 and Theorem 3.9. If G has at most
one nonedge block, then (i) or (ii) holds. Now suppose that G has at least two nonedge
blocks.

Claim 5.8 Suppose that F1 and F2 are two nonedge blocks of G such that F1 is not
(G1). Let p be a shortest path from a vertex of F1 to a vertex of F2, and C (i) an induced
cycle of Fi having a vertex of p. Then, F1 is (G2), the cycle C (1) is a triangle, and
degF1

(v1) = 2, where v1 = V (F1) ∩ V (p).

Proof Since F1 is not (G1), we can take another induced cycleC (0) of F1 which shares
an edge with C (1). Let H = G[V (C (0)) ∪ V (C (1)) ∪ V (C (2)) ∪ V (p)]. Note that H
is in Gcis by Corollary 3.7. Using Proposition 3.11(i), by contracting ears, we obtain
a graph H∗ in Gcis . Let C (i)∗ and p∗ be the cycle and the path of H∗ corresponding
to C (i) and p, respectively. Note that p∗ is a path of length at most one. Since the
graphs G1 and G2 in Fig. 17 are not in Gcis , it follows that v1 has degree two in
H∗[V (C (0)∗ ) ∪ V (C (1)∗ )].

From the fact that the graphs G3 and G4 in Fig. 17 are not in Gcis , together with
Proposition 3.11(i), the cycle C (1) must be a triangle. Similarly, from the fact that the

5 For the graph G3, [2, Example 4.10], it was shown that the toric ideal IG is not a complete intersection
by using the algorithm. Fix Gi for some in i ∈ {1, 2, 4, 5, 6, 7, 8}. Since Gi is not bipartite, we need at
least |E(Gi )| − |V (Gi )| nontrivial binomials to generate the ideal IGi . Let v be a vertex of degree two on
the block isomorphic to K3. Note that b(Gi − v) = b(Gi ) = 0, and let us apply Algorithm 2.4 starting
from the vertex v. If i = 4, then there is no such closed walk w of even length with V (w) = W and so
the algorithm returns False. Otherwise, the binomial associated with any shortest closed walk w of even
length with V (w) = W is trivial. In the remaining process, we consider the graph G′

i = Gi − v, which is
not bipartite. Since |E(G′

i )|−|V (G′
i )| = |E(Gi )|−|V (Gi )|−1, at most |E(Gi )|−|V (Gi )|−1 nontrivial

binomials are obtained through the algorithm, and those cannot generate IGi . Consequently, the algorithm
returns False.
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Fig. 18 Graphs (H1)-(H3) and (H1′)-(H3′)

graphs G5, G6, G7, and G8 in Fig. 17 are not in Gcis , it follows that F1 must be (G2),
and therefore, degF1

(v1) = 2. 
�
ByClaim5.8, it is sufficient to show thatG has atmost twononedge blocks. Suppose

to contrary that G has three nonedge blocks F1, F2, F3. Without loss of generality, we
may assume that the distance between F1 and F2 is maximum among the distances
between two of F1, F2 and F3. Let p be a shortest path between F1 and F2. For each
i ∈ {1, 2}, we take an induced cycleC (i) of Fi having a vertex of p. Let H be a smallest
induced connected subgraph of G containing V (C (1))∪V (C (2))∪V (p)∪V (F3). Note
that H ∈ Gcis byCorollary 3.7. In addition, there is a vertexwi such that degH (wi ) = 2
andwi ∈ C (i) for each i = 1, 2. By Proposition 3.11(ii), by subdividing edges incident
tow1 andw2 properly so thatC (1) andC (2) become cycles of odd length, we can obtain
a new graph H ′ in Gcis with two nonbipartite blocks. If F3 is not bipartite, then H ′
has three nonbipartite blocks, and so H ′ /∈ Gci by Theorem 2.5(v), a contradiction.
Thus, F3 is bipartite. Then, we can find a vertex w3 ∈ F3 with degH ′(w3) = 2 and let
H ′′ be the graph obtained from H ′ by subdividing an edge incident to w3 once. Then,
H ′′ has three nonbipartite blocks and so H ′ /∈ Gci by Theorem 2.5(v). On the other
hand, H ′ ∈ Gcis by Proposition 3.11(ii), and we reach a contradiction.

Now we show the ‘only if’ part. Note that for every sign τ of G, any primitive
walk in (G, τ ) does not contain a pendent edge e by Theorem 3.1. Thus, each graph
satisfying (i) or (ii) is inGcis byTheorem3.9. Consider graphs satisfying (iii). Together
with Proposition 3.11(ii), it is sufficient to show that each of the six graphs (H1)-(H3)
and (H1′)-(H3′) in Fig. 18 is in Gcis . We consider (H1)-(H3) first. Let G be one of
(H1)-(H3), and τ be its sign.
(H1) Suppose that G is (H1). Let w and w′ be two triangles in G. By Proposition 3.6,
it is sufficient to suppose that each of w and w′ is odd-signed in (G, τ ). Then, there
is only one primitive walk w + w′ and r(G, τ ) = 1, which implies that (G, τ ) is a
complete intersection.
(H2) Suppose that G is (H2). Let a be the triangle without a vertex of degree two.
Since we already show that (G2′) in Fig. 12 and (H1) are in Gcis , by Proposition 3.6,
we may assume that the two triangles other than a are odd-signed in (G, τ ). We will
find 2(= r(G, τ )) binomials which generate I(G,τ ). By Theorem 3.1, the six walks
defined as Fig. 19 are all possible primitive walks.

If a is even-signed in (G, τ ), then (G, τ ) has only four primitive walksw1,w2,w3,
andw4, and Bw3 , Bw4 ∈ 〈

Bw1 , Bw2

〉
by Corollary 4.5. If a is odd-signed in (G, τ ), then

(G, τ ) has only four primitive walks w3, w4, w5, and w6, and Bw3 , Bw4 ∈ 〈
Bw5 , Bw6

〉
by Corollary 4.5.
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Fig. 19 All possible primitive walks in (G, τ ) when G is (H2)

Fig. 20 Six closed walks in G when G is (H3), where x1 ∼ x4 are even-signed in (G, τ )

(H3) Suppose that G is (H3). Since we already show that (H2) is in Gcis , by Propo-
sition 3.6, we may assume that both triangles having a vertex of degree two are
odd-signed in (G, τ ). Then, we will find 3(= r(G, τ )) binomials which generate
I(G,τ ). Consider six walks a, b, x1 ∼ x4 defined as Fig. 20.

Now we divide cases according to μ(a) and μ(b). In each case, we define eight
walks w1 ∼ w8 as Fig. 21.6 Then, (G, τ ) has only 12 primitive walks, w1, . . . ,w8,
x1,…, x4, and then Bw1 , Bw2 , Bw3 generate I(G,τ ), since it follows from Corollary 4.5
that

Bw4 ∈ 〈
Bw1 , Bw2

〉
, Bw5 , Bw6 ∈ 〈

Bw1 , Bw3

〉
, Bw7 , Bw8 ∈ 〈

Bw2 , Bw3

〉
,

Bx1, Bx2 ∈ 〈
Bw2 , Bw6

〉
, Bx3, Bx4 ∈ 〈

Bw2 , Bw5

〉
.

Let (G, τ ) and (G, τ ′) be such that G is (Hi), G ′ is (Hi ′) (i ∈ {1, 2, 3}), and the
sign coincides on a cycle. Then, r(G, τ ) = r(G ′, τ ′) and the primitive walks are also
corresponding. Similar to the argument of (Hi), we can conclude that (Hi ′) is in Gcis .


�

6 The case where μ(a) = −1 and μ(b) = 1 is similar to the second case of Fig. 21.
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Fig. 21 Eight primitive walks when G is (H3)
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Appendix

Proof of Propositions 2.13

Proof of Proposition 2.13 Recall the definition of a signed multigraph (Gb, τb), that
is, Gb is induced by |be| copies of e for every edge e, and τb(e, v) = τ(e′, v) if e is a
copy of e′ ∈ E(G). For simplicity, we let H = Gb.

Let E++
H (v) (resp. E+−

H (v)) be the (multi)set of edges e of H incident to v with
be > 0 and τb(e, v) = 1 (resp. τb(e, v) = −1). Similarly, let E−+

H (v) (resp. E−−
H (v))

be the (multi)set of edges e of H incident to v if be < 0 and τb(e, v) = 1 (resp.
τb(e, v) = −1). Note that degH (v) = |E++

H (v)|+|E−−
H (v)|+|E+−

H (v)|+|E−+
H (v)|,

where the size |M | of a multiset M counts multiplicity.
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Claim A.1 For every vertex v of G,

|E++
H (v)| + |E−−

H (v)| = |E+−
H (v)| + |E−+

H (v)|.

Proof of Claim A.1 Let v be a vertex in H . The entry of Ab corresponding to v is∑
e∈EG (v) beτ(e, v) = 0, where EG(v) denotes the set of all edges of G incident to v.

Note that

∑
e∈EG (v)

beτ(e, v) = 0 ⇔
∑

e∈EG (v)
τ (e,v)=1

be =
∑

e∈EG (v)
τ (e,v)=−1

be,

and by definition,

∑
e∈EG (v)
τ (e,v)=1

be = |E++
H (v)| − |E−+

H (v)|,
∑

e∈EG (v)
τ (e,v)=−1

be = |E+−
H (v)| − |E−−

H (v)|.

Thus, |E++
H (v)| − |E−+

H (v)| = |E+−
H (v)| − |E−−

H (v)|, and so the claim holds. 
�
For simplicity, let

E+
H (v) = E++

H (v) ∪ E−−
H (v), E−

H (v) = E+−
H (v) ∪ E−+

H (v).

Take any edge e j1 ∈ E(H) from a nontrivial connected component D of H , say vi1
and vi2 are the endpoints, and let w1 be the walk vi1e j1vi2 . Without loss of generality,
we may assume e j1 ∈ E+

H (vi2) (other cases are similar). By Claim A.1, we can take
an edge e j2 ∈ E−

H (vi2), say the endpoint of e j2 other than vi2 is vi3 , and then we have
a walk w2 : vi1e j1vi2e j2vi3 so that two edge terms incident to vi2 belong to E+

H (vi2)

and E−
H (vi2), respectively. We choose a walk repeatedly by a same way. To be precise,

suppose that a walkw� : vi1e j1vi2 · · · vi�e j�vi�+1 is selected. Then, repeat the following
process (§) until no more edge can be selected.

(§) If e j� ∈ E+
H (vi�+1), then we choose an edge e j�+1 ∈ E−

H (vi�+1) − {e j1, . . . , e j�}
(as long as it is not empty), and if e j� ∈ E−

H (vi�+1), then we choose an edge
e j�+1 ∈ E+

H (vi�+1) − {e j1 , . . . , e j�} (as long as it is not empty), and then let vi�+2

be the other endpoint of e j�+1 and set w�+1 : vi1e j1vi2 · · · vi�e j�vi�+1e j�+1vi�+2 .

Let wD be the walk lastly obtained. Since every edge of D is selected at most once at
each step in the process, the length of wD is bounded by the number of edges in D.
We choose such wD as long as possible (maximizing its length).

Claim A.2 For each connected component D of H, the walk wD is an Eulerian of D
and it is an even-signed closed walk in (G, τ ).

Proof For simplicity, we denote wD by w, and let w : vi1e j1 · · · e jt vit+1 . Without
loss of generality, we assume that e jt ∈ E+

H (vit+1). First, we show that w is closed.
Suppose that vi1 	= vit+1 . Let I be the set of indices � for the vertices vi� ofw such that
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vi� = vit+1 . Clearly, t + 1 ∈ I and 1 /∈ I . By the way of choosing the walk, for each
� ∈ I \ {t + 1}, one of e j�−1 and e j� counts 1 of one of the sets E+

H (vi� ) and E−
H (vi� ),

and the other edge counts 1 of the other set. Hence,

|E+
H (vit+1) ∩ {e j1, . . . , e jt−1}| = |E−

H (vit+1) ∩ {e j1, . . . , e jt−1}|.

Since e jt ∈ E+
H (vit+1), by Claim A.1, it follows that E−

H (vit+1) − {e j1, . . . , e jt } 	= ∅.
Thus, we reach a contradiction thatwt is a longest one. Thus, vi1 = vit+1 , whichmeans
w is a closed walk.

Suppose that there is an edge of D not covered by the closed walk w. Let D′ be
the graph obtained from D be deleting the edges of [w]. Then, by the choice of w, it
follows that

∀v ∈ V (D), |E+
D(v)| = |E−

D(v)|.

By taking a nontrivial connected component of D′, we can proceed the same argument
in (§) to obtain a closed walk w′. Since both w and w′ are closed, we may assume
that both walks start at the vertex vi1 . Then, the closed walk w+w′ is a longer closed
walk which can be obtained from the procedure (§), a contradiction. Hence, w is an
Eulerian of D.

It remains to show that w is an even-signed closed walk in (G, τ ). From the def-
inition, it is clear that w is a closed walk in G, and so it is sufficient to show that w
has an even number of unbalanced vertex terms. Note that if the �th vertex term vi� is
unbalanced, then for the three consecutive terms e j�−1vi�e j� ofw, one of the four holds:
(1) e j�−1 ∈ E++

H (vi� ) and e j� ∈ E−+
H (vi� ); (2) e j� ∈ E++

H (vi� ) and e j�−1 ∈ E−+
H (vi� );

(3) e j�−1 ∈ E−−
H (vi� ) and e j� ∈ E+−

H (vi� ); (4) e j� ∈ E−−
H (vi� ) and e j�−1 ∈ E+−

H (vi� ).
Then, the number of unbalanced vertex terms of w is

∑

v∈V (D)

(∣∣∣|E++
H (v)| − |E+−

H (v)|
∣∣∣ +

∣∣∣|E−−
H (v)| − |E−+

H (v)|
∣∣∣
)

=
∑

v∈V (D)

2
∣∣∣|E++

H (v)| − |E+−
H (v)|

∣∣∣ ,

where the equality is from Claim A.1. Hence, w is even-signed. 
�
By Claim A.2, we consider a walk wD : vi1e j1vi2 · · · vit e jt vit+1 and its associated

binomial BwD for a fixed connected component D of H . To complete the proof, it is
sufficient to show that

eb
+ =

∏
D: connected

component of H

B+
wD

, and eb
− =

∏
D: connected

component of H

B−
wD

.

Claim A.3 For any � ∈ [t], be j�−1
be j�

< 0 if and only if the �th vertex term vi� is
unbalanced.

Proof of Claim A.3 Without loss of generality, we may assume that be j�
> 0. First, we

suppose that be j�−1
> 0. Then, e j�−1 ∈ E+−

H (vi� )∪E++
H (vi� ).More precisely, if e j�−1 ∈

E+−
H (vi� ) then e j� ∈ E++

H (vi� ), and if e j�−1 ∈ E++
H (vi� ) then e j� ∈ E+−

H (vi� ). Thus,
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τ(e j�−1 , vi� )τ (e j� , vi� ) = −1, which implies that the vertex term vi� is not unbalanced.
On the other hand, if we suppose that be j�−1

< 0, then e j�−1 ∈ E−+
H (vi� ) ∪ E−−

H (vi� ).

More precisely, if e j�−1 ∈ E−+
H (vi� ) then e j� ∈ E++

H (vi� ), and if e j�−1 ∈ E−−
H (vi� )

then e j� ∈ E+−
H (vi� ). Thus, τ(e j�−1 , vi� )τ (e j� , vi� ) = 1, which implies that vi� is

unbalanced.
Take any edge e of H . We assume that be > 0, and the other case is similar. Let

D be the connected component of H containing the edge e. We will show that the
power of e in B+

wD
is equal to be. If there is no unbalanced vertex term in wD , then

BwD = B+
wD

− 1 and so clearly it holds. Suppose that wD has an unbalanced vertex
term. Then, let wD = w0 + · · · + w2k−1 be a balanced section decomposition of wD

so that the first edge term e j1 is in w0 if be j1
> 0 and e j1 is in w1 if be j1

< 0. By
Claim A.3, for every edge term e j� of wD , e j� is in some (2s)th section if be j�

> 0,
and e j� is in some (2s + 1)th section if be j�

< 0, which completes the proof. 
�

Proof of Proposition 3.3

Lemma A.4 For an odd-signed closed walk w, [w] contains a cycle of G, which is
odd-signed in (G, τ ).

Proof We show it by the induction on the length of the walk. If it has length at most
three, then it is trivial. Suppose that the lemma holds for any odd-signed walk of
length less than � (� > 3). Letw be an odd-signed walk of length (�+1). If there is no
repeated vertex inw, then [w] is a cycle. Suppose that there is a repeated vertex inw. If
v is repeated inw, then we letw = w0 +w1 so that eachwi is a closed nontrivial walk
with first vertex term v, and then we have−1 = μ(w) = μ(w0)μ(w1) by Lemma 4.1,
which implies that one of w0 and w1 is an odd-signed closed walk, say w0. Since w0
is a proper subwalk of w, by the induction hypothesis, [w0] contains a cycle which is
odd-signed in (G, τ ) and so [w] does. 
�
Proof of Proposition 3.3 Let A = A(G, τ ) and A(e) be the column of A corresponding
to an edge e. Take a spanning tree T of G. Then clearly, the submatrix obtained by
the columns corresponding the edges of T has the rank |V (G)| − 1. Thus, rank(A) ≥
|V (G)| − 1.

Suppose to contrary that (G, τ ) contains no odd-signed closed walk and there are
|V (G)| linearly independent columns. Let A′ be the submatrix inducted by those
columns. Then, the subgraph of G induced by the edges corresponding to the columns
of A′ has |V (G)| edges and so it contains a cycle C . By the assumption that (G, τ )

has no odd-signed cycle, C is an even-signed cycle and we let C have a balanced
section decomposition w0 + · · ·+wr . Without loss of generality, we assume that wi :
vi
1ei

1 · · · vi
ai

ei
ai

vi
ai +1 for each i . If r = 0, then it is easy to see that

∑
e∈E(C) A(e) = 0, a

contradiction to the fact that {A(e) | e ∈ E(C)} are linearly independent. Suppose that
r > 0.Then, eachvi

1 is unbalanced. Sincevi
ai +1 = vi+1

1 , τ(ei
1, v

i
ai +1) = τ(ei+1

1 , vi+1
1 ).

Then, it follows that

r∑
i=0

(−1)i
ai∑

j=1

A(ei
j ) = 0.

123



1296 Journal of Algebraic Combinatorics (2021) 53:1265–1298

Fig. 22 An illustration for the proof of Proposition 3.11

This is a contradiction to the fact that {A(e) | e ∈ E(C)} are linearly independent.
Suppose that (G, τ ) contains an odd-signed closedwalkw, and then (G, τ ) contains

an odd-signed cycle C by Lemma A.4. We take a unicyclic spanning subgraph H of
G, containing the cycle C . Let A′ be the submatrix of A induced by the columns
corresponding to the edges of H . Note that A′ is an |V (G)| × |V (G)| matrix and

by permuting lines, we may assume that A′ =
[

A11 A12
O A22

]
where Aii ’s are square

matrices, the rows and the columns corresponding to A11 are the vertices and the edges
of the cycle C , and A22 is a upper triangular matrix without zero diagonal element.
Since det(A′) = det(A11) det(A22) and det(A22) 	= 0, it is sufficient to show that the
columns of the submatrix A11 are linearly independent.

Let C : v1e1v2 . . . vr erv1. Suppose that
∑r

i=1 ci A(ei ) = 0 for some constant
ci . Since the entry of

∑r
i=1 ci A(ei ) corresponding to a vertex v j ( j ∈ [r ]) is

equal to c j−1τ(e j−1, v j ) + c jτ(e j , v j ), where the indices are modulo r , we have
c j−1τ(e j−1, v j ) + c jτ(e j , v j ) = 0. If a vertex term v j of C is not unbalanced then
c j−1 = c j , and if a vertex term vi is unbalanced then c j−1 = −c j . Since C has an
odd number of unbalanced vertex terms, then it follows that c1 = c2 = · · · = cr = 0.


�

Proof of Proposition 3.11

Proof of Proposition 3.11 Note that G/p or G/q in the cases is a simple graph. For
every sign τ of G, every primitive walk w in (G, τ ) containing an edge of the path
p contains all edges of p by Theorem 3.1. In the following, let G∗ be G/p or G/q
(according to the cases), and let e∗ be its newly added edge. To show (i), suppose that
G ∈ Gcis . Take a sign τ ∗ of G∗, and define a sign τ of G as follows, and see Fig. 22.

τ(e, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ ∗(e, y) if e ∈ E(G) \ E(p),

τ ∗(e∗, v0) if (e, y) = (v0v1, v0),

τ ∗(e∗, vt ) if (e, y) = (vt−1vt , vt ),

1 if (e, y) = (vivi+1, vi ) for some i ∈ [t − 1],
−1 if (e, y) = (vi−1vi , vi ) for some i ∈ [t − 1].
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For a closed walk w, w is even-signed in (G, τ ) if and only if the walk w∗ obtained
fromw by contracting the ear p is even-signed in (G∗, τ ∗). Thus, r(G, τ ) = r(G∗, τ ∗)
and there are s primitive binomials of I(G,τ ) generating I(G,τ ) if and only if there are
s primitive binomials of I(G∗,τ∗) generating I(G∗,τ∗). Therefore, G/p ∈ Gcis since
G ∈ Gcis .

To show (ii), take a sign τ of G. Consider the balanced section decomposition of p,
and let k be the number of balanced sections of p. Define a sign τ ∗ of G∗ as follows,
and see Fig. 22.

τ ∗(e, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ(e, y) if e /∈ {e∗, vt−1vt },
τ (v0v1, v0) if (e, y) = (e∗, v0),
τ (vt−1vt , vt ) if (e, y) = (vt−1vt , vt ),

1 if (e, y) = (e∗, vt−1),

(−1)k if (e, y) = (vt−1vt , vt−1).

For a closed walk w, w is even-signed in (G, τ ) if and only if the walk w∗ obtained
from w by contracting the ear q is even-signed in (G∗, τ ∗). Similar to the argument
of (i), we have G ∈ Gcis since G/q ∈ Gcis . 
�
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