
Journal of Algebraic Combinatorics (2021) 53:973–990
https://doi.org/10.1007/s10801-020-00950-7

Linear relations on LLT polynomials and their k-Schur
positivity for k = 2

Seung Jin Lee1

Received: 23 October 2018 / Accepted: 14 February 2020 / Published online: 10 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
LLT polynomials are q-analogs of products of Schur functions that are known to be
Schur positive by Grojnowski and Haiman. However, there is no known combinato-
rial formula for the coefficients in the Schur expansion. Finding such a formula also
provides Schur positivity of Macdonald polynomials. On the other hand, Haiman and
Haglund conjectured that LLT polynomials for skew partitions lying on k adjacent
diagonals are k-Schur positive, which is much stronger than Schur positivity. In this
paper, we prove the conjecture for k = 2 by analyzing unicellular LLT polynomi-
als. We first present a linearity theorem for unicellular LLT polynomials for k = 2.
By analyzing linear relations between LLT polynomials with known results on LLT
polynomials for rectangles, we provide the 2-Schur positivity of the unicellular LLT
polynomials as well as LLT polynomials appearing in Haiman–Haglund conjecture
for k = 2.

Keywords LLT polynomial · k-Schur function · Haiman–Haglund conjecture

1 Introduction

LLTpolynomials are certain family of symmetric functions indexed by d-tuple of skew
partitions, introduced by Lascoux et al. [12] in the study of quantum affine algebras
and unipotent varieties. Later, Haglund et al. [7] proved that Macdonald polynomials
are positive sums of LLT polynomial indexed by d-tuple of ribbons. Grojnowski
and Haiman [6] proved that LLT polynomials are Schur positive using Kazhdan–
Lusztig theory. However, their proof does not provide a manifestly positive formula
so finding combinatorial formulas for expansions of Macdonald polynomials and LLT
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polynomials remains a wide open problem. The best known result is the formula for
d = 3 due to Blasiak [3]. See [3] for more history about LLT polynomials.

In his 2006 ICM talk, Haiman announced a conjecture made by Haiman and
Haglund stating that the involution image of LLT polynomials indexed by d-tuple
of skew partition that lies in k-adjacent diagonals is k-Schur positive (Conjecture 2.1),
which is much stronger than Schur positivity. The motivation of our paper stems from
their conjecture, as our second main theorem is the proof of the conjecture for k = 2.

The first main theorem (Theorem 4.1) shows that unicellular LLT polynomials
with k = 2 are positive sums of 2-Schur functions where the exponents of q change
linearly as the index set of unicellular LLT polynomials change, providing a very
nice formula. We prove this by showing that there exists a linear recurrence relation
between unicellular LLT polynomials (Theorem 3.5). Note that the linear relation
does not assume k = 2, which may be useful to study LLT polynomials with
any k.

The first main theorem enables us to determine all unicellular LLT polynomials
with k = 2 from LLT polynomials indexed by dominos. Then, we prove that LLT
polynomials indexed by dominos are power of q times a 2-Schur function by using
the fact that LLT polynomials indexed by rectangles are the same as generalized
Hall–Littlewood polynomials, proved in [6]. This together with Theorem 4.1 proves
Haiman–Haglund conjecture for k = 2. See Conjecture 2.1 for the precise statement.

It is worth nothing that there is a plethysm relation between unicellular LLT poly-
nomials and chromatic quasisymmetric functions, first found in [4] (see also [2]).
Therefore, linear relations between unicellular LLT polynomials also hold for corre-
sponding chromatic quasisymmetric functions. Chromatic quasisymmetric functions
for the case of k = 2 we considered are studied by Cho and Huh [5], and by Harada
and Precup [8].

The structure of the paper is as follows: In Sect. 2, we define LLT polynomials
and state Haiman–Haglund conjecture precisely. In Sects. 3 and 4, we present useful
linear relations and prove the linearity theorem (Theorem 4.1). In Sect. 5, we compare
LLT polynomials indexed by dominos and 2-Schur function. In Sect. 6, we prove
Haiman–Haglund conjecture for k = 2.

2 Preliminary

LLT polynomials are certain q-analogs of products of skew Schur functions defined
by Lascoux et al. [12]. Below, we give an alternative definition presented in [7]. Let
λ = (λ(0), λ(1), . . . , λ(d−1)) be a d-tuple of (skew) tableaux. Define

SSYTd(λ) = {semi-standard d-tuples of tableaux of shape λ}.
SYTd(λ) = {standard d-tuples of tableaux of shape λ}.

If T = (T (0), . . . , T (d−1)) ∈ SSYTd(λ) has entries 1π1 , 2π2 , . . ., then we say
that T has shape λ and weight π = (π1, π2, . . .). For a d-tuple of skew shapes
(λ(0), λ(1), . . . , λ(d−1)), define the shifted content of a cell x by
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c̃(x) = d · c(x) + i

where x is a cell of λ(i), where c(x) is the usual content of x regarded as a cell of
λ(i). For T ∈ SSYTd(λ), let T (x) be the entry of the cell x in T . Define the set of
inversions of T by

Invd(T ) = {(x, y) | d > c̃(y) − c̃(x) > 0 and T (x) > T (y)},

and the inversion number of T is given by | Invd(T )|, denoted by invd(T ).
By [7], the LLT polynomial G̃λ[X; q] is given by

G̃λ[X; q] =
∑

T∈SSYTd (λ)

q invd (T)xT ,

where xT is themonomial xπ1
1 xπ2

2 · · · whenT hasweightπ . Lascoux et al. [12] showed
that G̃λ[X; q] is a symmetric function. Let � be the ring of symmetric function over
the coefficients Q[t], and let ω be the involution on �.

Define the content reading word of a d-tuple of tableaux to be the word obtained
by reading entries in increasing order of shifted content. For a word v = v1v2 . . . vn ,
define the descent set Des(v) := {i | vi > vi+1} of v, and define Des(T ) by the
descent set of the content reading word of T . Then, Assaf [1] showed that one writes
LLT polynomials in terms of Gessel’s fundamental quasisymmetric functions:

G̃λ[X; q] =
∑

T∈SYTd (λ)

q invd (T )FDes(T ).

It is known byGrojnowski andHaiman [6] that LLT polynomials are Schur positive.
Moreover, Haiman and Haglund conjectured the following stronger statement.

Conjecture 2.1 For an integer p and k > 0 such that for any cell x in λ the content c(x)
satisfies p ≤ c(x) < p + k, then ωG̃λ[X; q], the involution of the LLT polynomial
for λ, is k-Schur positive.

Remark 2.2 The easiest case is k = 1, where LLT polynomials are determined by
the number n of cells in λ. In this case, ωG̃λ[X; q] is equal to the Hall–Littlewood
polynomial H1n [X , q], which is also the 1-Schur function s(1)

1n .

There are two different ways of defining LLT polynomials that Grojnowski and
Haiman [6] showed that they are essentially the same. In [6], the LLT polynomial
defined above is called the new variant combinatorial LLT polynomial. Another one
is called the combinatorial LLT polynomial G ′

μ(1)/μ(2) [X; u] defined in terms of the

ribbon tableau generating function in a skew shape μ(1)/μ(2) such that the power of u
encodes the spin statistics of the ribbon tableau, defined by Lascoux et al. [12]. Gro-
jnowski and Haiman showed in [6, Proposition 6.17] that a new variant combinatorial
LLT polynomial for λ is the same as a certain power of u times the combinatorial
LLT polynomial G ′

μ(1)/μ(2) [X; u−1] for certain skew shape μ(1)/μ(2) where u2 = q.

123



976 Journal of Algebraic Combinatorics (2021) 53:973–990

Haiman announced the conjecture in ICM 2006 talk that the combinatorial LLT poly-
nomials are k-Schur positive, and this conjecture is equivalent to Conjecture 2.1. It
seems that Haiman and Haglund contributed together to build the conjecture around
2004.

3 Unicellular LLT polynomials

In this section, we consider unicellular LLT polynomials, i.e., λ(i) consists of one box
with content ci for some ci ∈ Z for all 0 ≤ i ≤ d − 1. For the rest of this section, we
assume that λ satisfies the above condition unless stated otherwise. For such a λ, one
can associate a permutation wλ in Sd defined by

wλ(i + 1) = |{ j | c̃ j < c̃i }| + 1,

for 0 ≤ i ≤ d − 1 where c̃i = d · ci + i .
Let n denote the number of boxes in λ, and in this case n is equal to d. For a positive

integer i ≤ n, define the number λi by the cardinality of the set

{ j | c̃ j > c̃
w−1

λ (i)−1 + d}.

Note that we have 0 ≤ λi ≤ i−1.Moreover, if i < j , then λi ≥ λ j since the sequence
c̃
w−1

λ (i)−1 is increasing. Therefore, forλ, one can associate a partitionλ = (λ1, . . . , λn)

contained in a staircase shape (n − 1, n − 2, . . . , 1), and one can compute the LLT
polynomial G̃λ[X; q] in terms of λ.

For a permutation v in Sn and a set D of some (i, j) satisfying 1 ≤ i < j ≤ n,
define inv(v, D) by the number of inversions (p, q) of v such that (p, q) ∈ D. For a
partition λ ∈ (n − 1, n − 2, . . . , 1), let Dλ be the set of cells in λ where partitions are
drawn with the English convention. See Fig. 1.

Proposition 3.1 If λ lies in two adjacent diagonals, λ is contained in m × (n −m) for
some m. Conversely, if λ is contained in m× (n−m) for some m, then there is d-tuple
of cells μ lying in two adjacent diagonals such that the corresponding partition μ is
equal to λ.

Proof Let m be the number of boxes in λ lying on the diagonal with a lower content.
Then, Dλ does not contain (i, j) with 1 ≤ i < j ≤ m. Similarly, Dλ does not contain
(i, j) with m < i < j ≤ n. Therefore, λ is contained in m × (n −m). For the second
statement, we first put m boxes at the diagonal with a content 0. Then, for each i th
box with i > m with respect to the shifted content order, there is a unique possible
position at the diagonal with content 1 determined by λ so μ is also determined. ��

One can write LLT polynomials in terms of quasisymmetric function in the follow-
ing way:
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Fig. 1 Unicellular λ and corresponding Dλ for λ = (3, 1)

Proposition 3.2 G̃λ[X; q] is the same as
∑

v∈Sn
qinv(v,Dλ)FD(v−1). (1)

For the rest of the paper, we denote the inverse descent set D(v−1) by ID(v). If λ is a
tuple of single cells, we denote G̃λ[X; q] by Gλ[X; q].

One can generalize Formula (1) in the following way. For a permutation w in Sn ,
let Inv(w) be the set of inversions of w. For a permutation w in Sn and a n × n matrix
M = (mi j ) with mi j = 0 unless i < j , define an inversion number of w with respect
to M defined by

inv(w, M) :=
∑

1≤i< j≤n

mi j · χ ((i, j) ∈ Inv(w)) .

Here, χ(True) = 1 and χ(False) = 0.
It is clear that inv(w, M) is the usual inversion number if mi j = 1 for all i < j ,

and it is the same as the major index if mi,i+1 = i for all i and 0 otherwise. For the
rest of this paper, the matrix M satisfies the following condition:

if mi j = 0 for some i < j, then mkl = 0 for any k < i < j < l. (2)

Definition 3.3 For such a matrix M , define a function GM [X; q] defined by

∑

w∈Sn
q inv(w,M)FID(w).
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A relationship betweenGM [X; q] and unicellular LLT polynomials is as follows. If
all entries of M are either 1 or 0 and satisfy condition (2), then a function GM [X; q] is
the unicellular LLT polynomial Gλ[X; q] by Theorem 3.2, where λi is the maximum
of max{ j | mil = 0 for all l ≤ j} and n + 1 − i . Conversely, given λ contained in
the staircase tableau, one can define the corresponding matrix M , and we denote this
matrix by Mλ.

Let L(n, λ; q) be ωGλ[X; q]. When n is clear, we denote L(n, λ; q) by L(n, λ) in
short.

Remark 3.4 It is known that q p · L(n, λ; q−1) = Gλ[X; q], where p is n(n−1)
2 − |λ|

from [6, Lemma 6.12] and [6, Proposition 6.17].

The following theorem provides a local linear relation between unicellular LLT
polynomials.

Theorem 3.5 For a partition λ and a positive integer i such that λi + 2 ≤ λi−1, if
i = 1, then let λ0 be infinity. Let μ0 = λ,μ1, μ2 be partitions defined by μa

j = λ j if
j �= i and μa

i = λi + a for a = 0, 1, 2. Then,

Gμ0 [X; q] − Gμ1 [X; q] = q(Gμ1 [X; q] − Gμ2 [X; q]).

when λn−λi−1 = λn−λi . By taking the involution, we have

L(n, μ0) − L(n, μ1) = q(L(n, μ1) − L(n, μ2)).

Remark 3.6 The last condition λn−λi−1 = λn−λi holds if λ,μ1, μ2 are contained
in a rectangle m × (n − m) for some m. Indeed, since λi + 2 ≤ n − m, we have
n − λi − 1 ≥ m + 1 so that λn−λi−1 = λn−λi = 0.

Remark 3.7 Theorem 3.5 is equivalent to the statement that there are two symmetric
functions g1, g2 satisfying

Gμ0 [X; q] = g1 + g2

Gμ1 [X; q] = g1 + q−1g2

Gμ2 [X; q] = g1 + q−2g2.

In fact, we will show that if μa are contained in the rectangle m × (n − m), then the
conjugates of g1 and g2 are both 2-Schur positive.

Proof of Theorem 3.5 We use a bijection from Sn to Sn described in [10].
For 1 ≤ x < y ≤ n, let Ax,y be the subset {w ∈ Sn | (x, y) ∈ Inv(w)} of Sn .

Consider the following bijection:

fxy : Ax,y −→ Ax,y+1
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Fig. 2 λ, μ1, μ2 for Example 3.8 and Theorem 3.5

defined by fxy(w) = w if both (x, y), (x, y + 1) are in Inv(w), and fxy(w) = wsy
if (x, y + 1) is not in Inv(w). In the second case, (x, y) is not in Inv(wsy) and
(x, y + 1) is in Inv(wsy) by the construction. A. Similarly, a slight modification of
the map fxy and the proof of the bijectivity of fxy provide a bijection f ′

xy between
Ac
x,y and Ac

x,y+1, defined by f ′
xy(w) = w if (x, y + 1) /∈ Inv(w) and f ′

xy(w) = wsy
if (x, y + 1) ∈ Inv(w). We denote this bijection by the same notation fxy so that fxy
is a bijection from Sn to Sn .

To prove the theorem, set x = i and y = n − 1 − λi . For the example in Fig. 2,
we have x = 1 and y = 4. It turns out that the above bijection preserves inv(w, Dμ1).
First of all, it is obvious when fxy is the identity map. If fxy(w) = wsy , for M = Mμa

(a = 0, 1, 2), we have Mr ,y = Mr ,y+1 for r < x by the construction ofμa . Moreover,
My,s = My+1,s for all s > y + 1 by the condition λn−λi−1 = λn−λi for M = Mμa . If
λ is contained in a rectanglem× (n−m) for somem, these numbers are 0. Therefore,
to show that inv(w, Dμ1) does not change, it is enough to show that the cardinality
of the set {(x, y), (y, y + 1)} ∩ inv(w, Dμ1) is constant when applying the map fxy .
This condition can be checked case by case, assuming the following well-known
facts: If (x, y) ∈ inv(w) and (x, y + 1) /∈ inv(w), then (y, y + 1) /∈ inv(w). Also if
(x, y) /∈ inv(w) and (x, y + 1) ∈ inv(w), then (y, y + 1) ∈ inv(w).

Now we are ready to prove Theorem 3.5. Let g1, g2 be the symmetric functions
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g1 = ω

⎛

⎝
∑

w∈Ac
xy

q inv(w,Mλ)FID(w)

⎞

⎠

g2 = ω

⎛

⎝
∑

w∈Axy

q inv(w,Mλ)FID(w)

⎞

⎠ ,

where ω is the involution. It is clear from the definition that Gλ = g1 + g2 and
Gμ1 = g1 + q−1g2. Therefore, it is enough to show that Gμ2 = g1 + q−2g2. By the
bijection fxy , we have

g1 = ω

⎛

⎜⎝
∑

w∈Ac
x,y+1

q inv(w,M
μ1 )FID(w)

⎞

⎟⎠

g2 = ω

⎛

⎝
∑

w∈Ax,y+1

q inv(w,M
μ1 )+1FID(w)

⎞

⎠ ,

Since w ∈ Ax,y+1, we have (x, y + 1) ∈ Inv(w), inv(w, Mμ1) = inv(w, Mμ2) + 1
and

g1 = ω

⎛

⎜⎝
∑

w∈Ac
x,y+1

q inv(w,M
μ2 )FID(w)

⎞

⎟⎠

g2 = ω

⎛

⎝
∑

w∈Ax,y+1

q inv(w,M
μ2 )+2FID(w)

⎞

⎠ ,

Therefore, we have

Gμ2 [X; q] = ω

⎛

⎜⎝
∑

w∈Ac
x+1,y

q inv(w,M
μ2 )FID(w)

⎞

⎟⎠ + ω

⎛

⎝
∑

w∈Ax+1,y

q inv(w,M
μ2 )FID(w)

⎞

⎠

= g1 + q−2g2,

we are done. ��
Example 3.8 For a partitionμwithμ1 ≤ 2, let s(2)

μ denote the 2-Schur function indexed
by μ. Let n = 6, λ = (1, 1), and i = 1. Then, we have μ1 = (2, 1), μ2 = (3, 1), and

L(n, λ) = s(2)
1,1,1,1,1,1 + (q4 + 2q3)s(2)

2,1,1,1,1 + (2q6 + q5)s(2)
2,2,1,1 + q7s(2)

2,2,2
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L(n, μ1) = s(2)
1,1,1,1,1,1 + 3q3s(2)

2,1,1,1,1 + 3q5s(2)
2,2,1,1 + q6s(2)

2,2,2

L(n, μ2) = s(2)
1,1,1,1,1,1 + (2q3 + q2)s(2)

2,1,1,1,1 + (q5 + 2q4)s(2)
2,2,1,1 + q5s(2)

2,2,2.

See Fig. 2. Therefore, one can take

g1 = s(2)
1,1,1,1,1,1 + 2q3s(2)

2,1,1,1,1 + q5s(2)
2,2,1,1

g2 = q4s(2)
2,1,1,1,1 + 2q6s(2)

2,2,1,1 + q7s(2)
2,2,2

so that Remark 3.7 holds.

4 Linearity theorem

In this section, we show Theorem 4.1.

Theorem 4.1 (Linearity theorem) Let λ be the partition contained in (n − m)m. For
a subset I of {1, 2, . . . ,m} and i ∈ I , define ei by 1 if i ∈ I and 0 otherwise. Then,
there are 2-Schur positive functions f I ,m such that

L(n, λ) =
∑

I⊂[m]
f I ,mq

−eI ·λ (3)

where eI · λ = ∑m
j=1 eiλi .

The proof of Theorem 4.1 is twofold: existence of polynomials f I ,m satisfying the
equation and 2-Schur positivity of f I ,m . Explicit formulas for f I ,m are given in The-
orems 4.8 and 4.5.

Since k-Schur functions are not easy to define but we only need 2-Schur func-
tions, we assume the following theorem stating one important relation between LLT
polynomials and 2-Schur function.

Theorem 4.2 Let η0 be the horizontal domino (2) and η1 be the vertical domino (1, 1).
For a 0 − 1 sequence a = (a1, . . . , am) and n = 2m, define the m-tuple of tableaux
ηa = (ηa1, . . . , ηam ) such that all tableaux lie in two adjacent diagonals with contents
0 and 1. Then, we have

ω(G̃ηa ) = qMs(2)
2l1n−2l

where l is the number of 1 in a and M = ∑�
i=1(m − i). Similarly, for n = 2m + 1,

define ηa by (ηa1, . . . , ηam , b) where b is a box with a content 0. Then, we have

ω(G̃ηa ) = qM ′
s(2)
2l1n−2l

where l is the number of 1 in a and M ′ = ∑�
i=1(m − i + 1).
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The proof of Theorem 4.2 will be given in the next section, and we prove Theorem
4.1 for m = [n/2] assuming Theorem 4.2. For m < [n/2], the proof follows from the
case for m = [n/2].

We start by assuming δm−1 ⊂ λ ⊂ δm and writing f I ,m in terms of ω(G̃ηa ).

Theorem 4.3 Let δm be the staircase tableau (m,m−1, . . . , 1) and m = [n/2]. Then,
Theorem 4.1 is true for δm−1 ⊂ λ ⊂ δm with

f I ,m = qeI δmω(G̃ηaI
)

where ai is 1 if i ∈ I and 0 otherwise.

Proof Let λ be δm − bλ where bλ is a 0 − 1 sequence of length m. Then, the theorem
is equivalent to the formula

Gλ[X; q] =
∑

I⊂{1,2,...,m}
qeI ·bλ G̃ηaI

[X; q]. (4)

which is clear by the following lemma:

Lemma 4.4 Let λ be d-tuple of skew partitions such that λ(i) is a single box with a
content ε for ε = 0 or 1 and λ(i+1) is a single box with a content 1 − ε. Then,

G̃λ = G̃μ0 + qε G̃μ1

where με is a (d − 1)-tuple of skew partitions obtained by replacing two partitions
λ(i) and λ(i+1) by a domino ηε .

The lemma is obvious by the definition of LLT polynomials and the theorem follows.
��

Before we prove Theorem 4.1, we list formulas for f I ,m .

Theorem 4.5 Assume that m = [n/2]. Let l be the size of I . If I = {m − l + 1,m −
l +2, . . . ,m}, then f I ,m = qmls(2)

2l1n−2l . For a subset I , there is a partition μ such that

I = {m − l + 1 − μ1,m − l + 2 − μ2, . . . ,m − μl}

Then, fl,m = qml+|μ|s(2)
2l1n−2l if n is even, and fl,m = q(m+1)l+|μ|s(2)

2l1n−2l if n is odd.

Note that for fixed l, the maximum of ml + |μ| for even n and the maximum of
(m + 1)l + |μ| for odd n are the same as l(n − l).

Remark 4.6 Note that the number of weak standard tableaux of length n for k = 2 is
2[n/2] [11] which is the same as the number of possible I for m = [n/2].
The function f I ,m when m < [n/2] is the following:
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Proposition 4.7 For m ≤ [n/2], we have

f J ,m =
∑

f I ,[n/2]

where the sum runs over all subset I ⊂ {1, 2, . . . , [n/2]} such that J = I ∩
{1, 2, . . . ,m}.
The above-mentioned formulas for f I ,m follow from Theorems 4.2 and 4.3 assuming
existence of f I ,m satisfying Eq. (3), hence proving the existence of f I ,m is crucial.

We need one more observation to prove the existence of f I ,m in Theorem 4.1.

Lemma 4.8 Equation (3) in Theorem 4.1 implies Theorem 3.5 for any choice of
λ,μ1, μ2 satisfying the hypothesis in Theorem 3.5. Conversely, assuming the hypoth-
esis in 3.5, if Eq. (3) holds for two of λ,μ1, μ2, then Eq. (3) holds for all three
partitions.

Proof Obvious. ��
Now we are ready to prove Theorem 4.1.

Lemma 4.9 For m = [n/2], assume that Theorem 4.1 holds for λ satisfying δm−1 ⊂
λ ⊂ δm. Then, Theorem 4.1 holds for all λ ⊂ δm with the same fI ,m. Moreover,
Theorem 4.1 holds for all λ ⊂ δm for any m ≤ [n/2].
Proof During the proof, we will only use Theorem 3.5. Let p = pλ be the minimum
in the set {i | λi �= m + 1 − i,m − i}. If the set is empty, we set pλ = m. Note that
the minimum number in the set cannot be m since λm is either 0 or 1.

We use an induction on pλ. The base case pλ = m follows from Theorem 4.2 and
Eq. (4). Assume that Theorem 4.1 is true for all λ with r < pλ, and let ν be a partition
with r = pν . For an integer νr+1 ≤ a ≤ m + 1− r , let μa be partitions with μa

i = νi
for i �= r andμa

r = a. Note that Theorem 4.1 is true forμa with a = m+1−r ,m−r
by the induction hypothesis. By Theorem 3.5, if we have μm+1−r = g1 + g2 and
μm−r = g1 + qg2, then μa = g1 + qm+r−1−ag2. By Lemma 4.8, Theorem 4.1 is true
for all μa , including ν.

To show the lemma for m < [n/2] and λ ⊂ δm , it is enough to observe δm ⊂ δ[n/2]
and

L(n, λ) =
∑

I⊂{1,2,...,[n/2]}
f I ,[n/2]q−eI ·λ

=
∑

J⊂{1,2,...,m}

⎛

⎝
∑

I∩{1,2,...,m}=J

f I ,[n/2]

⎞

⎠ q−eI ·λ

and hence we have

f J ,m =
∑

I∩{1,2,...,m}=J

f I ,[n/2]

and we are done. ��
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Proof of Theorem 4.1 Assume that there is λ that does not satisfy Theorem 4.1 with
f I ,m determined by Theorem 4.3 when m = [n/2], and Proposition 4.7 when m <

[n/2]. Choose λ with minimal size. We will show that for every i , λ satisfies the
inequality λi ≤ λi+1 + 1. If this is true, then we have λ ⊂ δm and we have a
contradiction by Lemma 4.9.

Assume that there is i such that λi ≥ λi+1 + 2. For a = 1, 2, define μa be the
partition defined byμa

j = λ j for j �= i+1 andμa
i+1 = λi+1+a. Since |μa | > |λ|,μa

for a = 1, 2 satisfy Theorem 4.1. Therefore, by Lemma 4.8 λ also satisfies Theorem
4.1 which makes a contradiction. ��

5 LLT polynomials for dominos and 2-Schur functions

In this section,we proveTheorem4.2. To proveTheorem4.2,we introduce generalized
Hall–Littlewood polynomials and 2-Schur functions. Then, we show that ω(G̃ηa )

appearing in Theorem 4.3 is the same as 2-Schur functions up to a power of q.

5.1 Generalized Hall–Littlewood polynomials

For a symmetric function f , g, let f ⊥(g) be the unique symmetric function satisfying
〈g, f h〉 = 〈 f ⊥(g), h〉 for any symmetric functionh.One canuse this to define creation
operators �a for the Schur functions, defined by �a = ∑

r≥0(−1)r hm+r e⊥
r where hr

(resp. er ) is the complete homogeneous symmetric function (resp. the elementary
symmetric function) of degree r .

Jing [9] defined the operators�a for a positive integer a that generalize the creation
operators for Schur functions. Define

�a =
∑

i, j≥0

(−1)i q j ha+i+ j e
⊥
i h

⊥
j =

∑

j≥0

q j�a+ j h
⊥
j .

Let Hλ[X; q] be the Hall–Littlewood polynomials. Then, this family of operator has
the property that

�a(Hλ[X; q]) = H(a,λ1,λ2,...,λ�)[X; q].

Shimozono and Zabrocki generalized the operators for any partition by

�λ :=
∏

1≤i≤ j≤�(λ)

(1 − t Ri j )�λ1�λ2 · · ·�λ�(λ)
.

where

Ri j (�μ1�μ2 · · ·�μ�(μ)
) = �μ1�μ2 · · ·�μi+1 · · ·�μ j−1 · · ·�μ�(μ)

.

Note that if q = 0, then �a = �a and �λ(1) = sλ.
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For tuple of partitions λ = (λ(0), λ(1), . . . , λ(d−1)), consider the generalized Hall–
Littlewood polynomials defined by

Kλ[X; q] := �λ(0) · · ·�λ(d−1) (1).

Grojnowski and Haiman [6, Theorem 7.15] showed the following.

Theorem 5.1 If λ(i) is a rectangle for all i such that contents of southwest corners of
λ(i) areweakly increasing and contents of southeast corners ofλ(i) areweakly decreas-
ing, Kλ[X; q] is equal to a power of q times ω(G̃λ′) where λ′ = (λ(0)′, . . . , λ(d−1)′).

For our case, we set λ = ηa with a = (1, 1, . . . , 1, 0, . . . , 0) so λ(i) are either a
horizontal domino, a vertical domino or a single box.We show in Sect. 5.3 thatω(G̃ηa )

only depends on the number � of vertical dominos.

5.2 k-Schur functions

In this subsection, we show that for a = (0m−�, 1�) and m = [n/2], Kηa is equal

to s(2)
2�1n−� . We first recall the algebraic definition of the k-Schur functions [13]. A

partition λ is called k-bounded if λ1 ≤ k. For a partition λ, let h(λ) be the main hook
length of λ defined by λ1 + �(λ) − 1 where �(λ) is the number of parts in λ. For a
k-bounded partition λ, let λ→k , called the k-split of λ, be (λ(1), . . . , λ(r)) where its
concatenation is equal to λ, h(λ(i)) = k for all i < r , and h(λ(r)) ≤ k. For example,
(3, 2, 2, 2, 1, 1)→3 = ((3), (2, 2), (2, 1), (1)).

For a k-bounded partition, let λ→k = (λ(1), . . . , λ(r)). The k-split polynomials are
defined recursively by

C (k)
λ [X; q] = �λ(1)C (k)

(λ(2),...,λ(r))

with C (k)
() = 1. Let T (k) be an operator acting on the ring of symmetric functions

defined by

T (k)
i (C (k)

λ [X; q]) =
{
C (k)

λ [X; q] if λ1 = i,

0 otherwise.

Now we are ready to define k-Schur functions recursively.

Definition 5.2 For a k-bounded partition λ, if �(λ) = 1 and a ≤ k, then s(k)
a is the

Schur function sa . Otherwise, for λ1 ≤ m ≤ k, we define k-Schur functions by the
following recursion:

s(k)
(m,λ) = T (k)

m �ms
(k)
λ [X; q].

For k = 2, the following k-rectangular property [13, Theorem 26] of k-Schur
functions is useful.
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Theorem 5.3 If μ, ν, λ are partitions where λ = (μ, ν) and μ�(μ) > � ≥ ν1, then

��k+1−�s(k)
λ [X; q] = q |μ|−�(μ)s(k)

(�k+1−�)∪λ
[X; q].

In particular, if � ≥ λ1, then

��k+1−�s(k)
λ [X; q] = s(k)

(�k+1−�)∪λ
[X; q].

Theorem 5.3 implies that 2-Schur functions are the same as generalized Hall–
Littlewood polynomials.

Theorem 5.4 Let λ = (2�, 1n−2�). Then, a 2-Schur function s(2)
λ [X; q] is the same as

the generalized Hall–Littlewood polynomial Kλ→2 [X; q] indexed by 2-split of λ.

By Theorems 5.4 and 5.1, we know that ω(G̃ηa ) for a = (0m−�, 1�) is equal to a

power of q times s(2)
2�,1n−� . To prove Theorem 4.2, we show that ω(G̃ηa ) only depends

on the number � of vertical dominos and calculate the exponent of q.

5.3 Comparing different LLT polynomials

For a skew shape λ, let the content set of λ be the set of contents of all boxes in λ. To
prove that ω(G̃ηa ) only depends on �, we show the following theorem.

Lemma 5.5 Let λ be d-tuple of skew partitions such that λ(i) is a horizontal domino
with a content set {0, 1} and λ(i+1) is a vertical domino with the content set {0, 1}.
Then,

G̃λ = G̃μ

where μ is obtained from λ by swapping λ(i) and λ(i+1).

Proof We construct a bijection � between SYT(λ) and SYT(μ) preserving the inver-
sion number and entries in λ( j) for j �= i, i + 1 to prove the theorem. The bijection
will also preserve the set of entries at the diagonal with the content 0 so that we can
assume i = 0 and d = 2. Indeed, we are only changing entries in i th and (i + 1)th
partitions of T = (T (0), . . . , T (d−1)) so that the inversion set Invd(T ) does not change
except pairs (x, y) satisfying x, y ⊂ T (i) ∪ T (i+1).

Assume that i = 0 and d = 2. For T ∈ SYT(λ), let

T (0) = a
b

, T (1) = c d .

There are six possible cases for an order of a, b, c, d, and we define � case by case.
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(1) a > d > c > b: then, the number of inversions is 2 and set

�(T )(0) = c d , �(T )(1) = a
b

.

In this case, two pairs (a, d) and (d, b) are inversion pairs.
(2) a > d > b > c: then, the number of inversion is 1 and set

�(T )(0) = c b , �(T )(1) = a
d

.

In this case, a pair (a, b) is an inversion pair.
(3) d > a > c > b: then, the number of inversions is 2 and set

�(T )(0) = a d , �(T )(1) = c
b

.

In this case, two pairs (a, c) and (d, b) are inversion pairs.
(4) d > a > b > c: then, the number of inversions is 1 and set

�(T )(0) = c d , �(T )(1) = a
b

.

In this case, a pair (d, b) is an inversion pair.
(5) a > b > d > c: then, the number of inversions is 2 and set

�(T )(0) = c b , �(T )(1) = a
d

.

In this case, pairs (a, b) and (b, d) are inversion pairs.
(6) d > c > a > b: then, the number of inversions is 1 and set

�(T )(0) = a d , �(T )(1) = c
b

.

In this case, a pair (d, b) is an inversion pair.

��

5.4 Proof of Theorem 4.2

Now we are ready to prove Theorem 4.2. First, note that by Theorems 5.1, 5.4 and
Lemma 5.5, we know that ω(G̃ηa ) is equal to q ps(2)

2�1n−2� for some integer p where �

is the number of 1 in a. To prove Theorem 4.2, we only need to show that p = M for
even n and p = M ′ for odd n where M, M ′ are defined in Theorem 4.2. Note that p
is the minimum exponent of q appearing in ω(G̃ηa ), since a 2-Schur function s

(2)
2�1n−2�
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has a term s2�1n−2� with the minimum exponent 0 in its Schur expansion. We show
p = M for even n and leave it to readers for odd n.

By Lemma 5.5, one can assume that a = (0m−�1�). First, we show that p ≥ M =∑�
i=1(m − i). For T ∈ SYT(ηa), m − � + 1 ≤ i ≤ m, and j < i , consider possible

inversion pairs (x, y)where x is in T ( j) and y is in T (i). Since T (i) is a vertical domino,
there must be at least one inversion pair (x, y)where the cell x is in T ( j) with a content
1 and y is a cell in T (i). Note that the number of (i, j) satisfying m − � + 1 ≤ i ≤ m,
and j < i is exactly M . Then, it is enough to find T ∈ SYT(ηa), so that there are
no other inversion pairs. Indeed, one can choose T so that for 0 ≤ α ≤ m − � − 1,
numbers α+1 andm+�+α+1 appear in T (α) and form−� ≤ α ≤ m−1, numbers
α + 1 and α + � + 1 appear in T (α). Then, the theorem follows. ��

6 Haiman–Haglund conjecture for k = 2

In this section, we provide the 2-Schur expansion of the LLT polynomial indexed by
skew shapes lying in two adjacent diagonals, confirming Conjecture 2.1 for k = 2.
Recall that for a skew shape λ, let the content set of λ be the set of contents of all
boxes in λ.

Let λ = (λ(0), λ(1), . . . , λ(d−1)) be the d-tuple of skew shapes such that λ(i) is
either a vertical domino with content set {0, 1}, a horizontal domino with content set
{0, 1}, a single cell with content 0 or a single cell with content 1. Let n be the number
of boxes in λ, and let m be the number of boxes in λ with content 0. Without loss of
generality, one can assume that m ≤ [n/2] because otherwise one can replace λ by
the conjugate of λ, defined by μ with μ(i) = g(λ(d−1−i)) where the map g(μ) is the
identity if μ is one of dominos and g(μ) is a cell with content 1− i if i is the content
of a single cell μ. One can show that LLT polynomials do not change.

For 1 ≤ i ≤ n, let xi be the cell in λ such that the shifted content c̃i of the cell xi
satisfies c̃1 < c̃2 < · · · < c̃n . For a positive integer i ≤ n, λi is the cardinality of the
set

{ j | c̃ j ≥ c̃i + d}.

Note that λ is a partition and λ is contained in a rectangle (n −m)m . Recall Theorem
4.1 that we have

L(n, λ) =
∑

I⊂[m]
f I ,mq

−e·λ

where e · λ = ∑m
j=1 eiλi and 2-Schur positive functions f I ,m . For given λ, define a

subset K ⊂ {1, 2, . . . ,m} satisfying i ∈ K if and only if xi is contained in either a
vertical domino and horizontal domino. Also for i ∈ K define ζi by 0 if xi is contained
in a horizontal domino, and 1 if xi is contained in a vertical domino. By Theorem 4.1
and Lemma 4.4, one can show that for m ≤ [n/2], we have
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G(n)
λ =

∑

I⊂{1,...,m}
ei=ζi if i∈I

f I ,mq
−e·λ−z

where f I ,m’s are determined by Theorem 4.5 and Proposition 4.7, and z is the number
of vertical dominos in λ.

By Theorem 4.5 and Proposition 4.7, we showed that G(d)
λ is 2-Schur positive,

showing Conjecture 2.1 for k = 2.

7 Concluding remarks

One of direct corollary from Theorem 4.1 is the 2-Schur expansion of product of
1-Schur functions. Note that a product of k-Schur function and k′-Schur function is
conjecturally (k + k′)-Schur positive.

Corollary 7.1 For m ≤ n/2 and a subset I of {1, 2, . . . , [n/2]}, let l be the size of I
and l1 be the size of I ∩ {1, 2, . . . ,m}. Also, let l2 be ∑

j∈I j − (m
2

)
. Then,

s(1)
1m s

(1)
1n−m =

∑

I⊂{1,2,...,[n/2]}
q−(n−m)l1+l(n−l)−l2s(2)

2l1n−2l

Proof By Remark 2.2, the product s(1)
1m s

(1)
1n−m is equal to L(n, (n − m)m). Then, the

corollary directly follows from Theorem 4.1 and Proposition 4.7. ��
Also note that Theorem 3.5 does not require the condition k = 2, so that some

of results in this paper can be generalized. Roughly speaking, Theorem 3.5 says that
exponents of q are changing piecewise linearly, especially for small k. However,
the identification of LLT polynomials for rectangles and generalized Hall–Littlewood
polynomials does not seem to helpmuch for k > 2whenworkingwith linear relations.
In fact, understanding LLT polynomials indexed by ribbons is much more helpful to
determine many of unicellular LLT polynomials since it is easier to use Lemma 4.8
and its obvious generalization for the case of ribbons instead of dominos. Note that
finding a Schur expansion of LLT polynomials indexed by ribbons is a challenging
problem as it provides a formula for Schur expansion of Macdonald polynomials as
well.
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