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Abstract
Properties of symmetric cubic graphs are described via their rigid cells, which are
maximal connected subgraphs fixed pointwise by some involutory automorphism of
the graph. This paper completes the description of rigid cells and the corresponding
involutions for each of the 17 ‘action types’ of symmetric cubic graphs.
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1 Introduction

When attempting to gain a thorough understanding of symmetric graphs, it is often
helpful to know the structure of vertex-stabilisers and how they act, both locally and
globally. In particular, for symmetric cubic graphs the structure of vertex-stabilisers
is well known. By the work of Tutte [15,16], every finite symmetric cubic graph is
s-arc-regular for some s ≤ 5, and then each vertex-stabiliser is isomorphic to C3, S3,
S3 ×C2, S4, S4 ×C2, according to whether the graph is 1-, 2-, 3-, 4- or 5-arc-regular,
respectively (see [6]). It follows that these vertex-stabilisers contain automorphisms
of orders only 2, 3, 4 or 6.

Marston D.E. Conder: This work is supported in part by the N.Z. Marsden Fund (project UOA1626).
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Also it can be an important question to ask about the subgraph induced on the set
of vertices fixed by an automorphism belonging to a vertex-stabiliser. This question
was addressed in [11], in the context of the ‘even/odd automorphism’ dichotomy, as
a tool in determining which symmetric cubic graphs have (or do not have) an odd
automorphism—namely an automorphism that induces an odd permutation on the
vertices, see also [10].

We recall the definition of a rigid cell. Given a graph X and an automorphism α

of X , let Fix(α) denote the set of all vertices of X fixed by α. With the assumption
that Fix(α) is non-empty, we call the subgraph X [Fix(α)] induced on Fix(α) the rigid
subgraph of α, or in short, the α-rigid subgraph, and then call each component of
X [Fix(α)] an α-rigid cell.

In a finite symmetric cubic graph, the length of any path that can be fixed by a
non-trivial automorphism of the graph is 4 (by Tutte’s theorem), and consequently,
a rigid cell must be a single vertex, or one of the graphs shown in Fig. 1. For these
types of rigid cells, we will use the terms I -tree, H -tree, Y -tree, A-tree and B-tree,
according to the labels in the figure.

It is easy to see that in a symmetric cubic graph, the single-vertex graph K1 can
be a rigid cell for automorphisms of order 3 and 6, and the 2-vertex complete graph
K2 (which is the I -tree) can be a rigid cell for automorphisms of order 2 or 4. Fur-
thermore, because the stabiliser of any 2-arc in a finite symmetric cubic graph is an
elementary abelian 2-group, all the other graphs given in Fig. 1 can occur only as rigid

Fig. 1 I -tree, H -tree, Y -tree, A-tree and three B-trees
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Table 1 Vertex and
edge-stabilisers of an
s-arc-regular group G of
automorphisms of a cubic graph

Class s Gv Ge

1 1 C3 C2

21 2 S3 V4

22 2 S3 C4

3 3 S3 × C2 D4

41 4 S4 D8

42 4 S4 C8 �3 C2

5 5 S4 × C2 (D4 × C2) � C2

cells of involutory automorphisms, and consequently the question about rigid cells is
essentially a question about the orbit structure of these involutions.

This matter was first considered by Djoković and Miller in [6], where it was shown
that the three graphs given in the second line of Fig. 1, the so-called B-trees, cannot
occur as rigid cells in symmetric cubic graphs. See also [11] for an alternative proof.

Tutte proved in two seminal papers [15,16] that every finite symmetric cubic graph
is s-arc-regular for some s ≤ 5. Some further insight into the structure of symmetric
cubic graphs was given by Djoković and Miller, who proved in [6] that each vertex-
stabiliser in an s-arc-regular subgroup of automorphisms of a symmetric cubic graph
is isomorphic to C3, S3, S3 ×C2, S4 or S4 ×C2, when s = 1, 2, 3, 4 or 5, respectively.
Accordingly, the automorphism group of a cubic s-arc-regular graph of order n has
order 3 · 2s−1 · n (for 1 ≤ s ≤ 5). Djoković and Miller [6] also proved that for
s ∈ {1, 3, 5} there is just one possibility for edge-stabilisers, while there exist up to
two possibilities for s ∈ {2, 4}, and existence of graphs of both kinds (for s ∈ {2, 4})
was later confirmed by Conder and Lorimer [4]. The resulting seven classes of arc-
transitive finite group actions on cubic graphs are summarised in Table 1, where Dn

denotes the dihedral group of degree n and order 2n (see also [7]). In particular, for
s = 2 the edge-stabiliser (of order 4) is isomorphic to either V4 ∼= C2 × C2 or C4,
while for s = 4 the edge-stabiliser (of order 16) is isomorphic to either D8 or the
quasidihedral group C8 �3 C2.

More recently, Conder and Nedela [5] proved that there are exactly 17 combina-
tions of the above seven classes realisable by the arc-transitive subgroups of the full
automorphism group of a finite symmetric cubic graph X , see Table 2. We call these
17 combinations the ‘action types’.

In [11], complete information on the existence of odd automorphisms was given
for each of the action types of finite symmetric cubic graphs.

It was proved in [5] that with the exception of action types {3} and {5}, every invo-
lution belonging to a vertex-stabiliser in the automorphism group of a finite symmetric
cubic graph has only one type of rigid cell. More details are given in Sect. 3.

For convenience, we let I(X) denote the set of all involutory automorphisms of a
symmetric cubic graph X that fix some vertex of X , and we let S(X) denote the set
of all involutions in Aut(X) that are semiregular (that is, with all of its cycles having
the same length, see [12,13]).

We will say that an involution in Aut(X) is
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Table 2 The 17 possible action types for symmetric cubic graphs

s Action type Bipartite? s Action type Bipartite?

1 {1} Sometimes 4 {1, 41} Always

2 {1, 21} Sometimes 4 {41} Sometimes

2 {21} Sometimes 4 {42} Sometimes

2 {22} Sometimes 5 {1, 41, 42, 5} Always

3 {1, 21, 22, 3} Always 5 {41, 42, 5} Always

3 {21, 22, 3} Always 5 {41, 5} Never

3 {21, 3} Never 5 {42, 5} Never

3 {22, 3} Never 5 {5} Sometimes

3 {3} Sometimes

• an I -, Y -, H - or A-involution if all of its rigid cells are isomorphic to the I -, Y -,
H - or A-tree, respectively,

• an M-involution if it admits non-isomorphic rigid cells (so that its rigid cells are
of mixed structure), and/or

• an S-involution if it is semiregular (that is, all of its cycles have the same length,
see [12,13]).

Here also we mention that although semiregular automorphisms of order 2 usually
exist in bipartite symmetric graphs (such as involutory ‘edge-flippers’), there are non-
bipartite symmetric cubic graphs with semiregular involutions as well, such as the
1-skeleton of the dodecahedron.

To obtain a complete characterisation of involutions in symmetric cubic graphs
with respect to their conjugacy classes and the corresponding rigid cells, we need to
analyse symmetric cubic graphs with action types {3} and {5}. This is the main goal of
this paper. We will prove the following theorem (in which X + Y denotes the disjoint
union of graphs X and Y , and kX denotes the disjoint union of k copies of X ).

Theorem 1.1 Let X be a connected symmetric cubic graph of order 2n, where n is
odd, and with action type {s}, where s ∈ {3, 5}. Then all involutions in Aut(X) that
fix some vertex of X are mutually conjugate. Moreover, every involution α ∈ I(X)

is an M-involution, and if s = 3 then X [Fix(α)] ∼= 3k I + 2kY , while if s = 5 then
X [Fix(α)] ∼= 3kH + 2k A, for some positive integer k.

For symmetric cubic graphs with action type {3} or {5} and of order divisible by 4,
the situation is somewhat different. Some of these graphs have mixed type involutions
(as in Example 2.8), while for others I(X) contains more than one conjugacy class of
involutions, with none being an M-involution (as in Examples 2.6 and 2.7).

Theorem 1.1 will be proved in Sect. 5. One of the tools in the proof involves the
group-theoretic concept of transfer, often used in character theory, and explained in
Sect. 4. Before that, in Sect. 2 we give a number of examples illustrating the above
discussion, and in Sect. 3 we give some further background about rigid cells.
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Fig. 2 Illustration of rigid cells of representatives of the two classes of involutions for the Petersen graph

2 Examples

In this section, we give examples of symmetric cubic graphs with different action
types, together with information on the conjugacy classes of their non-semiregular
involutory automorphisms.

Example 2.1 Let X be the Petersen graph, with vertices labelled as in Fig. 2. Then X
has action type {21, 3}, and there exist two conjugacy classes of involutions in Aut(X),
with one consisting of Y -involutions and the other consisting of I -involutions. Repre-
sentatives of these two classes are illustrated in Fig. 2. In particular, every involution
in Aut(X) is conjugate to either the Y -involution (0)(0′)(1)(4)(1′ 2)(3 4′)(2′ 3′) with
one rigid cell, or the I -involution (0)(0′)(1 4)(2′ 3′)(1′ 4′)(2 3) with one rigid cell.
Note also that by Proposition 3.3, every 3-arc-regular cubic graph admitting a 2-arc-
regular group of automorphisms has this property, with two classes of non-semiregular
involutions (namely I -involutions and Y -involutions, separately).

Example 2.2 Let X be the Heawood graph, with vertices labelled as in the left-hand
side of Fig. 3. Then X has action type {1, 41}, and there exist two conjugacy classes
of involutions in Aut(X), one consisting of S-involutions, and the other consisting
of H -involutions. A representative of the class of H -involutions is illustrated in the
left-hand side of Fig. 3. In particular, every non-semiregular involution in Aut(X) is
conjugate to the H -involution

(0)(1)(2)(6)(9)(13)(3 11)(4 12)(5 7)(8 10),

with one rigid cell. Note also that by Proposition 3.4, every non-semiregular involutory
automorphism of a 4-arc-regular cubic graph is an H -involution.

Example 2.3 Let X be the dodecahedral graph, with vertices labelled as in the right-
hand side of Fig. 3. Then X has action type {1, 21}, and there exist three conjugacy
classes of involutions in Aut(X), with two consisting of S-involutions, and one of I -
involutions. A representative of the class consisting of I -involutions in X is illustrated
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Fig. 3 Illustration of the rigid cells of a representative of the class of involutions fixing a vertex for the
Heawood graph (on the left-hand side) and the dodecahedral graph (on the right-hand side)

in the right-hand side of Fig. 3. In particular, any non-semiregular involution in X is
conjugate to the I -involution

(0)(5)(0′)(5′)(1 9)(2 8)(3 7)(4 6)(1′ 9′)(2′ 8′)(3′ 7′)(4′ 6′),

which has two rigid cells (both of type I ).

Example 2.4 Let X be Tutte’s 8-cage, with vertices labelled as in Fig. 4. Then X has
action type {41, 42, 5}, and there exist three conjugacy classes of involutions inAut(X),
with one consisting of S-involutions, one consisting of H -involutions, and the third
consisting of A-involutions. Representatives of the two classes of non-semiregular
involutions in X are illustrated in Fig. 4. In particular, any non-semiregular involution
in Aut(X) is conjugate to either the A-involution

(0)(1)(2)(6)(10)(22)(23)(24)(28)(29)(3 15)(5 7)(9 11)(13 21)(17 25)(19 27)

(4 16)(8 12)(14 20)(18 26)

with one rigid cell, or the H -involution

(0)(1)(2)(10)(23)(29)(3 15)(6 28)(9 11)(22 24)(4 14)(5 27)(7 19)(8 18)(12 26)

(13 25)(16 20)(17 21)

with one rigid cell. Note also that by Proposition 3.5, every 5-arc-regular cubic graph
admitting a 4-arc-regular subgroup of automorphisms has two conjugacy classes of
non-semiregular involutions, one consisting of H -involutions and the other of A-
involutions.
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Fig. 4 Illustration of the rigid cells of representatives of two classes of involutions for Tutte’s 8-cage

Example 2.5 Let X be the unique symmetric cubic graph of order 110 (see [3]). This
graph has action type {3} and is shown in Fig. 5, using the so-called Frucht notation [8]
with respect to a (10, 11)-semiregular automorphism ρ of X . The 110 vertices of X
can be labelled as u j

i for i ∈ Z10 and j ∈ Z11 such that the orbits of ρ are the sets

Oi = {u j
i | j ∈ Z11} for i ∈ Z10. There exist two conjugacy classes of involutions

in Aut(X), one of S-involutions, and the other of M-involutions having some rigid
cells isomorphic to the I -tree and others isomorphic to the Y -tree. One can check that
there exists a non-semiregular involution α ∈ Aut(X) fixing the vertices

u00, u
4
0, u

0
1, u

7
1, u

4
3, u

9
3, u

10
3 , u14, u

2
4, u

7
4, u

4
7, u

10
7 , u18 and u78,

and it follows that α has two rigid cells isomorphic to the Y -tree, and three rigid cells
isomorphic to the I -tree. Note also that by our Theorem 1.1, every symmetric cubic
graph with action type {3} and of twice odd order has only one conjugacy class of
non-semiregular involutory automorphisms, as in this example. For symmetric cubic
graphs with action type {3} which have order divisible by 4, however, the situation is
quite different, see Example 2.6.

Example 2.6 Acomputation inMagma [1] similar to the ones that produced the graphs
listed in [2,3,5] shows there exists a symmetric cubic graph with action type {3} and
order 39 916 800, and with automorphism group isomorphic to the symmetric group
S12. This group contains two conjugacy classes of involutions with fixed points (on
the vertex-set). In one of these two classes, each involution fixes 15360 vertices that
can be partitioned into 3840 rigid cells, with every rigid cell isomorphic to the Y -tree,
while in the other class, each involution fixes 2304 vertices that can be partitioned into
1152 rigid cells, with every rigid cell isomorphic to the I -tree.

Example 2.7 Another computation in Magma [1] produces a symmetric cubic graph
with action type {5} and order 50 685 458 503 680 000, and automorphism group iso-
morphic to the symmetric group S20. For this graph, there are two conjugacy classes of
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Fig. 5 The symmetric cubic
graph of order 110, given in
Frucht’s notation with respect to
a (10, 11)-semiregular
automorphism

non-semiregular involutions, one consisting of A-involutions, and the other consisting
of H -involutions.

Example 2.8 The cubic graph C1012.2 of order 1012 listed at [2] has action type
{3}, and automorphism group isomorphic to PSL(2, 23) × C2. This group contains
three conjugacy classes of involutions, with two consisting of S-involutions, and one
consisting of M-involutions with rigid subgraphs isomorphic to 6I + 4Y . Similarly,
there exists a symmetric cubic graph with action type {5} and automorphism group
isomorphic to A48, with non-semiregular involutions being M-involutions, and the
associated rigid cells being isomorphic to the H -tree and the A-tree.

3 Known information about rigid cells

The structure of vertex-stabilisers in symmetric cubic graphs ensures that only auto-
morphisms of order 1, 2, 3, 4 and 6 can fix a vertex. In the following propositions, we
recall certain facts proved in [11] about possible rigid cells for such automorphisms.

Proposition 3.1 [11] Let X be a symmetric cubic graph, and let α be an automorphism
of X fixing a vertex. Then

(i) if α has order 3 or 6, then every α-rigid cell is an isolated vertex, while
(ii) if α has order 4, then every α-rigid cell is an I -tree.

Proposition 3.2 [11] Let X be an s-arc-regular cubic graph, where s ∈ {1, 2} and let
α be an involution in Aut(X). Then

(i) if s = 1, then Fix(α) = ∅, so that α is semiregular, while
(ii) if s = 2, then every α-rigid cell is an I -tree.

Proposition 3.3 [11] Let X be a 3-arc-regular cubic graph, and let α be a non-
semiregular involution in I(X). Then every α-rigid cell is an I -tree or a Y -tree,
and if both kinds occur (for α) then X has action type {3}.

123



Journal of Algebraic Combinatorics (2021) 53:881–895 889

Our Theorem 1.1 gives information about rigid cells in 3-arc-regular cubic graphs,
more detailed than in Proposition 3.3. In particular, it shows that in a symmetric cubic
graph with action type {3} and twice odd order, any involutory automorphism fixing
a vertex has rigid cells isomorphic to the I -tree, as well as rigid cells isomorphic to
the Y -tree. This is not always the case in symmetric cubic graphs with action type {3}
and order divisible by 4, however, as shown by Example 2.6.

Proposition 3.4 [11] Let X be a 4-arc-regular cubic graph and let α be a non-
semiregular involution in I(X). Then every α-rigid cell is an H-tree.

Proposition 3.5 [11] Let X be a 5-arc-regular cubic graph and let α be a non-
semiregular involution in I(X). Then every α-rigid cell is an H-tree or an A-tree, and
if both kinds occur (for α) then X has action type {5}.

Just as in the 3-arc-regular case, our Theorem 1.1 gives information about the rigid
cells for 5-arc-regular cubic graphs,more detailed than in Proposition 3.5. In particular,
it shows that in a symmetric cubic graph with action type {5} and twice odd order, any
involutory automorphism fixing a vertex has rigid cells isomorphic to the H -tree, as
well as rigid cells isomorphic to the A-tree. This is not always the case in symmetric
cubic graphs with action type {5} and order divisible by 4, however, as shown by
Example 2.7.

4 The transfer

The following piece of group theory is used in the next section. We shall include some
background information about it for the sake of completeness.

For a group G and a subgroup H of G, a right transversal T for H in G is a
complete set of representatives for the set of right cosets Hx of H in G. The group G
acts naturally and transitively by right multiplication on T , and for x ∈ T and g ∈ G
we define xg to be the unique element of T that lies in the right coset Hxg.

Now suppose that H has finite index inG, and that H has a normal subgroupM such
that H/M is abelian. Then the transfer from G to H/M is the function ν : G → H/M
given by ν : g �→ Mπ(g), where

π(g) =
∏

x∈T
xg xg−1.

It is not difficult to show that ν is a group homomorphism, and that its values do not
depend on the choice of the transversal T , see [14, Section 10.1] or [9, Ch. 7, Theorem
3.2].

What we need is the following application of the transfer:

Proposition 4.1 [9, Ch. 7, Ex. 3(i)] Let G be a finite group with no normal subgroup
of index 2. If P is any Sylow 2-subgroup of G, and R is any subgroup of index 2 in P,

then every involution in G is conjugate to an involution in R.
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Proof Let ν : G → P/R be the transfer homomorphism from G to P/R (∼= C2).
Then since G has no subgroup of index 2, this homomorphism cannot be surjective,
and hence is trivial.

Now let g be any involution inG, and suppose that right multiplication by g induces
the permutation (Px1, Px2)(Px3, Px4) · · · (Px2r−1, Px2r )(Px2r+1)(Px2r+2) · · ·
(Pxm) on them right cosets of P inG (wherem = |G : P|). Let T = {x1, x2, . . . , xm}.
Observe that x2i−1g = x2i and x2i g = x2i−1 for i ≤ r , and x j g = x j = x j g for
j ≥ 2r + 1. It follows that ν : g �→ Rπ(g), where

π(g) =
∏

x∈T
xg xg−1 =

∏

1≤i≤r

x2i−1gx
−1
2i x2i gx

−1
2i−1

∏

j≥2r+1

x j gx
−1
j

=
∏

1≤i≤r

x2i−1g
2x−1

2i−1

∏

j≥2r+1

x j gx
−1
j .

In this product, the terms x2i−1g2x
−1
2i−1 are all trivial since g is an involution, and so

π(g) is the product of the terms x j gx
−1
j for 2r + 1 ≤ j ≤ m, each of which lies

in P . If all m − 2r of these terms lie in P \ R, then their product π(g) also lies in
P \ R (since |P/R| = 2 while m = |G : P| is odd), but then Rπ(g) is non-trivial,
contradicting the fact that ν is trivial. Hence at least one of the terms x j gx

−1
j lies in

R, and it follows that g is conjugate to an element of R, as required. 
�

5 Proof of theorem 1.1

In view of the information about rigids cells for involutory automorphisms of symmet-
ric cubic graphs given in [11] and summarised in Sect. 3, our Theorem 1.1 is restricted
to graphs with action types {3} and {5}. Proposition 4.1 plays an essential role in the
proof, and for bipartite graphs the following lemma is also helpful.

Lemma 5.1 Let X be a connected symmetric cubic graph of order 2n, where n is odd,
and having action type {3} or {5}. If X is bipartite, then the index 2 subgroup G of
Aut(X) that preserves each of the two parts of the bipartition of X has no subgroup
of index 2.

Proof Assume to the contrary that G has an index 2 subgroup, say H , which then has
index 4 in Aut(X). Consider the natural action of Aut(X) on the right cosets of H
by right multiplication. This action is transitive but imprimitive (because H < G <

Aut(X)), and hence if K is its kernel, then Aut(X)/K is isomorphic to one of the three
imprimitive permutation groups of degree 4, namely V4, C4 and D4. In the first two of
these three cases, K has index 4 in Aut(X) and so H = K � Aut(X), but then if a is
any involutory edge-flipper (an automorphism that reverses some edge), then 〈H , a〉
is an arc-transitive proper subgroup of Aut(X), contradicting the assumption that X
has action type {3} or {5}. Similarly, in the third case (where Aut(X)/K ∼= D4), the
normal subgroup K contains every element of Aut(X) of order 3, and hence contains
all such elements in the stabiliser of any vertex. It follows (by connectedness) that K
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is transitive on each of the two parts of X , and again if a is any involutory edge-flipper,
then 〈K , a〉 is an arc-transitive proper subgroup of Aut(X), contradiction. 
�
Remark 5.2 In Example 2.5, we considered the smallest cubic symmetric graph with
action type {3} and order 2 mod 4, which has order 110 and is bipartite. The smallest
non-bipartite cubic symmetric graph with action type {3} and order 2 mod 4 has order
506. This graph has one conjugacy class of non-semiregular involutions, and each such
involution fixes 14 vertices, which induce two rigid cells isomorphic to the Y -tree and
three rigid cells isomorphic to the I -tree.

The situation for finite cubic symmetric graphs with action type {5} is much less
straightforward.Thefirst author has found the smallest suchgraph (namelyoneof order
83 966 400, with the ‘Held’ sporadic simple group He as its automorphism group), and
many other examples, some with alternating groups as their automorphism groups. At
the time of writing this paper, however, no examples with action type {5} and order 2
mod 4 have been found.

We are now ready to prove our main theorem. We divide the proof into two cases,
depending on whether s = 3 or s = 5. Also for ease of notation, we define an I -cell
of an involutory automorphism α ∈ Aut(X) to be a rigid cell of α that is isomorphic
to the I -tree, and we define Y -cell, H -cell and A-cell in the analogous fashion.

Proof of Theorem 1.1 CASE 1. Action type {3}.
Let e = {u, v} be any edge of X . Then by the work of Djoković and Miller [6]

summarised in Table 1, the stabilisers Aut(X)u and Aut(X)e of the vertex u and edge
e are isomorphic to S3 ×C2 (of order 12) and D4 (of order 8). Since X has twice odd
order, it follows that the number of edges in X is odd, and hence that Aut(X)e is a
Sylow 2-subgroup of Aut(X). We begin by distinguishing two cases, depending on
whether or not X is bipartite.

If X is bipartite, then involutory edge-flippers are necessarily semiregular. In this
case, let S be the stabiliser of the arc (u, v). Then S is isomorphic to V4, and is a
Sylow 2-subgroup of the index 2 subgroup G of Aut(X) preserving the two parts of
the bipartition of X . Also by Lemma 5.1, the subgroup G has no subgroup of index
2, and hence by Proposition 4.1, we find that every involution in G is conjugate to an
element of every subgroup of index 2 in S. Then since S ∼= V4 ∼= C2 × C2, it follows
that all involutions in G are conjugate to each other, as required.

On the other hand, suppose that X is not bipartite. Then Aut(X) has no index 2
subgroup at all (since any index 2 subgroup would then be arc-transitive). Let R be
the index 2 cyclic subgroup of order 4 in Aut(X)e ∼= D4. Then by Proposition 4.1,
every involution of Aut(X) is conjugate to an involution in R, but R contains only one
involution, and it follows that there is only one class of involutions in Aut(X).

Hence in both cases, all elements of I(X) are mutually conjugate in Aut(X).
Next, let �I be the set of pairs (α, I ) such that α ∈ I(X) and I is a rigid I -cell of

α, and let �Y be the set of pairs (α,Y ) such that α ∈ I(X) and Y is a rigid Y -cell of
α. Now since any two elements of I(X) are conjugate, we know there exist constants
a, b ∈ N such that every α ∈ I(X) has a rigid I -cells and b rigid Y -cells, and it
follows that X [Fix(α)] ∼= aI + bY , for every such α. In particular, |�I | = |I(X)| · a
and |�Y | = |I(X)| · b.
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Also because X is 3-arc-regular, the stabiliser of an arc (u, v) of X contains three
involutions, one of which fixes u and v but none of their other neighbours, while
another fixes all the neighbours of u but not the other two neighbours of v, and the
third fixes all the neighbours of v but not the other two neighbours of u. It follows that
number of elements of I(X) having a particular I -tree in X as a rigid I -cell is 1, and
similarly, the number of elements of I(X) having a particular Y -tree in X as a rigid
Y -cell is also 1. These observations imply that |I(X)| · a = |�I | = |E(X)| while
|I(X)| · b = |�Y | = |V (X)| = 2|E(X)|/3, and it follows that a = |E(X)|/|I(X)| =
3b/2. Hence in particular, a is divisible by 3, and b is even, and if we let k = b/2,
then we find a = 3k while b = 2k, and X [Fix(α)] ∼= 3k I + 2kY for every α ∈ I(X).

CASE 2. Action type {5}.
Again let e = {u, v} be any edge of X . This time the work of Djoković and

Miller [6], summarised in Table 1, shows that the stabilisers Aut(X)u and Aut(X)e
are isomorphic to S4 ×C2 (of order 48) and (D4 ×C2) �C2 (of order 32), and again
since X has twice odd order, Aut(X)e is a Sylow 2-subgroup of Aut(X).

Before proceeding to consider the bipartite and non-bipartite cases, we note that
the vertices at distance at most 2 from u or v in X may be labelled 1, 2, 3, 4, 4′, 5′, 5′,
6′, 7′ and 8′, in such a way that the neighbourhoods of the six vertices u, v, 1, 2, 3 and
4 are given, respectively, by

X(u) = {v, 1, 3}, X(v) = {u, 2, 4},
X(1) = {u, 1′, 5′}, X(2) = {v, 2′, 6′},
X(3) = {u, 3′, 7′}, X(4) = {v, 4′, 8′}.

Moreover, this labelling can be arranged such that there exist automorphisms α, β and
ρ of X whose restrictions to these vertices are given by

ᾱ = (u)(v)(1)(3)(1′)(5′)(2 4)(2′ 4′)(3′ 7′)(6′ 8′),
β̄ = (u)(v)(2)(4)(2′)(6′)(1 3)(1′ 3′)(4′ 8′)(5′ 7′),
ρ̄ = (u v)(1 2 3 4)(1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′).

Subcase 2.1. X is non-bipartite.
In this case, because X has action type {5} there is no subgroup of index 2 inAut(X),

and so Proposition 4.1 can be applied. We will do that for a particular subgroup of
index 2 in Aut(X)e.

With multiplication of permutations performed from left to right, an easy calcula-
tion shows that ᾱ and ρ̄ satisfy the relations ᾱ2 = ρ̄8 = 1 and ᾱρ̄ᾱ = ρ̄3, and hence
α and ρ generate a subgroup H of Aut(X) whose restriction H̄ to the ball B2(e) is
isomorphic to the quasidihedral groupC8�3C2 of order 16. The elements of H̄ are all
expressible in the form ᾱi ρ̄ j with i ∈ Z2 and j ∈ Z8, and just five of these are invo-
lutions, namely ρ̄4 and the elements ᾱρ̄ j where j ∈ {0, 2, 4, 6}. Moreover, the rigid
cells of these involutions in H̄ are the induced subgraphs on the sets {u, v, 1, 2, 3, 4},
{u, v, 1, 3, 1′, 5′}, {u, v, 2, 4, 2′, 6′}, {u, v, 1, 3, 3′, 7′} and {u, v, 2, 4, 4′, 8′}, respec-
tively, and in particular, all of these are isomorphic to the H -tree.

Next, since |Aut(X)e| = 32 and |H̄ | = 16, we find that either H is an index 2
subgroup of Aut(X)e, or H = Aut(X)e. In the first case, Proposition 4.1 implies
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that any involution in Aut(X) is conjugate to an involution in H , and then since it
is known that some involutions in Aut(X) have a rigid cell isomorphic to the A-tree
(see Proposition 3.5), we conclude that every involution in Aut(X) has a rigid cell
isomorphic to the H -tree as well as a rigid cell isomorphic to the A-tree. In the second
case, the existence of an involution in Aut(X) with a rigid cell isomorphic to the A-
tree gives the same conclusion, because vertex-stabilisers are conjugate subgroups of
Aut(X).

Subcase 2.2. X is bipartite.
In this case, the part-preserving subgroupG of index 2 inAut(X) contains the stabiliser
S of the arc (u, v), which is isomorphic to D4 × C2 of order 16, and hence a Sylow
2-subgroup of G. Also by Lemma 5.1, there is no subgroup of index 2 in G.

Here an easy calculation shows that ᾱ and β̄ satisfy the relations ᾱ2 = β̄2 =
(ᾱβ̄)4 = 1, and hence α and β generate a subgroup H of Aut(X) whose restriction
H̄ to the ball B2(e) is isomorphic to the dihedral group D4 of order 8. Moreover,
the involutions in H̄ are the five elements ᾱ, β̄, ᾱβ̄ᾱ, β̄ᾱβ̄ and (ᾱβ̄)2, and another
easy calculation shows that each of these elements has an H -tree as a rigid cell. (In
fact those five H -trees are the same as for the elements ᾱ, ᾱρ̄2, ᾱρ̄6, ᾱρ̄4 and ρ̄4,
respectively.)

Next, since |S| = 16 and |H̄ | = 8, we find that either H is an index 2 subgroup
of S, or H = S. In the first case, since G has no subgroup of index 2 we find by
Proposition 4.1 that any involution in G is conjugate to an involution in H , and then
since we know that some involutions in Aut(X) have a rigid cell isomorphic to the
A-tree, it follows that every involution in Aut(X) has a rigid cell isomorphic to the
H -tree as well a rigid cell isomorphic to the A-tree. In the second case, the existence
of an involution in Aut(X) with a rigid cell isomorphic to the A-tree gives the same
conclusion, because vertex-stabilisers are conjugate subgroups of Aut(X).

Hence in both sub-cases, all elements of I(X) are mutually conjugate in Aut(X).
To conclude the proof of the theorem, it remains to consider the numbers of rigid

cells isomorphic to the H -tree and the A-tree, respectively. Let �H be the set of pairs
(α, H) such that α ∈ I(X) and H is a rigid H -cell of α, and let �A be the set of
pairs (α, A) such that α ∈ I(X) and A is a rigid A-cell of α. Then just as in Case 1
of this proof, we find that if each α ∈ I(X) has a rigid H -cells and b rigid A-cells,
then X [Fix(α)] ∼= aI + bY for every such α. This time, because X is 5-arc-regular,
the stabiliser of an H -tree contains three involutions, one of which fixes no other
neighbour of any vertex of that H -tree, while each of the remaining two involutions
fixes an A-tree extending it, but not the same A-tree as the one fixed by the other
one of those two involutions. It follows that number of elements of I(X) having a
particular H -tree in X as a rigid I -cell is 1, and similarly, the number of elements of
I(X) having a particular A-tree in X as a rigid Y -cell is also 1. Again these imply
that |I(X)| · a = |�I | = |E(X)| and |I(X)| · b = |�Y | = |V (X)| = 2|E(X)|/3, and
hence that a = 3k and b = 2k for some k ∈ N, and therefore X [Fix(α)] ∼= 3k I +2kY
for every α ∈ I(X). 
�

The main result of this paper is that for every cubic symmetric graph of type {3} or
{5} with twice an odd number of vertices, every non-semiregular involution is an M-
involution, and so has non-isomorphic rigid cells. The situation for cubic symmetric
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graphs with order divisible by 4 is more complex, as shown in Examples 2.6, 2.7 and
2.8. In further research, we would like to find necessary and sufficient conditions for
all non-semiregular involutory automorphisms of a given cubic symmetric graph with
action type {3} or {5} and order divisible by 4 to be of M-type.
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Marston D. E. Conder
m.conder@auckland.ac.nz

Ademir Hujdurović
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