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Abstract
The bisymplectic Grassmannian I2Gr(k, V ) parametrizes k-dimensional subspaces of
a vector space V which are isotropic with respect to two general skew-symmetric
forms; it is a Fano projective variety which admits an action of a torus with a finite
number of fixed points. In this work, we study its equivariant cohomology with com-
plex coefficients when k = 2; the central result of the paper is an equivariant Chevalley
formula for themultiplication of the hyperplane class by any Schubert class.Moreover,
we study in detail the case of I2Gr(2, C

6), which is a quasi-homogeneous variety, we
analyse its deformations, and we give a presentation of its cohomology.

1 Introduction

In complex algebraic geometry, classical Grassmannians are a special kind of homo-
geneous spaces for classical groups. They have been studied thoroughly for more
than a century from different point of views: their geometry is governed by a rich
combinatorial description, which manifests itself in many classical results about their
cohomology.Moreover, the homogeneity condition has been very useful to investigate
further properties of these varieties, such as their equivariant and quantum coho-
mology (see for instance [4,7,11,17]). Among classical Grassmannians, symplectic
(respectively orthogonal) ones parametrize subspaces of a given vector space which
are isotropic with respect to a non-degenerate symplectic (resp. orthogonal) form.

Even for varieties which admit an action of a sufficiently big algebraic group, when
the homogeneity hypothesis is dropped less is known: some efforts have led to the
notion of GKM varieties (for the action of tori with a finite number of zero- and one-
dimensional orbits on complete varieties, they are defined in [8]) and some results
have been obtained for specific examples (for instance, see [9,15,16]). In this paper,
we present awork on a particular class of varieties, called bisymplecticGrassmannians,
which are not homogeneous but admit an action of a big torus.
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In general, one can define multisymplectic (respectively multiorthogonal) Grass-
mannians as the varieties parametrizing subspaces of a given vector space which
are isotropic with respect to a fixed number of general symplectic (resp. orthogonal)
forms. As an example, consider the unique Fano threefold of degree 22, which is usu-
ally denoted by V22, and that appears in Iskovskikh’s classification (see [10]); Mukai
showed that it can be seen as a trisymplecticGrassmannian I3Gr(3, 7) of 3-dimensional
subspaces of C

7.
Of course, in general, asking the isotropy conditionwith respect tomany symplectic

forms implies that the corresponding Grassmannian is no longer homogeneous. How-
ever, in the case of bisymplectic Grassmannians (two symplectic forms, denoted by
I2Gr(k, 2n)) and of orthosymplectic Grassmannians (one symplectic and one orthog-
onal form), one can prove that it is still possible to define an action of a torus T
with a finite number of fixed points. Moreover, for extremal values of k, the bisym-
plectic Grassmannian is actually a homogeneous variety: I2Gr(1, 2n) ∼= P2n−1 and
I2Gr(n, 2n) ∼= (P1)n (for the second isomorphism, which is a priori quite surprising,
see [12]). Therefore, even though I2Gr(k, 2n) is not homogeneous when k �= 1, n
(consequence of the fact that it has non-trivial deformations, see Theorem 2.7), one
may still expect it to behave quite similarly to homogeneous spaces.

However, this non-homogeneity implies that some difficulties appear when trying
to study the T -equivariant cohomology of I2Gr(k, 2n). The finiteness of the number
of fixed points and T -invariant curves implies that GKM theory applies and allows
to compute the equivariant cohomology combinatorially in terms of fixed point data,
but the combinatorics may still be irksome to work out. In this paper, we show how
to determine the equivariant cohomology with complex coefficients of bisymplectic
Grassmannians of planes, i.e. for I2Gr(2, 2n) (when k = 2). This variety has a simple
geometric construction: it can be seen as the intersection of two hypersurfaces in
Gr(2, 2n). Even so, the determination of its equivariant cohomology is an interesting
problem for different reasons: on the one hand, as already remarked, we can apply
some equivariant tools in a rather simple non-homogeneous situation; on the other
hand, we believe that the proofs of the results we state here for I2Gr(2, 2n) can be
adequately generalized in the case of bisymplectic Grassmannians I2Gr(k, 2n) with
k �= 2. We intend to analyse this more general situation in the future.

The main results we obtain for I2Gr(2, 2n) concern its equivariant cohomology.
Firstly, we show that the classes of an additive basis of the cohomology can be uniquely
determined by a finite number of relations coming from T -equivariant curves (The-
orem 3.12); these classes correspond to the Schubert subvarieties that appear in the
Bialynicki-Birula decomposition. Then, we find an equivariant Chevalley formula for
the multiplication of any class with the hyperplane class (Theorem 3.24), from which
one can recover the corresponding formula for the classical cohomology. As a result,
one can compute the classes of Schubert varieties inductively (Corollary 3.25).

As an application, we give an explicit presentation of the cohomology of I2Gr(2, 6).
This bisymplectic Grassmannian is particularly interesting because it is quasi-
homogeneous: it admits an action of SL(2)3 with a dense affine orbit. Moreover,
even though it has no smooth deformations, we are able to describe all its singular flat
deformations (Proposition 3.27).
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The structure of the paper is as follows. In the first part, we recall general results
about bisymplectic Grassmannians, whose detailed proofs can be found in [3].We also
recall some facts about symplectic Grassmannian, as they are useful to understand our
situation better. In the central part of the paper, we deal with bisymplectic Grassman-
nians of planes I2Gr(2, 2n); after recalling some basic properties of the equivariant
cohomology, we prove the two main results of the paper: the uniqueness for equiv-
ariant Schubert classes in Theorem 3.12 and the equivariant Chevalley formula in
Theorem 3.24. Finally, we study in detail the quasi-homogeneous variety I2Gr(2, 6),
we determine its orbit structure and its flat deformations, and we give a presentation
of its classical cohomology.

2 Bisymplectic Grassmannians

In this section, we recall some basic definitions and facts about bisymplectic Grass-
mannians. The content of what follows can be found in [3, Chapter 4]; therefore, we
will omit the proofs. Introducing the notations for general bisymplectic Grassmanni-
ans is useful for two reasons. On the one hand, it constitutes the natural framework
in which to study the Grassmannians of planes, which can be seen as a particular
example. On the other hand, it allows to compare what can be done in our particular
example with the general situation; indeed, we believe that the ideas developed in
this paper can be used fruitfully to obtain analogous results for general bisymplectic
Grassmannians, which we intend to do in the future.

Let us consider the Grassmannian Gr(k, 2n) of k-dimensional subspaces inside a
vector space of dimension 2n. From now on, if not otherwise stated, we will assume
that 2 ≤ k ≤ n. By fixing a skew-symmetric form ω over C

2n , one can consider
the subvariety IGr(k, 2n) inside Gr(k, 2n) of isotropic subspaces with respect to ω. If
ω is non-degenerate, IGr(k, 2n) is smooth, and it is a rational homogeneous variety
for the natural action of Sp(2n) ⊂ GL(2n). Denoting by U the tautological bundle
over the Grassmannian, the variety IGr(k, 2n) can be seen as the zero locus of a
general section of∧2U∗ overGr(k, 2n); indeed notice that, by theBorel–Weil theorem,
H0(Gr(k, 2n),∧2U∗) ∼= ∧2(C2n)∗. We will refer to IGr(k, 2n) as the isotropic (or
symplectic) Grassmannian.

Let us now fix two skew-symmetric forms ω1, ω2 over C
2n .

Definition 2.1 The bisymplectic Grassmannian is the subvariety I2Gr(k, 2n) inside
Gr(k, 2n) of subspaces isotropic with respect to ω1 and ω2. Equivalently, the points
in I2Gr(k, 2n) are isotropic with respect to the pencil 〈ω1, ω2〉.
Remark 2.2 Aswewill see later, there is not only one isomorphism class of bisymplec-
tic Grassmannians. Indeed, the definition depends on the choice of a pencil 〈ω1, ω2〉.
However, we will still refer to the bisymplectic Grassmannian in the following.

Of course, I2Gr(k, 2n) ⊂ IGr(k, 2n)i , where IGr(k, 2n)i is the symplectic Grass-
mannian with respect to ωi , i = 1, 2. The fact that I2Gr(k, 2n) is not empty is
a consequence of the fact that I2Gr(n, 2n) �= ∅ (see Example 2.3). Moreover,
I2Gr(k, 2n) can be seen as the zero locus of a section of (∧2U∗)⊕2 over Gr(k, 2n); by
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Bertini theorem, if the two forms ω1 and ω2 are in general position, the bisymplectic
Grassmannian is smooth. Moreover, in this case, its dimension is 2k(n − k) + k and,
by the adjunction formula, its canonical bundle is

KI2Gr(k,2n) = O(−2n + 2k − 2);

therefore, I2Gr(k, 2n) is a Fano variety. In the next sections, wewill study under which
conditions the bisymplectic Grassmannians are smooth (i.e. for what kind of pencils).
Before doing so, let us deal with the case k = n.

Example 2.3 (k = n) Recall that the square root of the determinant of a 2n × 2n-
skew-symmetric matrix is a polynomial of degree n in the entries of the matrix, which
is called Pfaffian. In [12, Theorem 3.1], Kuznetsov refines Bertini theorem proving
that the variety I2Gr(n, 2n) is smooth if and only if the pencil 〈ω1, ω2〉 intersects the
Pfaffian divisor D ⊂ P(∧2(C2n)∗) (i.e. the locus ofmatriceswhere the Pfaffian is zero)
in n distinct points; in this case, the two forms are simultaneously block diagonalizable
(with blocks of size 2 × 2), and there exists an isomorphism

I2Gr(n, 2n) ∼= (P1)n . (1)

Therefore, the automorphism group of I2Gr(n, 2n) is (PGL(2))n × Sn (where Sn is
the group of permutations of n elements). Surprisingly enough, from the isomorphism
one realizes that I2Gr(n, 2n) has no small deformations.

Example 2.4 (k = 2) The bisymplectic Grassmannian of planes is I2Gr(2, 2n). It is
just the intersection of two hyperplane sections in Gr(2, 2n). However, we will see
that it shares with I2Gr(k, 2n) for k �= 1 and k ≤ n some useful properties, among
them the existence of an action of an n-dimensional torus.

From now on, the zero locus of a section s of a vector bundle over a variety will be
denoted by Z (s). Moreover, let us denote by V = C

2n .
As a consequence of Example 2.3, one may wonder whether all bisymplectic

Grassmannians admit no small deformations. Moreover, we are interested in their
automorphism group, because we will use the fact that a torus acts on bisymplectic
Grassmannians with a finite number of fixed points (and therefore localization tech-
niques apply). In the following,we recall two results from [3]where this automorphism
group is explicitly computed (modulo a finite group). In order to do so, we need to
state a result on the normal form of a pencil of skew-symmetric forms which defines
a smooth bisymplectic Grassmannian. Let D ⊂ P(∧2V ∗) be the Pfaffian divisor of
degree n.

Proposition 2.5 ([3, Proposition 4.1.6]) Let � = 〈ω1, ω2〉 ⊂ P(∧2(V ∗)) be a pencil
of skew-symmetric forms such that Z (�) ⊂ Gr(k, V ) has the expected dimension.
Z (�) is smooth if and only if � ∩ D = p1, . . . , pn, where the pi ’s are n distinct
points such that:

1. dim(Ker(pi )) = 2 for 1 ≤ i ≤ n;
2. V = Ker(p1) ⊕ · · · ⊕ Ker(pn).
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The proof of this result is essentially identical to the one used in [12, Theorem
3.1]; the result stated in [3] is weaker, but following its proof one can check that the
statement made in Proposition 2.5 is correct. From now on, if not otherwise stated,
we will assume that � is such that the corresponding bisymplectic Grassmannian is
smooth of the expected dimension; by Bertini theorem, this is ensured by choosing �

generic. We will denote by Ki = Ker(pi ).

Remark 2.6 Theproof of the previous proposition (see [3]) actually shows that ifZ (�)

is smooth, then all the forms in� are simultaneously block diagonalizable. Moreover,
as any non-degenerate form is conjugate to the standard one, one can suppose that �
is generated by ω1 and ω2 with:

ω1 =
n∑

i=1

xi ∧ x−i ,

ω2 =
n∑

i=1

λi xi ∧ x−i ,

where 〈xi , x−i 〉 = (Ki )
∗ for 1 ≤ i ≤ n, and the λi ’s are all distinct.

Theorem 2.7 ([3, Theorem 4.1.12]) Let 1 < k < n and X = I2Gr(k, 2n). The follow-
ing isomorphisms hold:

H0(X , TX ) ∼= sl(2)n,

H1(X , TX ) ∼= C
n−3.

Remark 2.8 The fact that H0(X , TX ) ∼= sl(2)n should not be surprising; indeed, by
Proposition 2.5we know that the forms in� can be simultaneously block diagonalized,
the blocks being the 2-dimensional subspaces Ki . A consequence of this is the fact
that, for 1 ≤ i ≤ n, the group PGL(Ki ) ⊂ PGL(P(∧2V ∗)) fixes the pencil �.
Therefore, it is contained in the automorphism group of Z (�) = X . The fact that
these are the only automorphisms of X modulo a finite group is a consequence of the
previous theorem. To state it more intrinsically, we can write:

TAut(X)
∼= H0(X , TX ) ∼= sl(K1) ⊕ · · · ⊕ sl(Kn).

Moreover, this observation implies that an n-dimensional torus acts on X , which we
will use later on.

Remark 2.9 What the second isomorphism of the theorem tells us is that the moduli
stackMbisym(k,n) of bisymplectic Grassmannians should have dimension n − 3. This
is the same as the dimension of the moduli stack Mn of n points inside P1. It is
straightforward to see that there is a dominant rational morphism

π : Gr(2,∧2V ∗)/PGL(V ) ��� Mbisym(k,n),
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where Gr(2,∧2V ∗)/PGL(V ) is the GIT quotient. This quotient has dimension n − 3,
i.e. it is not of the expected dimension. Indeed, on the open subset inside Gr(2,∧2V ∗)
of diagonalizable pencils, each point � is fixed by a copy of SL(2)n ⊂ PGL(V ).
Moreover, one can prove that there is a birational morphism

Gr(2,∧2V ∗)/PGL(V ) ������ Mn .

However, in order to have a birational model of Mbisym(k,n), one should understand
the degree of π ; as it will not be needed in the following, we leave this question open
for further work.

Remark 2.10 When n = 3 (and k = 2), the variety X has no small deformations.
Moreover, by Proposition 2.5, if Z (�) is smooth (by Bertini theorem, for this it is
sufficient to choose � generic), � intersects the Pfaffian divisor D in three points
p1, p2, p3; by changing coordinates if necessary, we can suppose that p1 = [x1 ∧
x−1 + x2 ∧ x−2] and p2 = [x2 ∧ x−2 + x3 ∧ x−3], where (x±1, x±2, x±3) is a basis
of V ∗. Thus, there is only one smooth isomorphism class of I2Gr(2, 6) when, modulo
a coordinate change, � = 〈p1, p2〉. In Sect. 3.4, we will study more in detail this
variety, its flat deformations and its (equivariant) cohomology.

2.1 The torus action on I2Gr(k,V)

The variety I2Gr(k, V ) is smooth and projective (according to the assumptions made
in the previous section) and admits an action of a torus with a finite number of fixed
points. We summarize here the first consequences of the existence of this action. This
will allow us to introduce some useful notation.

Let I2Gr(k, V ) be defined by the forms ω1 and ω2 described in Remark 2.6, and let
IGr(k, V ) be the symplectic Grassmannian defined by ω1 which contains I2Gr(k, V ).
Moreover let T ∼= (C∗)n be the maximal torus inside Sp(V )which is contained inside
SL(2)n ⊂ Aut(I2Gr(k, V )). For simplicity, we will assume from now on that T is
the diagonal torus diag(tn, . . . , t1, t

−1
1 , . . . , t−1

n ) ⊂ Sp(V ). It acts on IGr(k, V )with a
finite number of fixed points, and as a consequence the induced action on I2Gr(k, V )

has a finite fixed locus as well. The surprising fact is that the two fixed loci are the
same:

Proposition 2.11 ([3, Proposition 4.2.1]) There are 2k
(n
k

)
fixed points for the action

of T on IGr(k, V ) and on I2Gr(k, V ). They are parametrized by subsets I ⊂
{±1, . . . ,±n} with k elements such that I ∩ (−I ) = ∅.

If V = 〈vn . . . , v1, v−1, . . . , v−n〉, with Ki = 〈vi , v−i 〉, then the fixed point corre-
sponding to a subset I = (i1, . . . , ik) is given by pI = [vI ] = [vi1 ∧ · · · ∧ vik ].
Definition 2.12 We will say that a subset I ⊂ {±1, . . . ,±n} of size k is admissible if
I ∩ (−I ) = ∅.

Therefore, by the Bialynicki-Birula decomposition (see [1]), by fixing a generic
one-dimensional torus τ ⊂ T with the same fixed locus as T , we can associate

123



Journal of Algebraic Combinatorics (2021) 53:851–880 857

with each fixed point pI , where I ⊂ {±1, . . . ,±n} is admissible, a Schubert variety
σI ⊂ I2Gr(k, V ), which is the closure of a Schubert cell isomorphic to an affine space
(the terminology is borrowed from the homogeneous situation). The Schubert cell is
defined as the set of points which accumulate towards pI under the action of τ . The
condition that τ needs to satisfy in order to give the decomposition is that it acts with
a finite number of fixed points. This is true for a general τ ⊂ T . For instance, let us
fix a particular one-dimensional torus with which we will work later on:

τ = diag(tn, . . . , t, t−1, . . . , t−n) ⊂ T . (2)

Then, by explicitly computing the action of τ on the Plücker coordinates of the
Grassmannian (see e.g. [3, Lemma 4.2.3]), one can show that:

Lemma 2.13 The one-dimensional torus τ acts with a finite number of fixed points
over IGr(k, V ) and over I2Gr(k, V ).

Remark 2.14 The symplecticGrassmannian IGr(k, V ) is a homogeneous variety under
the action of Sp(V ), and as such it has a natural Bruhat decomposition in orbits under
the action of a Borel subgroup of Sp(V ). It turns out that the Bruhat decomposition
and the Bialynicki-Birula one are the same if the chosen Borel subgroup and the one-
dimensional torus are compatible (see [2][Book I I , example 4.2]). We will denote by
σ ′
I the Schubert varieties of IGr(k, V ), and by B a Borel subgroup of Sp(V ).
The identification of the two decompositions implies that if a fixed point pJ belongs

to a Schubert variety σ ′
I , then actually σ ′

J = B.pJ ⊂ B.pI = σ ′
I . This fact is crucial

when trying to compute the equivariant cohomology of IGr(k, V ), as we will see.
However, this property will not hold in the bisymplectic case, and it is one of the main
reasons why computing the equivariant cohomology for I2Gr(k, V ) becomes more
difficult.

As pI is fixed, the torus T acts on the tangent space TI := TI2Gr(k,V ),pI . Let �(T )

denote the character group of T , and let εi ∈ �(T ) be the character of T given by
diag(tn, . . . , t1, t

−1
1 , . . . , t−1

n ) �→ ti . If i < 0, we denote by εi the character −ε−i .

Lemma 2.15 ([3, Lemma 4.2.6]) The weights of the action of T on TI are

−2εi for i ∈ I and

εi − ε j for i /∈ I ∪ (−I ), j ∈ I .

The weights of the action of τ are easily deduced from Lemma 2.15; indeed, under
the identification �(τ) ∼= Z, it is sufficient to notice that εi �→ i under the morphism
j∗ : �(T ) → �(τ) induced by the natural inclusion j : τ → T . The Schubert variety
σI is smooth at pI and the tangent space TσI ,pI is the τ -invariant subspace of TI whose
weights with respect to τ are negative.

Definition 2.16 From now on, we will say that ξ ∈ �(T ) is τ -positive (and we will
denote it by ξ > 0) if j∗(ξ) > 0, and τ -negative if j∗(ξ) < 0.
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Therefore, given a certain subset I , it is possible to compute the codimension of
σI . It is sufficient to count the number of τ -positive weights for the action of τ on TI .
In order to do so, one starts with the weights in Lemma 2.15, apply the morphism j∗
(sending ei to i) and obtain:

codim(σI ) = #{(i, j) s.t. i /∈ I ∪ (−I ) , j ∈ I , and j > i} + #{ j ∈ I s.t. j < 0}.

I2Gr(k, V ) is smooth and projective, thus filtrable via the Schubert cells; this implies
that the cohomology of I2Gr(k, V ) as aZ-module is freely generated by the classes σI

for I admissible. The odd Betti numbers are therefore all equal to zero. Let {bik,n}i be
the even Betti numbers of I2Gr(k, 2n) (where i is the codimension). We will denote
by Sk,n the sequence of integers:

Sk,n = (b0k,n, . . . , b
dim(I2Gr(k,2n))
k,n , 0, . . . , 0, . . . ).

Of course, the decomposition of I2Gr(k, 2n) in Schubert cells whose closures are the
σI ’s implies that bik,n is equal to the number of subsets I such that codim(σI ) =
i . We will denote by [h] the shift on the right by h. For instance, Sk,n[1] =
(0, b0k,n, . . . , b

dim(I2Gr(k,2n))
k,n , 0, . . . , 0, . . . ).

Theorem 2.17 ([3, Theorem4.3.4])The following recursive formula holds for the Betti
numbers of I2Gr(k, 2(n + 1)):

Sk,n+1 = Sk,n[k] + Sk−1,n + Sk−1,n[1 + 2(n + 1 − k)]. (3)

Example 2.18 We give here a list of examples of Betti numbers of bisymplectic Grass-
mannians for small k, n:

S2,3 = (1, 1, 2, 4, 2, 1, 1, 0, . . . );
S3,4 = (1, 1, 2, 6, 6, 6, 6, 2, 1, 1, 0, . . . );
S2,4 = (1, 1, 2, 2, 3, 6, 3, 2, 2, 1, 1, 0, . . . ).

Remark 2.19 The case of the Grassmannian of planes is particularly easy because
I2Gr(2, 2n) is a codimension 2 complete intersection inside Gr(2, 2n); all its Betti
numbers except the middle term can be derived from those of Gr(2, 2n) (or of
IGr(2, 2n)) by applyingLefschetz hyperplane theorem.Moreover, asχ(IGr(2, 2n)) =
χ(I2Gr(2, 2n)) (because the number of fixed points is the same for the two varieties),
the middle term is the sum of the two middle Betti numbers of IGr(2, 2n).

Remark 2.20 By using the recursive formula, it is possible to prove that for any 1 <

k < n we have: b0k,n = 1, b1k,n = 1, b2k,n = 2. In particular,

Pic(I2Gr(k, V )) ∼= Z.

Furthermore, let H = (n, n − 1, . . . , n − k + 2, n − k) be the subset corresponding
to the codimension 1 Schubert variety (both for IGr(k, V ) and for I2Gr(k, V )). Then
σH is a hyperplane section ofO(1) inside I2Gr(k, V ), and it is a line. Indeed, it is the
restriction to I2Gr(k, V ) of the hyperplane section σ ′

H ⊂ IGr(k, V ).
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2.1.1 T -equivariant curves

In order to compute the T -equivariant cohomology of I2Gr(k, V ) using GKM theory,
one needs to understand which are the T -invariant curves, and what are the inclusions
of fixed points in Schubert varieties pJ ∈ σI . Recall that T -invariant curves are rational
curves whose intersection with the fixed locus has cardinality 2; these two fixed points
will be denoted by p0 and p∞.

Lemma 2.21 ([3, Lemma 4.2.8 and Lemma 4.3.14]) There is only a finite number of
T -invariant curves inside IGr(k, V ). They are of two types:

type α: curves with p0 = pI and p∞ = pJ , where #(I ∩ J ) = k − 1;
type β: curves with p0 = pI and p∞ = pJ , where #(I ∩ J ) = k − 2, I − J =
{a1, a2}, J − I = {−a2,−a1}.

Among these, the T -invariants curves which are also contained inside I2Gr(k, V ) are
those of type α.

Remark 2.22 From the proof of Lemma [3, Lemma 4.2.8], it is straightforward to see
that the curves of type α are lines inside P(∧kV ∗), while the curves of type β are
conics inside a P2 ⊂ P(∧kV ∗).

Definition 2.23 Let I = {ak ≥ · · · ≥ a1} and J = {bk ≥ · · · ≥ b1}. If ai ≥ bi for
1 ≤ i ≤ k, then we will say that I is greater or equal than J , and we will denote this
by I ≥ J .

We will say that C = C1 . . .Cm is a chain of T -equivariant curves from pI to pJ
if Ci (∞) = Ci+1(0) for any 1 ≤ i ≤ m, and C1(0) = pI , Cm(∞) = pJ .

Lemma 2.24 ([3, Lemma 4.2.10]) For two admissible subsets I and J , the fact that
I ≥ J is equivalent to pJ ∈ σ ′

I ⊂ IGr(k, V ) and to the fact that there is a chain of
T -invariant curves inside IGr(k, V ) from pI to pJ .

The second statement in Lemma 2.24 is a consequence of the proof of [3, Lemma
4.2.10].

The results of this section show that I2Gr(k, V ) is a projective T -skeletal variety,
i.e. T acts with a finite number of fixed points and invariant curves. Hence, results
from [8] can be applied to describe the T -equivariant cohomology of I2Gr(k, V ) in
terms of fixed point data (see 3.4).

3 Equivariant cohomology of bisymplectic Grassmannians of planes

In this section we study the T -equivariant cohomology of I2Gr(2, V ). We begin by
recalling some basic facts about equivariant cohomology. A reference for this sub-
ject is [6]; the general results we will cite can be found in [8] or [5]. Then we will
analyse the case of the symplectic Grassmannian, in order to compare it with the
behaviour of the bisymplectic one. The main result of this section will be a Chevalley
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formula for Schubert classes in I2Gr(2, V ), which a priori determines inductively all
the equivariant classes σI for I admissible.

Let X be a smooth projective variety on which a torus T ∼= (C∗)n acts with finitely
many fixed points XT = {p1, . . . , pr }. Denote by �(T ) ∼= Z

n the character group
of T . Moreover, let τ ∈ T be a general 1-dimensional torus such that its fixed locus
is equal to XT ; then the Bialynicki-Birula decomposition for τ provides varieties σi
for all 1 ≤ i ≤ r . They form a basis for the integral homology of X and by Poincaré
duality also a basis for the ordinary cohomology H∗(X , Z).

The equivariant cohomology ring H∗
T (X) with complex coefficients is an algebra

over the polynomial ring H∗
T (pt) ∼= C[�(T )] = Sym((�(T )) ⊗Z C) via the push-

forward map of the natural inclusion of a point pt inside X . An additive basis for this
algebra is given by the (equivariant) classes σi for 1 ≤ i ≤ r .

Denote by H∗(X) := H∗(X , C). The pullback map i∗ : H∗
T (X) → H∗

T (XT ) of the
natural inclusion i : XT → X is injective (by [8, Theorem 1.2.2]); therefore,

H∗
T (X) = �(T ) ⊗Z H∗(X) ∼= �(T ) ⊗Z

⊕

pi

Cσi

can be seen as a subring of

H∗
T (XT ) ∼= �(T ) ⊗Z H∗(XT ) ∼= �(T ) ⊗Z

⊕

pi

Cpi ∼= C[�(T )]⊕r .

Via this inclusion, we will denote by fσi ∈ C[�(T )]⊕r the pullback of the class σi ∈
H∗
T (X), and by fσi (p j ) = (i◦i j )∗σi , where i j : p j → XT is the natural inclusion. The

polynomial fσi (p j ) is usually referred to as the localization of the class σi at the point
p j . Clearly, if ε1, . . . , εn is aZ-basis of�(T ), then fσi (p j ) ∈ H∗

T (p j ) is a polynomial
in ε1, . . . , εn . Therefore, in order to understand the equivariant cohomology of X , we
need to find the polynomials fσi (p j ). The following results hold:

Theorem 3.1 The polynomials fσi (p j ) satisfy the following properties:

1. fσi (p j ) is a homogeneous polynomial of degree codim(σi );
2. fσi (p j ) = 0 if p j /∈ σi ;
3. fσi (p j ) is the product of the T -characters of the normal bundle Nσi /X ,p j whenever

σi is smooth at p j ;
4. If there exists a T -equivariant curve between p j and pk whose character is χ ,

then χ divides fσi (p j ) − fσi (pk) for 1 ≤ i ≤ r .

Theorem 3.2 ([8, Theorem 1.2.2]) If there is only a finite number of T -invariant curves
inside X, then the equivariant cohomology H∗

T (X) is the subalgebra of C[�(T )]⊕r

consisting of elements f = ( f1, . . . , fr ) satisfying the last condition in Theorem 3.1,
i.e.:

if there exists a T -equivariant curve between p j and pk
whose character is χ , then χ divides f j − fk .

(4)
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Moreover, from the equivariant cohomology, it is possible to recover the ordinary
cohomology H∗(X):

Theorem 3.3 The classical cohomologyH∗(X) can be recovered from the equivariant
cohomology H∗

T (X) as

H∗(X) ∼= H∗
T (X)/(ε1, · · · , εn).

Therefore, the finiteness of the number of T -invariant curves inside I2Gr(k, V )

(Lemma 2.21) implies that GKM theory can be applied:

Theorem 3.4 The relations in (4) are enough to determine the equivariant cohomology
of I2Gr(k, V ).

Remark 3.5 Theorem 3.4 just states that Theorem 3.2 applies to bisymplectic Grass-
mannians.

One should be careful: being able to determine the equivariant cohomology of
I2Gr(k, V ) does not imply that we are able to identify the equivariant classes σI in
general.

3.1 Warm-up: the homogeneous case

In contrast to the bisymplectic case, in the homogeneous case we can identify the
equivariant classes fσ ′

I
. The following proposition is a well known result, whose

argument goes back at least to [11, Section 2.1]:

Proposition 3.6 ([3, Proposition 4.2.16]) Let X = G/P be a homogeneous rational
variety under the action of a simple group G. Then the maximal torus T inside a Borel
subgroup B ⊂ G acts with a finite number of fixed points on X. Moreover, if there is
only a finite number of T -equivariant curves, then the equivariant classes of Schubert
varieties inside H∗

T (X) are determined by the relations 1, 2, 3 in Theorem 3.1.

The crucial property in order to prove this proposition is the one underlined by
Remark 2.14. Later on we will prove the analogous result for I2Gr(2, V ) by adapting
the proof of the previous proposition.

We recall in the following that an equivariant Chevalley formula is known for
IGr(k, V ). This formula permits to compute inductively the polynomials fσ ′

I
(pJ ).

The inductive method proceeds as follows. Let us fix a Schubert variety σ ′
I . Then

if pJ /∈ σ ′
I , then fσ ′

I
(pJ ) = 0.

Moreover, fσ ′
I
(pI ) is just the product of the (positive) τ -weights of TI (because σ ′

I
is smooth at pI ). Notice that these two assertions are general, and will hold for the
bisymplectic Grassmannian as well.
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Finally, the function fσ ′
I
(·)( fσ ′

H
(·)− fσ ′

H
(pI )) has support over the points pJ ∈ σ ′

I ,
J �= I (recall that σ ′

H is the codimension 1 Schubert variety by using the notation of
Remark 2.20). By applying Lemma 2.24, we obtain:

fσ ′
I
(·)( fσ ′

H
(·) − fσ ′

H
(pI )) =

∑

J∈I−1

aI ,J fσ ′
J
(·), (5)

where I−1 = {J s.t. I ≥ J , and codim(σ ′
J ) = codim(σ ′

I )+ 1}. The condition on the
codimension is a consequence of the fact that deg( fσ ′

J
) = codim(σ ′

J ). The coefficient
aI ,J turns out to be equal to 1 if there is a α-curve between pI and pJ , and it is equal
to 2 if there is a β-curve between pI and pJ . Knowing the coefficients aI ,J , one can
determine inductively fσ ′

I
from the fσ ′

J
’s in Eq. (5).

Remark 3.7 Equation (5) is just localization (and rearrangement) of the equivariant
Chevalley formula

σ ′
Iσ

′
H = fσ ′

H
(pI )σ

′
I +

∑

J∈I−1

aI ,Jσ
′
J ; (6)

the validity of this formula is a direct consequence of the fact that Schubert classes
form a basis over H∗

T (pt) and that σ ′
Iσ

′
H − fσ ′

H
(pI )σ ′

I is supported on classes σ ′
J such

that J ∈ I−1 (by localization at pI ).

3.2 Schubert classes are determined

In this section we prove that the equivariant Schubert classes for I2Gr(2, V ) are
completely determined by the relations 1, 2, 3 in Theorem 3.1, i.e. the analogous
of Proposition 3.6. In order to do so, we will need to understand (some) inclusions
of fixed points inside Schubert varieties. In the end we will prove an equivariant Lef-
schetz hyperplane theorem, relating the equivariant cohomology of the symplectic
Grassmannian to that of the bisymplectic one.

Remark 3.8 From now on, we will denote by f I (J ) = fσI (pJ ).

The problem of determining the inclusions of fixed points in the case of the bisym-
plecticGrassmannian ismore difficult to dealwith. In order to understand this problem,
notice that I2Gr(k, V ) ⊂ IGr(k, V ) implies that if pJ ∈ σI ⊂ σ ′

I , then I ≥ J .
Moreover ≥ is a partial order relation on the admissible subsets of {±1, . . . ,±n} of
cardinality k. We define the relation ≥∈ on admissible subsets: I ≥∈ J if and only
if there exist admissible subsets J = J1, J2, . . . , Ju = I such that pJi ∈ σJi+1 for
i = 1, . . . , u − 1. This relation is by construction reflexive and transitive. Moreover,
it is antisymmetric because if I �= J , I ≥∈ J and J ≥∈ I , then J ≥ I ≥ J and
I �= J , which is a contradiction by the definition of ≥. As a result, ≥∈ is a partial
order relation on admissible subsets of {±1, . . . ,±n}, and as a consequence we get
the following:
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Lemma 3.9 There exist polynomials aI ,J ∈ C[ε1, . . . , εn] of degree codim(σJ ) −
codim(σI ) − 1 such that

f I (·)( fH (·) − fH (I )) =
∑

J∈I≥∈−1

aI ,J f J (·), (7)

where I≥∈−1 = {J s.t. I ≥∈ J , and codim(σJ ) ≤ codim(σI ) + 1}.
Proof We already know that

f I (·)( fH (·) − fH (I )) =
∑

J

aI ,J f J (·)

for some polynomials aI ,J because the classes of Schubert varieties generate the
equivariant cohomology over �(T ). We want to prove that aI ,J = 0 if J /∈ I≥∈−1.
Indeed, let L /∈ I≥∈−1 be a subset which is maximal for the partial order relation ≥∈
such that aI ,L �= 0. Then, by evaluating the previous equation at pL , we obtain

0 = aI ,L fL(L).

But fL(L) is the product of the weights of the normal bundle of σL at pL , and we
have fL(L) �= 0. This gives a contradiction. The assertion on the degree of aI ,J is a
consequence of the fact that fL(·) is a homogeneous polynomial of degree codim(σL)

for any admissible L . ��
In the next section, we will use this lemma to obtain an equivariant Chevalley

formula for the multiplication of Schubert varieties with fH . Now just notice that
in general we are looking for coefficients aI ,J ’s which are not constants, but actual
polynomials; determining even one of them may need the use of a lot of relations.
This problem comes from the fact that, as we are in the non-homogeneous case, the
fact that pJ ∈ σI does not necessarily imply that σJ ⊂ σI , or, more concretely, that
codim(σJ ) > codim(σI ). Hence we get that the coefficients aI ,J may very well not be
constant. However, for the Grassmannians of planes, this problem can be controlled,
as shown in Lemma 3.11; before proving the lemma, let us point out that some of the
inclusions which hold in IGr(2, V ) do not hold in I2Gr(2, V ):

Lemma 3.10 Let I = (i,−i + 1). If J = (i − 1,−i) or J = (i − 1,−i − 1) or
J = (i − 2,−i), then pJ /∈ σI .

Proof Let us fix some notation. We denote by qI the Plücker coordinates on the Grass-
mannian Gr(2, V ). Then Gr(2, V ) ⊂ P(∧2V ) is defined by the quadratic equations

q(a,b)q(c,d) − q(a,c)q(b,d) + q(b,c)q(a,d) = 0 for a, b, c, d ∈ {±1, . . . ,±n}, (8)

which are also known as the Plücker relations. Moreover the two equations defining
the bisymplectic Grassmannian (and coming from ω1 and ω2) are:

n∑

i=1

q(i,−i) = 0 and
n∑

i=1

λi q(i,−i) = 0. (9)
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Finally, the Schubert variety σI is just the intersection of I2Gr(2, V )with the Schubert
variety (associated with pI ∈ P(∧2V )) of the action of τ on P(∧2V ); being this action
linear, σI is defined set theoretically inside I2Gr(2, V ) by the linear relations

qJ = 0 for I � J ,

while in a neighbourhood of pI we can suppose that qI �= 0. The relations defining
the Schubert variety σI and those coming from ω1 and ω2 imply that

q(i,−i) = q(i−1,−i+1) = 0.

By using the Plücker equations with a = i, b = −i + 1, c = i − 1, d = −i − 1
(respectively a = i, b = −i + 1, c = i − 1, d = −i , a = i, b = −i + 1, c =
i −2, d = −i), one gets that σI is contained in the locus where q(i−1,−i−1) = 0 (resp.
q(i−1,−i) = 0, q(i−2,−i) = 0), which does not contain pJ with J = (i − 1,−i − 1)
(resp. J = (i − 1,−i), J = (i − 2,−i)). ��
Lemma 3.11 Suppose that pJ ∈ σI and codim(σJ ) ≤ codim(σI ). Then codim(σJ ) =
codim(σI ) = 2n − 3, I = (i,−i + 1) and J = (i,−i − 1).

Proof We will prove the lemma by comparison with the symplectic Grassmannian.
The weights of the action of T on TIGr(2,V ),pI are

−2εi for i ∈ I , εi − ε j for i /∈ I ∪ (−I ), j ∈ I and

−εi1 − εi2 for i1 > i2 ∈ I .

Let I = (i1 > i2). If i1 + i2 > 0, then the codimension of σ ′
I inside IGr(2, V ) is the

same as that of σI inside I2Gr(2, V ), and it is≤ 2n−3; if i1+ i2 < 0, the codimension
of σ ′

I inside IGr(2, V ) is equal to codim(σI )+1 ≥ 2n−2. Moreover pJ ∈ σI implies
that pJ ∈ σ ′

I and codim(σ ′
J ) > codim(σ ′

I ).
Therefore, if pJ ∈ σI and codim(σJ ) ≤ codim(σI ), then the only possibility is

that codim(σJ ) = codim(σI ) = 2n − 3. As a consequence, I must be of the form
I = (i,−i + 1) for a certain 2 ≤ i ≤ n, and this forces either J = (i − 1,−i) or
J = (i,−i − 1). The first case is excluded by Lemma 3.10. ��

Now we are ready to prove the analogous of Proposition 3.6:

Theorem 3.12 The equivariant classes f I of Schubert varieties inside the cohomology
group H∗

T (I2Gr(2, V )) are determined by the relations 1, 2, 3 in Theorem 3.1. More
explicitly, suppose that g ∈ H∗

T (I2Gr(2, V )) is such that g(pJ ) is homogeneous of
degree codim(σI ) for any admissible J , g(pJ ) = 0 if pJ /∈ σI and g(pJ ) is the
product of the T -characters of the normal bundle NσI /X ,pJ whenever σI is smooth at
pJ ; then g = f I .

Remark 3.13 Notice that relation 4 in Theorem 3.1 is always satisfied by any element
inside H∗

T (I2Gr(2, V )).
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Proof The polynomials f I (pJ ) of the equivariant class of a Schubert variety σI satisfy
the relations in Theorem 3.1. Moreover, by the finiteness of the number of T -invariant
curves, we have that if two T -invariant curves with characters χ1, χ2 meet pI , then
χ1 and χ2 must be prime to each other.

Let us deal firstwith a Schubert varietyσI , where I is not of the form I = (i,−i+1).
This hypothesis implies byLemma3.11 that if pJ ∈ σI , then codim(σJ ) > codim(σI ).
Let us consider an element

g = (g1 . . . , gr ) ∈ H∗
T (X) ⊂ C[�(T )]⊕r

satisfying the conditions in the statement of the theorem (where we denoted by gJ =
g(pJ )). Then f I − g is zero over all points pJ such that codim(σJ ) ≤ codim(σI ). We
want to prove that f I − g = 0. Let us suppose that f I − g �= 0. Then we can find a
point ph ∈ σI such that ( f I − g)(ph) �= 0 and codim(σh) is minimal. Condition (4)
and the finiteness of the number of T -invariant curves implies that ( f I − g)(ph) must
be divisible by fh(ph) (because the weights of the normal space at any fixed point
pL are exactly those of the T -equivariant curves linking the point to points pM with
M ≥ L); but

deg(( f I − g)(ph)) = codim(σI ) < codim(σh) = deg( fh(ph)),

which gives a contradiction.
The previous argument must be adapted when I = (i,−i + 1). When this is the

case, σI can contain at most two points ph such that codim(σh) = codim(σI ), namely
h = (i,−i −1) and h = (i −2,−i +1). Suppose for example that h = (i,−i −1). In
this case, by Lemma 3.10 p(i−1,−i−1) /∈ σI , if ( fσI − g)(ph) �= 0 it must be divisible
by fσh (ph)(εi − εi−1), whose degree is greater than the codimension of σI . Similarly
when h = (i − 2,−i + 1) because p(i−2,−i) /∈ σI . ��

3.2.1 An equivariant Lefschetz Hyperplane Theorem

Let i : I2Gr(k, V )T → I2Gr(k, V ) be the inclusion of the fixed points, and j :
I2Gr(k, V ) → IGr(k, V ) the natural inclusion. As (i ◦ j)∗ : H∗

T (IGr(k, V )) →
H∗
T (I2Gr(k, V )T ) is an inclusion (because I2Gr(k, V )T = IGr(k, V )T ), we get that

j∗ should be injective as well.Wewill denote by fσ ′
I
(J ) the pullback of the equivariant

classes of Schubert subvarieties of IGr(k, V ) inside H∗
T (I2Gr(k, V )T ). Moreover, let

f I f J =
∑

L

N L
I ,J fL

be the multiplication rule inside H∗
T (I2Gr(k, V )), and

fσI fσJ =
∑

L

ML
I ,J fσL
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the multiplication rule inside H∗
T (IGr(k, V )), where I , J , L are admissible subsets

and NL
I ,J , M

L
I ,J are polynomials of the right degree.

The Lefschetz hyperplane theorem says that the restriction of the cohomology
of an ambient variety X to an hypersurface Y is an isomorphism in codimension
< dimC(X). The following proposition is an equivariant version of this classical
result for bisymplectic Grassmannians of planes:

Theorem 3.14 (Equivariant Lefschetz) Let I be an admissible subset of I2Gr(2, V )

such that codim(σI ) < 2n − 3. Then j∗σ ′
I = σI and, as a consequence,

f I = fσ ′
I
.

Moreover, let J , L be two admissible subsets as well such that codim(σJ ) < 2n − 3
and codim(σL) < 2n − 3. Then

ML
I ,J = NL

I ,J .

Proof Let us consider fσ ′
I
. ByLemma2.21 fσ ′

I
satisfies the relations 1, 2, 3 inTheorem

3.1 which are also satisfied by f I , and all the relations in Theorem 3.2. Therefore, by
Theorem 3.4 and Theorem 3.12 we get that fσ ′

I
= f I . The second statement follows

at once. ��
Remark 3.15 Forwhat concerns the other classes, the problembecomesmore involved.
Indeed, if codim(σI ) ≥ 2n − 3, the class fσ ′

I
does not satisfy all the relations 1, 2, 3

in Theorem 3.1. For instance, if codim(σI ) > 2n − 3, by the proof of Lemma 3.11
we know that codim(σI ) = codim(σ ′

I ) − 1, and therefore relation 1 is not satisfied.
Finding a formula which expresses all the classes fσ ′

I
in terms of the classes f I may

help understanding better the equivariant cohomology of I2Gr(2, V ). Indeed, one
could try to derive an equivariant Pieri formula for multiplication of any Schubert
class by a special Schubert class, as it is done in [14] for the symplectic (as well as
the ordinary and the orthogonal) Grassmannians.

3.3 A Chevalley formula

The following lemma will be useful in the sequel:

Lemma 3.16 The Schubert variety σH , where H = {n, n − 1, . . . , n − k + 3, n − k +
2, n − k}, corresponding to the unique generator of Pic(I2Gr(k, V )) is represented in
equivariant cohomology by the degree 1 polynomials

fH (I ) =
∑

i∈I
−εi +

k∑

i=1

εn−i+1.

Proof We already know that fH in the equivariant cohomology is uniquely determined
by the fact that fH ({n, . . . , n − k + 2, n − k + 1}) = 0 and fH (H) = −εn−k +
εn−k+1; these conditions, together with condition (4), are satisfied by the formula in
the statement. ��
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Remark 3.17 This lemma follows also from Theorem 3.14 because localizations of
σ ′
H and σH coincide.

The next result we want to present is the computation of an equivariant Cheval-
ley formula for bisymplectic Grassmannians of planes, i.e. of the coefficients aI ,J
appearing in Eq. (7) for k = 2. Having these coefficients will permit to compute all
the equivariant classes of Schubert varieties, starting from that of maximal codimen-
sion down to the one of codimension 0.Wewill divide the proof into different lemmas,
which deal with different situations. The most difficult part will be understanding the
behaviour of classes of middle codimension, because in this case we have coefficients
aI ,J which are of degree one, and not just constants (Lemma 3.11). At the end of the
proof, we have summarized the Chevalley formula in Theorem 3.24.

The first lemma deals with Schubert varieties for which the Chevalley formula is
the same as that of symplectic Grassmannians:

Lemma 3.18 Let I , J be admissible subsets such that one of the two following condi-
tions are satisfied: codim(σJ ) < 2n − 3 or codim(σI ) > 2n − 3. If #(I ∩ J ) = 1 and
codim(σI ) = codim(σJ ) − 1 then aI ,J = 1, otherwise aI ,J = 0.

Remark 3.19 When codim(σJ ) < 2n − 3, the statement of the lemma can be derived
directly from Theorem 3.14 and the computation of aI ,J for IGr(k, V ) (see Sect. 3.1).
However below we give another more concrete proof of the lemma.

Proof By hypothesis, we have that codim(σI ) − codim(σJ ) = codim(σ ′
I ) −

codim(σ ′
J ). Therefore, pJ ∈ σI and codim(σI ) = codim(σJ ) − 1 implies that

#(I ∩ J ) = 1. Moreover notice that deg(aI ,J ) = 0 in this case, so that the aI ,J
are always constant. Let us suppose that I = (i1, i2) and J = ( j1, j2) are admissible
subsets and that i1 = j1. (The case i2 = j2 is treated similarly.) By Eq. (7) and by the
fact that there exists a T -invariant curve between pI and pJ of weight εi2 − ε j2 , we
have the two following relations:

f I (J )(εi2 − ε j2) = aI ,J f J (J ),

f I (I ) − f I (J ) is divisible by (εi2 − ε j2).

Putting these two relations together implies that

f I (I ) − aI ,J
f J (J )

εi2 − ε j2
≡ 0 mod(εi2 − ε j2). (10)

However, by condition (3) of Theorem 3.1 we know that f I (I ) and f̃ J (J ) :=
f J (J )/(εi2 − ε j2) are not divisible by (εi2 − ε j2); thus, this third relation determines
aI ,J . Indeed, if we impose the equality εi2 = ε j2 (i.e. modulo (εi2 − ε j2)), it is easy to
check (by using condition (3) of Theorem 3.1) that f I (I ) is equal to f̃ J (J ); therefore,
the only possibility in order to satisfy Eq. (10) is that aI ,J = 1 because this ensures
that the LHS is equal to zero. In the other cases when codim(σI ) = codim(σJ ) − 1,
the coefficient aI ,J = 0 by applying Eq. (7) to J because pJ /∈ pI . ��
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(n,-n+1)

(n-1,-n+2)

(n-2,-n+3)

(n-3,-n+4)

(n-4,-n+3)

(n-3,-n+2)

(n-2,-n+1)

(n-1,-n)

Fig. 1 Inclusions of fixed points and T -invariant curves inside I2Gr(2, V ) in codimension = 2n − 3

The following lemmas deal with the interesting part of the cohomology of
I2Gr(2, V ). In Fig. 1 we reported the inclusions of fixed points whose Schubert vari-
eties have the same codimension (situation described in Lemmas 3.11 and 3.10). We
deal first of all with these inclusions, i.e. with polynomials aI ,J of degree 1:

Lemma 3.20 If I = (i,−i + 1) and J = (i,−i − 1) or J = (i − 2,−i + 1) with
i > 0, then aI ,J = εi−1 − εi .

Proof Let us suppose J = (i,−i−1). ByLemma3.10,weknow that p(i−1,−i−1) /∈ σI ;
therefore, f I ((i − 1,−i − 1)) = 0 and the existence of a T -invariant curve between
pJ and p(i−1,−i−1) gives that

f I (J ) is divisible by (εi−1 − εi ).

As by Eq. (7)

f I (J )(εi+1 − εi−1) = aI ,J f J (J ),

and as by Theorem 3.1 f J (J ) is not divisible by (εi−1−εi ), we get that the coefficient
aI ,J is of the form aI ,J = a(εi−1 − εi ), for a certain constant a. Arguing as in the
proof of Lemma 3.18, we have that a = 1 by the existence of a T -invariant curve
between pI and pJ , which gives the relation determining a:

f I (I ) − a
εi−1 − εi

εi+1 − εi−1
f J (J ) ≡ 0mod(εi+1 − εi−1).

If J = (i − 2,−i + 1), the proof is exactly the same, provided that we replace
p(i−1,−i−1) /∈ σI by the fact that p(i−2,−i) /∈ σI . ��

The following facts can be verified easily: if codim(σI ) = 2n − 2, then either
I = (i,−i + 2) with i > 0 or I = (2, 1). By symmetry, if codim(σI ) = 2n − 4, then
I = (i − 2,−i) with i > 0 or I = (−1,−2). Finally, if codim(σI ) = 2n − 3, then
either I = (i,−i + 1) or I = (i − 1,−i) with i > 0.

Figure 2 represents the inclusions of fixed pointswhich are relevant for the following
proposition:

Lemma 3.21 Let I = (i − 1,−i), with i > 0. The only nonzero coefficients aI ,J are:

aI ,(i−2,−i) = aI ,(i−1,−i−1) = 1.
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Fig. 2 Inclusions of fixed points
inside σI with I = (i − 1, −i),
i > 0

(i-1,-i)

(i-2,-i) (i-1,-i-1)

Proof The proof of this result follows the same lines of the proof of Lemma 3.18.
The reason why this happens is that in this case as well codim(σI ) − codim(σJ ) =
codim(σ ′

I ) − codim(σ ′
J ). ��

Figure 3 represents the inclusions of fixed pointswhich are relevant for the following
proposition:

Lemma 3.22 Let I = (i,−i + 2), with i > 0. The only nonzero coefficients aI ,J are:

aI ,(i,−i+1) = aI ,(i−1,−i+2) = aI ,(i−3,−i+2) = aI ,(i,−i−1) = 1,

aI ,(i−2,−i+1) = aI ,(i−1,−i) = 2.

Proof The coefficients aI ,(i,−i+1) and aI ,(i−1,−i+2) are computed as it is done in the
proof of Lemma 3.18. Let us deal with the remaining coefficients for points pJ ∈ σI

such that codim(σI ) = codim(σJ ) − 1:

• Let J = (i − 3,−i + 2). By Eq. (7),

f I (J )(εi − εi−3) = f(i−1,−i+2)(J ) + aI ,J f J (J ).

Moreover by Lemma 3.20 we know that

f(i−1,−i+2)(J ) = εi−2 − εi−1

εi−1 − εi−3
f J (J ).

Therefore, the existence of a T -equivariant curve between pI and pJ of weight
(εi − εi−3) gives the relation

f I (I ) − εi−2 − εi−1 + aI ,J (εi−1 − εi−3)

(εi − εi−3)(εi−1 − εi−3)
f J (J ) ≡ 0mod(εi − εi−3).

By condition (3) of Theorem 3.1, the two terms of the LHS are not divisible by
(εi − εi−3). As f I (I ) is divisible by (εi−2 − εi−3) (by Lemma 2.15 and condition
(3) of Theorem 3.1), the only possibility is that the second term of the LHS is
divisible either by (εi−2 − εi−3) or by (εi−2 − εi ); this forces aI ,J = 1.
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(i,-i+2)

(i,-i+1) (i-1,-i+2) (i-3,-i+2) (i-2,-i+1)
(i-1,-i) (i,-i-1)

Fig. 3 Inclusions of fixed points inside σI with I = (i, −i + 2), i > 0

• Let J = (i,−i − 1). The argument is similar to the previous one; the last relation
becomes

f I (I ) − εi−1 − εi + aI ,J (εi+1 − εi−1)

(εi+1 − εi−2)(εi+1 − εi−1)
f J (J ) ≡ 0mod(εi+1 − εi−2).

As f I (I ) is divisible by (εi+1 − εi ), we get that aI ,J = 1.
• Let J = (i − 2,−i + 1). Lemma 3.20 gives

f(i,−i+1)(J ) = (εi−1 − εi ) f J (J ).

Using this relation and Eq. (7), we obtain

f I (J )(εi − 2εi−2 + εi−1) = εi−1 − εi + aI ,J (εi − εi−2)

εi − εi−2
f J (J ),

which implies that aI ,J = 2.
• Let J = (i − 1,−i). The argument is similar to the previous one; Lemma 3.20
and Eq. (7) give the relation

f I (J )(2εi − εi−2 − εi−1) = εi−2 − εi−1 + aI ,J (εi − εi−2)

εi − εi−2
f J (J ),

which implies that aI ,J = 2.

��
Figure 4 represents the inclusions of fixed pointswhich are relevant for the following

proposition:

Lemma 3.23 Let I = (i,−i + 1), with i > 0. The only nonzero constant coefficients
aI ,J are:

aI ,(i−1,−i−1) = aI ,(i−2,−i) = 1.
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Fig. 4 Inclusions of fixed points
inside σI with I = (i, −i + i),
i > 0

(i,-i+1) (i-2,-i+1)
(i,-i-1)

(i,-i-2) (i-1,-i-1) (i-2,-i)
(i-3,-i+1)

Proof The proof uses the same arguments of the proof of Lemma 3.22; therefore, we
will be more concise. We need to deal with the coefficients for points pJ ∈ σI such
that codim(σI ) = codim(σJ ) − 1:

• Let J = (i − 1,−i − 1). Lemma 3.20 and Eq. (7) give the relation

f I (J )(εi − 2εi−2 + εi−1) = εi−2 − εi−1 + aI ,J (εi−1 − εi−2)

εi−1 − εi−2
f J (J ),

which implies that aI ,J = 1 because by Lemma 3.10 f I (J ) = 0.
• Let J = (i − 2,−1). Lemma 3.20 and Eq. (7) give the relation

f I (J )(2εi − εi−2 − εi−1) = εi−1 − εi + aI ,J (εi − εi−1)

εi − εi−1
f J (J ),

which implies that aI ,J = 1 because by Lemma 3.10 f I (J ) = 0.
• Let J = (i,−i−2). By usingLemma3.20 andEq. (7) repeatedly, and the existence
of a T -equivariant curve between pI and pJ , we obtain the relation

f I (I ) − εi−1 − εi + aI ,J (εi+2 − εi+1)

(εi+2 − εi−1)(εi+2 − εi+1)
f J (J ) ≡ 0mod(εi+2 − εi−1).

As f I (I ) is divisible by (εi+2 − εi ), we get that aI ,J = 0.
• Let J = (i − 3,−i + 1). By using Lemma 3.20 and Eq. (7) repeatedly, and the
existence of a T -equivariant curve between pI and pJ , we obtain the relation

f I (I ) − εi−1 − εi + aI ,J (εi−2 − εi−3)

(εi − εi−3)(εi−2 − εi−3)
f J (J ) ≡ 0mod(εi − εi−3).

As f I (I ) is divisible by (εi−1 − εi−3), we get that aI ,J = 0.

��
Putting all the lemmas together, we have proved:

Theorem 3.24 (Chevalley formula) The coefficients aI ,J for I = (i1, i2), J = ( j1, j2)
two admissible subsets in theChevalley formula (7) for the bisymplecticGrassmannian
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of planes I2Gr(2, V ) are given by the following rules (the integer i is always supposed
to be > 0):

(1) a(i,−i+1),(i,−i−1) = a(i,−i+1),(i−2,−i+1) = εi−1 − εi ;
(2) a(i,−i+2),(i−3,−i+2)=a(i,−i+2),(i,−i−1)=a(i,−i+1),(i−1,−i−1)=a(i,−i+1),(i−2,−i)

=1;
(3) a(i,−i+2),(i−2,−i+1) = a(i,−i+2),(i−1,−i) = 2;
(4) if I ≥ J , #(I ∩ J ) = 1, codim(σI ) = codim(σJ )−1 and a(I ,J ) does not appear

in the cases 1), 2), 3) above, then aI ,J = 1;
(5) in all remaining cases aI ,J = 0.

Thus, we obtain:

Corollary 3.25 Equation (7) and Theorem 3.24 determine inductively the equivariant
classes of all the Schubert varieties inside I2Gr(2, V ).

Remark 3.26 (I2Gr(2, 8)) Let us point out that the constant coefficients aI ,J computed
in Theorem 3.24 give the Chevalley formula for the classical cohomology (by The-
orem 3.3) and therefore allow to compute the degrees of Shubert varieties. In Fig. 5
we reported the degrees of Schubert varieties inside I2Gr(2, 8) (the case of I2Gr(2, 6)
will be dealt with in the next section). As it was expected classically, we find that the
degree of I2Gr(2, 8) is equal to deg(Gr(2, 8)) = 132, and this is an evidence of the
fact that our formula is correct.

3.4 A quasi-homogeneous example

As an application of the previous general results, in this section we study in detail
the smallest non-trivial bisymplectic Grassmannian of planes, i.e. I2Gr(2, V ) with
V ∼= C

6. This variety is interesting not only because computations are still feasible by
hand, but because it is a quasi-homogeneous variety, i.e. it admits an action of a group
with a dense orbit. Moreover, it has no small deformations, and it admits only a finite
number of flat deformations. In the following we study its decomposition in orbits and
its flat deformations. Then, we will give a presentation of its (classical) cohomology
ring.

The variety I2Gr(2, V ) with V ∼= C
6 admits an action of

G = SL(2)3 ∼= SL(K1) × SL(K2) × SL(K3),

where the 2-dimensional planes K1, K2, K3 have been defined in Sect. 2. We will
denote a vector inside Ki by the subscript i (e.g. vi , v

′
i , etc.). The list of G-orbits

inside I2Gr(2, V ) with their representatives is the following one:

• A representative of the dense orbit is [P] = (v1 + v2 + v3) ∧ (v′
1 + v′

2 + v′
3). This

orbit is isomorphic to the quotient SL(2)3/SL(2), where the quotient factor SL(2)
is the image of the diagonal morphism SL(2) → SL(2)3. Being the quotient of
two reductive groups, the dense orbit is an affine variety. Indeed, as the Plücker
coordinate q(1,−1)([P]) �= 0, all the points [Q] of the orbit satisfy q(1,−1)([Q]) �=
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(4,3)132

(4,2)132

(4,1)90 (3,2)42

(4,-1)48 (3,1)42

(4,-2)20 (3,-1)28 (2,1)14

(4,-3)1

(3,-2)4 (2,-1)5 (1,-2)5 (2,-3)4

(3,-4))1

(-3,-4)1

(-2,-4)1

(-2,-3)1 (-1,-4)1

(-1,-3)2 (1,-4)1

(-1,-2)2 (1,-3)3 (2,-4)1

Fig. 5 Degree of Schubert varieties (notation Ideg(σI )) inside I2Gr(2, 8); the number of edges between
vertex I and vertex J gives the coefficient aI ,J in classical cohomology

0. Therefore, the orbit is contained inside the affine variety {q(1,−1) �= 0} ⊂
I2Gr(2, V ); in fact the dense orbit is equal to {q(1,−1) �= 0} (or equivalently
q(2,−2) �= 0 or q(3,−3) �= 0).

• There is one orbit with representatives of type (vi + v j ) ∧ (v j + vk) (or, which
is the same, (vi + 2v j + vk) ∧ (vi + v j )). Let Ui be the tautological bundle over
P(Ki ). Then this orbit is isomorphic to the total space of

(P(Ui ⊕ U j ) \ (P(Ui ) ∪ P(U j ))) × (P(Uk ⊕ U j ) \ (P(Uk) ∪ P(U j )))

over P(K1) × P(K2) × P(K3).

Its closure is the irreducible divisor that compactifies the dense orbit.
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• There are three orbits with representatives of type vi ∧ (v j + vk), each one iso-
morphic to

P(Ki ) × (P(K j ⊕ Kk) \ (P(K j ) ∪ P(Kk))).

• There are three minimal orbits with representatives of type vi ∧ v j , each one
isomorphic to

P(Ki ) × P(K j ).

3.4.1 The Hilbert scheme of I2Gr(2, 6)

We have already seen that I2Gr(2, 6) has no small deformations (Theorem 2.7), and
that there is only one smooth isomorphism class (see Remark 2.10). This is related to
the fact that if V ∼= C

6, then (∧2V ∗)⊗C
2 is a prehomogeneous space for the action of

SL(V )×SL(2)×C
∗ (see [13]). This implies that there are just a finite number of orbits

and therefore that all pencils � in a dense subset of P(∧2V ∗) are conjugated under
the action of PGL(V ). As a consequence, there are only finitely many isomorphism
classes of varieties of the form Z (�). In the following we intend to describe these
varieties.

We will consider I2Gr(2, V ) with V ∼= C
6 as a subvariety I2Gr(2, V ) ⊂

Gr(2, V ) ⊂ P(∧2V ∗), and we will denote by p(t) the Hilbert polynomial

p(t) = χ(I2Gr(2, V ),O(t)) = H0(I2Gr(2, V ),O(t)) for t >> 0.

Proposition 3.27 There are 11 flat deformations (included the smooth one) of
I2Gr(2, V ) insideGr(2, V ). They correspond to theorbits ofSL(V ) insideGr(2,∧2V ∗),
which can be identified as a smooth component of the Hilbert scheme of I2Gr(2, V ) ⊂
Gr(2, V ).

Proof Let us consider a pencil �. In order to have that Z (�) is a flat deformation
of the (smooth) bisymplectic Grassmannian, we only need to verify that it has the
expected codimension (equal to 6). Indeed, in that case, we can compute p(t) =
χ(I2Gr(2, V ),O(t)) by using the Koszul complex as

p(t) = χ(Gr(2, V ),O(t)) − χ(Gr(2, V ), 2O(t − 1)) + χ(Gr(2, V ),O(t − 2)),

obtaining that the Hilbert polynomial does not depend on the particular choice of �.
By [13][Case E7, α3], there are 15orbits of SL(V )×SL(2)×C

∗ inside (∧2V ∗)⊗C
2.

Four of them are generated by one form; therefore, the corresponding zero locusZ (�)

has dimension ≥ 7 and cannot be a flat deformation of the (smooth) bisymplectic
Grassmannian. The orbits of actual pencils � have been reported in Fig. 6. Among
them:

• the pencils inside O0, O1, O2, O5I , O6 contain a non-degenerate form; therefore,
Z (�) is a hypersurface in the irreducible variety IGr(2, V ) and has dimension
equal to 6;

123



Journal of Algebraic Combinatorics (2021) 53:851–880 875

O0 O1

O2 O4
O5II O7 O10 O11 O15

O5I O6

Fig. 6 Orbit closures of non-degenerate pencils of 2-forms with respective codimensions as labels

• the pencils inside O7, O10, O11, O15 contain a form of type x1 ∧ x−1, whose zero
locus defines a (irreducible) Schubert variety inside Gr(2, V ). Therefore, Z (�)

is again 6-dimensional;
• the pencils inside O4, O5I I contain a form of type x1 ∧ x−1 + x2 ∧ x−2, which is
singular only at one point and irreducible as well. Therefore, once moreZ (�) is
6-dimensional.

We have thus shown that the family {(Z (�),�) ⊂ Gr(2, V ) × Gr(2,∧2V ∗)} is
flat over Gr(2,∧2V ∗), and this gives a morphism ψ from Gr(2,∧2V ∗) to the Hilbert
scheme of I2Gr(2, V ) ⊂ Gr(2, V ). Moreover, this Hilbert scheme has tangent space
at ψ(�) = Z (�) equal to

H0(Z (�),NZ (�),Gr(2,V )) = H0(Z (�), 2O(1)) ∼= TGr(2,∧2V ∗),�,

and the differential of the morphismψ is an isomorphism at each point (notice that the
chain of isomorphisms does not depend on the fact thatZ (�) is smooth). We get that
ψ is étale; moreover, it is injective because� can be recovered as the codimension two
linear space inside∧2V generated by the linear system |O(1)| overZ (�). Therefore,
Gr(2,∧2V ∗) is exactly one irreducible component of the Hilbert scheme. ��

3.4.2 Presentation of the cohomology for I2Gr(2, 6)

In this last section, we compute explicitly the (equivariant) cohomology of I2Gr(2, V )

for V ∼= C
6. We give a presentation of the cohomology ring, and we discuss some

related questions, such as the existence of a certain symmetry or of a self-dual basis.We
begin with an application of the Chevalley formula for bisymplectic Grassmannians
of planes:

Proposition 3.28 The coefficients aI ,J that appear in Eq. (7) for I2Gr(2, 6) are
uniquely determined by the relations in Theorem 3.1. They are reported in Fig. 7.

This proposition is a restatement of Theorems 3.12 and 3.24. Thus, by Corol-
lary 3.25, we know that it is possible to determine inductively the equivariant classes
of all the Schubert varieties inside I2Gr(2, 6).

Remark 3.29 The constant coefficients aI ,J determine the multiplication of a Schu-
bert variety with the hyperplane section in the ordinary cohomology, i.e. a Pieri type
formula for I2Gr(2, 6). In particular, our computations are coherent with the fact that
the degree of I2Gr(2, 6) is 14, as we know because it is the degree of Gr(2, 6).
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(3,2)

(3,1)

(3,− 1)

(3,− 2)

(−1,− 2)

(−1,− 3)

(−2,− 3)

(2,1)

(2,− 3)(2,− 1)

(1,− 3)

(1,− 2) ( 1 − 2)

2 2

1

1 1

1 11
1 1

1 1
1

1 1

1

( 2 − 3)

1

1
11

Fig. 7 Coefficients aI ,J in I2Gr(2, 6)

Fig. 8 Degrees of Schubert
varieties inside I2Gr(2, 6)

14

14

9

1

1

1

1

5

12

1

2

From the equivariant cohomology, one can recover the classical cohomology of
I2Gr(2, 6) (Theorem 3.3). We will use the following notations:

σ1 := σ3,1 , σ2 := σ2,1 , σ3 := σ3,−2 , σ
′
3 := σ2,−3,

with

deg(σ1) = 14 , deg(σ2) = 5 , deg(σ3) = 1 , deg(σ ′
3) = 1.
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Theorem 3.30 A presentation of the cohomology of the bisymplectic Grassmannian
I2Gr(2, 6) is given by:

H∗(I2Gr(2, 6), Z) ∼= Z[σ1, σ2, σ3, σ ′
3]/I ,

where I is the ideal generated by the following elements:

2σ 4
1 − 2σ 2

1 σ2 − 3σ1σ ′
3 , σ2σ

′
3 ,

σ1σ3 − σ1σ
′
3 , σ3σ

′
3 − σ 3

1 σ ′
3 ,

σ 2
2 − σ 4

1 + 2σ 2
1 σ2 + 2σ1σ ′

3 , σ 2
3 ,

σ 5
1 − 14σ 2

1 σ ′
3 , σ ′2

3 ,

σ2σ3 , σ 4
1 σ ′

3 .

Proof First, we prove thatσ1, σ2, σ3, σ ′
3 generate the cohomology by showing that they

generate all the Schubert classes σI . This is a consequence of the following formulas,
which can be derived directly from Fig. 8:

σ(3,−1) = σ 2
1 − σ2,

σ(2,−1) = 3σ1σ2 − σ 3
1 + σ3,

σ(1,−2) = σ 3
1 − 2σ1σ2 − σ3 − σ ′

3,

σ(−1,−2) = σ 4
1 − 2σ 2

1 σ2 − 3σ1σ
′
3,

σ(1,−3) = σ1σ
′
3,

σ(−1,−3) = σ 2
1 σ ′

3,

σ(−2,−3) = σ 3
1 σ ′

3.

The relations generating I involving the product of σ1 with other classes can be derived
from Fig. 8 too. For the remaining relations, they can be derived from the following
identities, which hold in the equivariant cohomology, and can be verified by computing
explicitly the classes σI :

σ 2
2 = σ2(ε3 − ε1)(ε3 − ε2) + σ(1,−2)(ε3 − ε1) + σ(2,−1)(ε3 − ε2) +

+ σ ′
3(ε3 − ε2) + σ1σ(1,−2),

σ2σ3 = (ε2 + ε3)(σ(1,−2)(ε2 − ε3) + σ(1,−3)),

σ2σ
′
3 = 2ε3(σ

′
3(ε3 − ε2) + σ(1,−3)),

σ3σ
′
3 = σ(−2,−3),

σ 2
3 = 2ε2(σ3(ε1 + ε2)(ε2 − ε1) + σ(1,−2)(ε1 + ε3)(ε3 − ε2) +

− σ(−1,−2)(ε3 − ε2) − σ(1,−3)(ε1 + ε3) + σ(−1,−3)),

σ ′2
3 = 2ε3(σ

′
3(ε3 − ε1)(ε3 + ε1) + σ(1,−3)(ε1 + ε2) − σ(−1,−3)).

We have verified that these are all the relations inside I by showing that they generate
all products involving σ1, σ2, σ3, σ

′
3. ��
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Fig. 9 Degree of classes in a
self-dual basis; the codimension
3 classes are, from left to right:
σ(3,−2), σ(1,−2), σx , σ(2,−3)

14

14

9

1

1

1

1

5

3

1

12

Remark 3.31 The basis given by the Schubert classes inside I2Gr(2, 6) is not self-
dual with respect to the intersection product. For instance, the nonzero products of
codimension 3 Schubert classes are as follows:

σ(3,−2)σ(2,−3) = 1,

σ(1,−2)σ(2,−1) = 1,

σ(3,−2)σ(2,−1) = −1.

A self-dual basis in codimension 3 would be given by σ(3,−2), σ(2,−3), σ(1,−2), σx =
σ(2,−1) + σ(2,−3). In this basis, the degree diagram is the one shown in Fig. 9. Notice
that the diagram is symmetric with respect to a central reflection; this is a consequence
of the fact that the additive basis chosen is self-dual.

Remark 3.32 The group of permutations Sn acts on the cohomology of the bisym-
plectic Grassmannians, even though it does not act on the varieties themselves; the
action is a consequence of a monodromy phenomenon.

Let X be a bisymplectic Grassmannian I2Gr(k, 2n) defined by the forms

ω1 =
n∑

i=1

xi ∧ x−i and ω2 =
n∑

i=1

λi xi ∧ x−i .

Let η be an element of the group of permutations Sn . There exists a curve γ inside
the space of pencils of bisymplectic forms that goes from � = 〈ω1, ω2〉 to η.� =
〈ω1, η.ω2〉, where

η.ω2 =
n∑

i=1

λη(i)xi ∧ x−i .

Following the curve, one obtains a continuous deformation γ such that γ (0) = X =
γ (1), and which sends a Schubert variety σI to η.σI , where the action on σI is induced
by the one of Sn on the pencils. As the cohomology is locally constant, the action
on Schubert varieties induces an action in cohomology. In the following we show
concretely what it means in the case when k = 2, n = 3.
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As the irreducible representations of S3 given by Schubert classes with codimen-
sion different from 3 are only 1-dimensional, wewill focus on codimension 3 Schubert
varieties. They admit the following explicit description:

α2 := σ(3,−2) = v−2 ∧ P(〈v±3, v±1〉),
β1 := σ(1,−2) = {x ∈ P(〈v−2, v−3〉) ∧ P(〈v±1, v−2, v−3〉) s.t. x �= 0},
β2 := σ(2,−1) = {x ∈ P(〈v−1, v−3〉) ∧ P(〈v±2, v−1, v−3〉) s.t. x �= 0},
α3 := σ(2,−3) = v−3 ∧ P(〈v±2, v±1〉).

Moreover, inside the cohomology of I2Gr(2, 6) there are two more remarkable vari-
eties:

α1 := v−1 ∧ P(〈v±3, v±2〉),
β3 := {x ∈ P(〈v−1, v−2〉) ∧ P(〈v±3, v−1, v−2〉) s.t. x �= 0}.

Actually, there are also varieties α−1, α−2, α−3, β−1, β−2, β−3, but one can prove that
in cohomology αi = α−i and βi = β−i for i = 1, 2, 3. The action of S3 on the αi ’s
and the βi ’s is the expected one. By using the products of the codimension 3 Schubert
varieties and the symmetries given by S3, one can prove that

α1 − α2 = β1 − β2,

α2 − α3 = β2 − β3.

To summarize, the action of S3 on Hi (I2Gr(2, 6), Z) is trivial if i �= 6 because
all representations are completely reducible and S3 acts trivially on σ i

H ; moreover
H6(I2Gr(2, 6), Z) decomposes in the sum of two trivial representations generated by
the classes of σ 3

H = α2 + 3β1 + 2β2 + 3α3 and σ(2,1)σH = β1 + β2 + α3, and
one natural 2-dimensional representation given by the action on 〈α1, α2, α3〉, with
α1 + α2 + α3 = 0.
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