
Journal of Algebraic Combinatorics (2021) 53:805–827
https://doi.org/10.1007/s10801-020-00943-6

Cohen–Macaulayness of two classes of circulant graphs

D. T. Hoang1 · H. R. Maimani2 · A. Mousivand3 ·M. R. Pournaki4

Received: 4 August 2019 / Accepted: 28 January 2020 / Published online: 7 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Let n be a positive integer and let Sn be the set of all nonnegative integers less than n
which are relatively prime to n. In this paper, we discuss structural properties of circu-
lant graphs generated by the Sn’s and their complements. In particular, we characterize
when these graphs are well-covered, Cohen–Macaulay, Buchsbaum or Gorenstein.

Keywords Circulant graph · Well-covered graph · Cohen–Macaulay graph ·
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1 Introduction

Algebraic combinatorics is an area of mathematics that employs methods of abstract
algebra in various combinatorial contexts and vice versa. One of the fastest developing
branches of algebraic combinatorics is combinatorial commutative algebra. It has
evolved into one of the most active and vibrant branches of mathematical research
during the past several decades. Here, we deal with the edge ideals and edge rings
of graphs, which is one of the widely studied topics in combinatorial commutative
algebra. The edge ideals were first introduced by Villarreal in his 1990 paper [20].
A while after, Simis et al. [15] obtained more properties of the edge ideals. After
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then, many authors have been interested in using the edge ideal construction to build
a dictionary between graph theory and commutative algebra. We refer the reader to
the book by Villarreal [21] for more references and information on the subject. Now,
let us recall the notions of edge ideals and edge rings of graphs. Let K be a field
and R = K[x0, . . . , xn−1] be the polynomial ring in n variables over the field K.
Let G be a finite undirected graph without loops or multiple edges with the vertex
set V (G) = {0, . . . , n − 1} and the edge set E(G). One can associate a square-free
quadratic monomial ideal

I (G) = (
xi x j | {i, j} ∈ E(G)

)

of R to the graph G. The ideal I (G) is called the edge ideal of G in R. It is an algebraic
object whose invariants can be related to the properties of G and vice versa. The graph
G is called Cohen–Macaulay over K (resp. Buchsbaum over K, Gorenstein over K)
if the ring R/I (G) is Cohen–Macaulay (resp. Buchsbaum, Gorenstein). In the above-
mentioned notions, one can simply omit “overK” if either there is no ambiguity or they
are independent of the base field. There are many results in the literature concerning
when a given graph is Cohen–Macaulay, Buchsbaum, Gorenstein, etc. In particular,
it is a wide open problem to characterize graph-theoretically the Gorenstein graphs.
This problem is considered for the certain classes of graphs such as bipartite graphs
[7], chordal graphs [8] and triangle-free graphs [10]. Generally, we cannot read off
the Gorenstein property of a graph just from its structure because this property in fact
depends on the characteristic of the base field K (see [10, Proposition 2.1]).

For continuation of the above-mentioned research we may consider circulant
graphs. There are large classes of circulant graphs. For instance, cycle graphs, com-
plete graphs, crown graphs and Möbius ladder graphs are circulant graphs. The term
circulant comes from the structure of the adjacency matrices of these graphs. Indeed, a
matrix is circulant if each of its row is a cyclic shift of the previous one by one position
to the left. Circulant matrices have been employed for designing binary codes [12]
and circulant graphs are interesting for their role in the design of networks. In 2009,
Brown and Hoshino [2] computed the independence polynomials of some circulant
graphs and included an application of this computation to music. The importance of
circulant graphs, from the viewpoint of Cohen–Macaulayness, Buchsbaumness and
Gorensteinness, lies in the fact that these graphs have many triangles. However, we
do not know whether the above-mentioned algebraic properties of circulant graphs
depend on the base field or not; for triangle-free graphs, Gorenstein property is inde-
pendent of the base field (see [10, Theorem 4.4]). Recently, the well-coveredness
and Cohen–Macaulayness of some classes of circulant graphs were studied (see [1–
3,5,11,13,14,17,19]). Let us explain a bit in more detail. For instance, Brown and
Hoshino [3] have classified some classes of well-covered circulant graphs, and then,
Vander Meulen, Van Tuyl and Watt [19] have refined the work of Brown and Hoshino
bydeterminingwhich of thesewell-covered circulant graphs are alsoCohen–Macaulay
(see [19, Theorems 3.4 and 5.2]). They have also introduced a class included Cohen–
Macaulay circulant graphs which are in fact vertex-decomposable and shellable, and,
two classes of circulant graphs which are not Cohen–Macaulay, but they are Buchs-

123



Journal of Algebraic Combinatorics (2021) 53:805–827 807

baum (see [19, Theorem 3.7]). They also have classified which cubic circulant graphs
are Cohen–Macaulay (see [19, Theorem 5.5]).

In this paper, a similar study is carried out for another class of circulant graphs
and their complements. We characterize when these graphs are well-covered, Cohen–
Macaulay, Buchsbaum or Gorenstein.

2 Preliminaries

In this section, we recall some preliminaries from graph theory and combinatorial
commutative algebra for later use. We refer the readers for definitions, motivation and
terminology in commutative algebra to the book by Bruns and Herzog [4]. Also, for
any undefined terms in graph theory and combinatorial commutative algebra, we refer
the readers to the books by West [22] and Stanley [16].

2.1 Preliminaries from graph theory

Throughout this paper, by a graph, we mean a finite undirected graph without loops
or multiple edges. For a graph G, let V (G) denote the set of vertices of G, and let
E(G) denote the set of edges of G. An edge e ∈ E(G) connecting two vertices x and
y will also be written as {x, y}. The complement of G, denoted by G, is the graph on
the same vertices as G such that {x, y} ∈ E

(
G

)
if and only if {x, y} /∈ E(G). The

neighborhood of a vertex x in G is the set

NG(x) = {
y ∈ V (G) | {x, y} ∈ E(G)

}
,

and the closed neighborhood of x in G is the set NG [x] = NG(x) ∪ {x}. The number
degG(x) = |NG(x)| is called the degree of x in G. (As usual, for a given finite set X ,
the number of elements of X is denoted by |X |.) It is well-known that

∑

x∈V (G)

degG(x) = 2|E(G)|.

A path between two vertices x and y of G is a sequence x = v0, v1, . . . , vk = y of
no repeated vertices of G such that for every 1 ≤ i ≤ k, {vi−1, vi } ∈ E(G). If for any
two vertices x and y of G, there is a path between x and y, then G is called connected.
An independent set in G is a set of vertices no two of which are adjacent to each other.
An independent set in G is maximal (with respect to set inclusion) if the set cannot
be extended to a larger independent set. The size of the largest independent set in G,
denoted by α(G), is called the independence number of G. If all maximal independent
sets in G have the same size, then G is called well-covered.

For a given integer k ≥ 2, a k-partite graph is one whose vertex set is partitioned
into k disjoint nonempty subsets in such a way that the two end vertices for each edge
lie in distinct partitions. Among k-partite graphs, a complete k-partite graph is one in
which each vertex is joined to every vertex that is not in the same partition.
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For two graphs G and H , their categorical product, denoted by G × H , is the graph
whose vertex set is V (G) × V (H), and two distinct vertices (g, h) and (g′, h′) are
adjacent in G × H if and only if {g, g′} ∈ E(G) and {h, h′} ∈ E(H). The following
lemma is useful in the sequel.

Lemma 2.1 Let G and H be two graphs without isolated vertices. If I (resp. J) is a
maximal independent set in G (resp. H), then I ×V (H) (resp. V (G)× J ) is a maximal
independent set in G × H.

Proof It is easy to see that I × V (H) is an independent set in G × H . Suppose, on
the contrary, that it is not a maximal one. Hence, there exists (a, b) /∈ I × V (H) such
that (I × V (H)) ∪ {(a, b)} is still an independent set in G × H . Since a /∈ I and I is
a maximal independent set in G, there is a1 ∈ I such that {a, a1} ∈ E(G). Because
H does not contain isolated vertices, so there exists an edge {b, b1} ∈ E(H). Thus,
(a, b) is adjacent to (a1, b1) in G × H , which contradicts that (I × V (H)) ∪ {(a, b)}
is an independent set in G × H . Therefore, I × V (H) is a maximal independent set
in G × H . ��

2.2 Preliminaries from combinatorial commutative algebra

Let n be a positive integer and set [n] = {0, . . . , n − 1}. A simplicial complex � on
[n] is a collection of subsets of [n] such that (1) for all i ∈ [n], {i} ∈ �, and, (2)
� is closed under taking subsets, that is, if F ∈ � and F ′ ⊆ F , then also F ′ ∈ �.
Every element F ∈ � is called a face of � and the dimension of a face F is defined
to be |F | − 1. The dimension of � which is denoted by dim�, is defined to be d − 1,
where d = max{|F | | F ∈ �}. A facet of � is a maximal face of � with respect to
inclusion. Let F(�) denote the set of facets of �. It is clear that F(�) determines �.
When F(�) = {F1, . . . , Fm}, we write � = 〈F1, . . . , Fm〉. We say that � is pure if
all facets of � have the same cardinality. A nonface of � is a subset F of [n] with
F /∈ �. We denote the set of minimal nonfaces of � with respect to inclusion by
N (�). The simplicial complex �(i) = {F ∈ � | dim F ≤ i} is called the i-skeleton
of �. The 1-skeleton �(1) of � is a graph and � is called connected when the graph
�(1) is connected. We say that � is shellable if its facets can be arranged in linear
order F1, F2, . . . , Ft in such a way that the subcomplex 〈F1, . . . , Fk−1〉∩〈Fk〉 is pure
and has dimension dim Fk − 1 for every k with 2 ≤ k ≤ t . The deletion, link and
star of a face F ∈ �, denoted by del�(F), lk�(F) and st�(F), respectively, are the
simplicial complexes

del�(F) = {
G ⊆ [n]\F | G ∈ �

}
,

lk�(F) = {
G ∈ � | G ∪ F ∈ �, G ∩ F = ∅}

and

st�(F) = {
G ∈ � | G ∪ F ∈ �

}
.

For a vertex i ∈ [n], we write del�(i), lk�(i) and st�(i) instead of del�({i}), lk�({i})
and st�({i}), respectively. We say that � is vertex-decomposable if either � is a
simplex, or there exists a vertex i such that del�(i) and lk�(i) are vertex-decomposable
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and every facet of del�(i) is a facet of �. The restriction of � to a subset G ⊆ [n]
is �G = {F ∈ � | F ⊆ G}. If G = {i ∈ [n] | st�(i) �= �}, then the core of �

is core(�) = �G . If � = st�(i) for some vertex i , then � is a cone over i . Thus,
� = core(�)means that� is not a cone. For two simplicial complexes �1 and�2 on
disjoint vertex sets V1 and V2, respectively, the join �1 ∗�2 is the simplicial complex
on the vertex set V1 ∪ V2 with faces F1 ∪ F2, where F1 ∈ �1 and F2 ∈ �2.

Let K be a field and R = K[x0, . . . , xn−1] be the polynomial ring in n variables
over the field K. Let � be a simplicial complex on [n]. For every subset F ⊆ [n],
we set xF = ∏

i∈F xi . The Stanley–Reisner ideal of � is the ideal I� of R which is
generated by those square-free monomials xF with F /∈ �. In other words,

I� = (
xF | F ∈ N (�)

)
.

The Stanley–Reisner ring of�, denoted by K[�], is defined to be K[�] = R/I�. The
simplicial complex � is called Cohen–Macaulay over K (resp. Buchsbaum over K,
Gorenstein over K) if the ring K[�] is Cohen–Macaulay (resp. Buchsbaum, Goren-
stein). In the above-mentioned notions, one can simply omit “over K” if either there is
no ambiguity or they are independent of the base field. The most widely used criterion
for determining when a simplicial complex is Cohen–Macaulay is due to Reisner,
which says that links have only top homology (see [16, Corollary 4.2, page 60]).

Theorem 2.2 (Reisner’s criterion) Let � be a simplicial complex. Then, � is Cohen–
Macaulay if and only if for all F ∈ �, H̃i (lk�(F); K) = 0 holds true for all i <

dim lk�(F).

By Reisner’s criterion, we get the following lemma.

Lemma 2.3 Let � be a simplicial complex with dim� = 1. Then, � is Cohen–
Macaulay if and only if � is connected.

Let fi denote the number of faces of � of dimension i . The sequence f (�) =
( f0, f1, . . . , fd−1) is called the f -vector of �. Letting f−1 = 1, the reduced Euler
characteristic of �, denoted by χ̃(�), is defined to be

χ̃ (�) =
d−1∑

i=−1

(−1)i fi .

We call � Eulerian if it is pure and χ̃ (lk�(F)) = (−1)dim lk�(F) holds true for all
F ∈ �. We then have a criterion for determining when Cohen–Macaulay complexes
are Gorenstein due to Stanley (see [16, Theorem 5.1, page 65]).

Theorem 2.4 Let � be a simplicial complex. Then, � is Gorenstein if and only if
core(�) is an Eulerian complex which is Cohen–Macaulay.

For a graph G, let �(G) be the set of independent sets in G. Then, �(G) is a
simplicial complex which is called the independence complex of G. It is easy to
see that the Stanley–Reisner ideal of �(G) is equal to the edge ideal of G, that is,
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I�(G) = I (G). This along with the terminology in the beginning of the paper implies
that a graph G is Cohen–Macaulay (resp. Buchsbaum, Gorenstein) if and only if
�(G) is Cohen–Macaulay (resp. Buchsbaum, Gorenstein). We say that G is shellable
(resp. vertex-decomposable) if �(G) is shellable (resp. vertex-decomposable). The
following lemma is needed in the sequel.

Lemma 2.5 Let G1, . . . , Gk be connected components of a graph G. Then, G is Goren-
stein if and only if Gi is Gorenstein for all i = 1, . . . , k.

We also need a lemma that gives a criterion for a graph being Cohen–Macaulay.
Indeed, it is a translation of the following theorem of Hibi.

Theorem 2.6 ([9], pp. 95–96, Corollary, part b) Let � be a pure simplicial complex
of dimension d and let σ1, . . . , σn be faces of � satisfying σi ∪ σ j /∈ � for all i �= j .
Also, let �′ = �\{τ ∈ � | τ ⊇ σi for some i}. If st�(σi ) is Cohen–Macaulay for all
i and �′ is Cohen–Macaulay of dimension d, then � is also Cohen–Macaulay.

By the above theorem, we get the following lemma.

Lemma 2.7 Let G be a well-covered graph such that the induced subgraph of G on
S = {x1, . . . , xm} ⊆ V (G) is complete. If G\NG [xi ] is Cohen–Macaulay for all
1 ≤ i ≤ m and G\S is Cohen–Macaulay with α(G\S) = α(G), then G is also
Cohen–Macaulay.

Proof In order to prove the lemma, it is enough to show that � = �(G) is Cohen–
Macaulay. We do this by using Theorem 2.6. First, note that since G is well-covered,
� is pure. Also, since the induced subgraph of G on S is a complete graph, {xi , x j } ∈
E(G) and thus {xi , x j } /∈ � for all 1 ≤ i �= j ≤ m.

Let 1 ≤ i ≤ m be arbitrary and fix it. The assumption implies that �(G\NG [xi ])
is Cohen–Macaulay, and since lk�(xi ) = �(G\NG [xi ]), we obtain that lk�(xi ) is
Cohen–Macaulay. On the other hand, st�(xi ) = {xi } ∗ lk�(xi ), and for each σ ∈
st�(xi ), we have

lkst�(xi )(σ ) =
{

{xi } ∗ lklk�(xi )(σ ) if xi /∈ σ,

lklk�(xi )(σ\{xi }) if xi ∈ σ.

Therefore, by the Reisner’s criterion, we obtain that st�(xi ) is Cohen–Macaulay.
Also, the assumption implies that

�(G\S) = {τ ∈ � | τ ∩ S = ∅} = �\{τ ∈ � | xi ∈ τ for some i}

is Cohen–Macaulay, and we have dim�(G\S) = dim�.
Now, by using Theorem 2.6, we get � is Cohen–Macaulay, as required. ��

2.3 Circulant graphs that we deal with

Let n be a positive integer and let S ⊆ [n]. The circulant graph generated by S,
denoted by Cn(S), is the graph whose vertex set is [n] in which two distinct vertices
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i and j are adjacent if and only if either |i − j | ∈ S or n − |i − j | ∈ S. In the sequel,
we consider the circulant graph generated by

Sn = {
k ∈ [n] | gcd(k, n) = 1

}

and its complement, i.e., the graphs Cn(Sn) and Cn(Sn). It is well-known that
gcd(k, n) = gcd(n − k, n), and thus we obtain {i, j} ∈ E(Cn(Sn)) if and only if
|i − j | ∈ Sn . Therefore, the complement of Cn(Sn) is again a circulant graph which
is generated by

S′
n = {

k ∈ [n] | gcd(k, n) �= 1
}
,

that is, Cn(Sn) = Cn(S′
n). Moreover, {i, j} ∈ E(Cn(S′

n)) if and only if |i − j | ∈ S′
n .

It is easy to see that Cn(Sn) is a ϕ(n)-regular graph, that is, for every vertex i ,
degCn(Sn)(i) = ϕ(n). Here, ϕ is the Euler phi function, and thus the graphs that we
consider here have a number-theoretical nature.

In the case of n ≥ 2, we may write n = pα1
1 . . . pαk

k , where the pi ’s are distinct
primes and the αi ’s are positive integers. We now set

�n = {
(a1, . . . , ak) | ai ∈ [

pαi
i

]
, 1 ≤ i ≤ k

}
,

and we keep this notation fixed for the rest of the paper. The following easy lemma is
useful.

Lemma 2.8 Let n ≥ 2 be an integer. Then, the function γn : [n] −→ �n defined by
γn(
) = (
1, . . . , 
k), where 
i ∈ [

pαi
i

]
and 
i ≡ 


(
mod pi

αi
)

for all i = 1, . . . , k,
is a bijection.

Proof Note that the function is well-defined. Now, let (a1, . . . , ak) ∈ �n be given. By
Chinese remainder theorem, the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

x ≡ a1
(
mod p1α1

)

...

x ≡ ak
(
mod pk

αk
)

has a solution, say x . Suppose that 
 ∈ [n] and 
 ≡ x (mod n). It is then easily seen
that γn(
) = (a1, . . . , ak), and so γn is surjective. Since the number of elements of
[n] and �n are equal, γn is injective too. ��

By the above lemma, for a given integer n ≥ 2, we may relabel the vertices of
Cn(Sn) and Cn(S′

n) by replacing 
 with γn(
) = (
1, . . . , 
k). We do this relabeling
freely whenever it is convenient.
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3 Structural properties of Cn(Sn)

Let us start this section with the following key result. We show that by relabeling in
Lemma 2.8, one may decompose the graph Cn(Sn) into smaller ones of the same type.

Proposition 3.1 Let n ≥ 2 be an integer. Then, the following isomorphism of circulant
graphs holds true:

Cn(Sn) ∼= C p
α1
1

(
Sp

α1
1

) × · · · × C p
αk
k

(
Sp

αk
k

)
.

Proof Note that V (Cn(Sn)) = [n] and V
(
C p

α1
1

(
Sp

α1
1

) × · · · × C p
αk
k

(
Sp

αk
k

)) = �n .

By Lemma 2.8, γn : [n] → �n is a bijection. Thus, for completing the proof, it
is enough to show that γn is a graph isomorphism; that is, 
 is adjacent to 
′ in
Cn(Sn) if and only if γn(
) = (
1, . . . , 
k) is adjacent to γn(


′) = (
′
1, . . . , 


′
k) in

C p
α1
1

(
Sp

α1
1

) × · · · × C p
αk
k

(
Sp

αk
k

)
.

In order to show this, let 1 ≤ i ≤ k be given. We have 
 ≡ 
i
(
mod pi

αi
)
and


′ ≡ 
′
i

(
mod pi

αi
)
, and so 
−
′ ≡ 
i −
′

i

(
mod pi

αi
)
. Thus, gcd

(

−
′, pi

αi
) = 1 is

equivalent to gcd
(

i −
′

i , pi
αi

) = 1, which in turn implies that gcd
(|
−
′|, pi

αi
) = 1

is equivalent to gcd
(|
i − 
′

i |, pi
αi

) = 1. Therefore,

{
, 
′} ∈ E(Cn(Sn)) ⇐⇒ |
 − 
′| ∈ Sn

⇐⇒ gcd(|
 − 
′|, n) = 1

⇐⇒ gcd
(|
 − 
′|, pi

αi
) = 1, for all 1 ≤ i ≤ k

⇐⇒ gcd
(|
i − 
′

i |, pi
αi

) = 1, for all 1 ≤ i ≤ k

⇐⇒ |
i − 
′
i | ∈ Spi

αi , for all 1 ≤ i ≤ k

⇐⇒ {
i , 

′
i } ∈ E

(
C p

αi
i

(
Sp

αi
i

))
, for all 1 ≤ i ≤ k

⇐⇒ {γn(
), γn(
′)} ∈ E
(
C p

α1
1

(
Sp

α1
1

) × · · · × C p
αk
k

(
Sp

αk
k

))
,

as required. ��
The following proposition gives us the complete description of the smaller circulant

graphs appearing in Proposition 3.1.

Proposition 3.2 Let p be a prime number and α be a positive integer. Then, C pα

(
Spα

)

is a complete p-partite graph with partite sets

Ia = {
a + kp | 0 ≤ k ≤ pα−1 − 1

}
(0 ≤ a ≤ p − 1).

In particular, the Ia’s are the only maximal independent sets in C pα

(
Spα

)
, and so, we

have α
(
C pα

(
Spα

)) = pα−1. Furthermore, the f -vector of �
(
C pα

(
Spα

))
is

(
1, pα, p

(
pα−1

2

)
, p

(
pα−1

3

)
, . . . , p

(
pα−1

pα−1 − 1

)
, p

)
.
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Proof It is clear that the Ia’s are nonempty mutually disjoint subsets of V
(
C pα

(
Spα

))

with

V
(
C pα

(
Spα

)) =
p−1⋃

a=0

Ia .

Also, for each 0 ≤ a ≤ p − 1, no two vertices of Ia are adjacent, because for
any two vertices a + kp and a + k′ p in Ia , |(a + kp) − (a + k′ p)| = |k − k′|p is
not relatively prime to p. Moreover, for any 0 ≤ a, b ≤ p − 1 with a �= b, each
vertex of Ia is adjacent to every vertex of Ib. In order to show this, on the contrary,
assume that the vertex a + kp in Ia is not adjacent to the vertex b + k′ p in Ib. Thus,
gcd

(|(a − b) + (k − k′)p|, p
) �= 1, and so p|a − b, which implies that a = b, a

contradiction. Therefore, C pα

(
Spα

)
is a complete p-partite graph with partite sets Ia

(0 ≤ a ≤ p − 1).
Now, it is clear that the Ia’s are the only maximal independent sets in C pα

(
Spα

)

and since |Ia | = pα−1, for all 0 ≤ a ≤ p − 1, α
(
C pα

(
Spα

)) = pα−1. Also, for each

a, the number of independent sets in Ia with cardinality i is equal to
(pα−1

i

)
. Thus, the

components of the f -vector of �
(
C pα

(
Spα

))
are

fi−1
(
�

(
C pα

(
Spα

))) = p

(
pα−1

i

) (
1 ≤ i ≤ pα−1),

as required. ��
The above proposition gives us the f -vector of the circulant graphCn(Sn)whenever

n is a prime power. Accordingly, we may propose the following question.

Question 3.3 Let n be not a prime power and let � be the independence complex of
the circulant graph Cn(Sn). What is the f -vector of �?

The following two propositions characterize when the circulant graphs Cn(Sn)’s
are Buchsbaum, well-covered, etc.

Proposition 3.4 The following statements are equivalent:
(1) The circulant graph Cn(Sn) is Buchsbaum.
(2) The circulant graph Cn(Sn) is well-covered.
(3) Either n = 1 or n is a prime power.

Proof (1 ⇒ 2): This part is trivial since Buchsbaum graphs are always well-covered.
(2 ⇒ 3): If n = 1, then we are done. If n ≥ 2, we may write n = pα1

1 . . . pαk
k ,

where the pi ’s are distinct primes and the αi ’s are positive integers. By Proposition 3.1
and Lemma 2.1, the sets

C p
α1
1

(
Sp

α1
1

) × · · · × C
p

α j−1
j−1

(
S

p
α j−1
j−1

) × I j × C
p

α j+1
j+1

(
S

p
α j+1
j+1

) × · · · × C p
αk
k

(
Sp

αk
k

)
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are maximal independent sets in Cn(Sn), where I j is a maximal independent set in
C

p
α j
j

(
S

p
α j
j

)
for all 1 ≤ j ≤ k. Therefore, by Proposition 3.2, the size of different

maximal independent sets in Cn(Sn) is equal to

p
α j −1
j

k∏

i=1
i �= j

pαi
i .

Since Cn(Sn) is well-covered, the above sizes are equal. This implies that k = 1, that
is, n is a prime power.

(3 ⇒ 1): If n = 1, then Cn(Sn) is a one-vertex graph which is Buchsbaum. If
n is a prime power, then n = pα , where p is a prime and α is a positive integer.
For each vertex x ∈ V (Cn(Sn)), by Proposition 3.2, the graph Cn(Sn)\NCn(Sn)[x]
is an independent set of vertices, and so it is Cohen–Macaulay. Thus, Cn(Sn) is a
Buchsbaum graph. ��
Proposition 3.5 The following statements are equivalent:
(1) The circulant graph Cn(Sn) is well-covered vertex-decomposable.
(2) The circulant graph Cn(Sn) is well-covered shellable.
(3) The circulant graph Cn(Sn) is Cohen–Macaulay.
(4) Either n = 1 or n is a prime number.

Proof (1 ⇒ 2) and (2 ⇒ 3): These parts are trivial sinceweknow that forwell-covered
graphs,

vertex-decomposable ⇒ shellable ⇒ Cohen−Macaulay.

(3 ⇒ 4): Let Cn(Sn) be Cohen–Macaulay. Therefore it is well-covered and so, by
Proposition 3.4, either n = 1 or n is a prime power. In the latter case, let n = pα , where
p is a prime and α is a positive integer. If α > 1, then �(Cn(Sn)) is a disconnected
simplicial complex of positive dimension,which contradicts theCohen–Macaulayness
of Cn(Sn). Thus α = 1, and so n is a prime number.

(4 ⇒ 1): If n = 1, then Cn(Sn) is a one-vertex graph, and, if n is a prime, then
Cn(Sn) is a complete graph, which both are well-covered vertex-decomposable. ��

Based on Proposition 3.5, the set of Cohen–Macaulay circulant graphs that we have
found are all vertex-decomposable. It is worth mentioning that there exist Cohen–
Macaulay circulant graphs which are not vertex-decomposable. Indeed, they are
shellable circulants (see [5]). Vander Meulen and Van Tuyl [18] have shown that
there exists an infinite family of circulant graphs which are shellable but not vertex-
decomposable.

Theorem 3.6 The circulant graph Cn(Sn) is Gorenstein if and only if either n = 1 or
n = 2.
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Proof (⇒): Since Cn(Sn) is Gorenstein, it is Cohen–Macaulay, and so, by Proposi-
tion 3.5, n is a prime number. Thus, by Proposition 3.2, Cn(Sn) is a complete graph,
which along with Gorensteinness of Cn(Sn), implies that either n = 1 or n = 2.

(⇐): If n = 1, then Cn(Sn) is a one-vertex graph, and, if n = 2, then Cn(Sn) is a
one-edge graph, which both are Gorenstein. ��

4 Structural properties of Cn(S′
n)

In this section, we consider the complement of Cn(Sn), that is, the circulant graph
Cn(S′

n). Let n ≥ 2 be an integer. We may write n = pα1
1 . . . pαk

k , where the pi ’s are
distinct primes in such away that 2 ≤ p1 < · · · < pk and the αi ’s are positive integers.
This order on primes is necessary here and we will keep this fixed in the sequel. Now,
by relabeling the vertices of Cn(S′

n) as described in Lemma 2.8, we partition the set
of vertices of Cn(S′

n) into the following sets:

K0 = {
(a1, . . . , ak) | ai ∈ [pi

αi ], for all 1 ≤ i ≤ k, and p1 | a1
}
,

K1 = K0 + (1, 0, . . . , 0),

...

K p1−1 = K0 + (p1 − 1, 0, . . . , 0).

Note that the size of each Ki is equal to n/p1. We keep this notation fixed for the rest
of the paper.

Proposition 4.1 Let n ≥ 2 be an integer and p1 be the smallest divisor of n. Then, for
every 0 ≤ i ≤ p1 − 1, the induced subgraph of Cn(S′

n) on Ki is a complete graph of
size n/p1.

Proof Let (a1 + i, a2, . . . , ak) and (b1 + i, b2, . . . , bk) be two vertices of Cn(S′
n) in

Ki . Thus, p1|a1 and p1|b1, which implies that gcd
(|(a1 + i) − (b1 + i)|, p1

) �= 1.
Therefore, a1+i and b1+i are not adjacent inC p

α1
1

(
Sp

α1
1

)
. Hence, (a1+i, a2, . . . , ak)

and (b1 + i, b2, . . . , bk) are not adjacent in C p
α1
1

(
Sp

α1
1

) × · · · × C p
αk
k

(
Sp

αk
k

)
. Now,

Proposition 3.1 implies that (a1 + i, a2, . . . , ak) and (b1 + i, b2, . . . , bk) are not
adjacent in Cn(Sn), which means that they are adjacent in Cn(S′

n). Thus, the induced
subgraph of Cn(S′

n) on Ki is a complete graph of size |Ki | = n/p1. ��
Proposition 4.2 Let p be a prime number and α ≥ 1 be an integer. Then, C pα

(
S′

pα

)
is

a disjoint union of p complete graphs of sizes pα−1. In particular, every independent
set in C pα

(
S′

pα

)
can be extended to an independent set of size p.

Proof By Proposition 4.1, for every 0 ≤ i ≤ p−1, the induced subgraph of C pα

(
S′

pα

)

on Ki is a complete graph of size pα/p = pα−1.On the other hand, for any twovertices
of C pα

(
S′

pα

)
, one in Ki , say a + i , and the other one in K j with j �= i , say b + j ,

we have p|a, p|b and 0 ≤ i, j ≤ p − 1, and so gcd
(|(a + i) − (b + j)|, p

) = 1,
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which means they are not adjacent in C pα

(
S′

pα

)
. Thus, C pα

(
S′

pα

)
is a disjoint union

of p complete graphs of sizes pα−1. Now, the rest is obvious. ��
Proposition 4.3 Let n ≥ 2 be an integer. Then, the circulant graph Cn(S′

n) is well-
covered. In particular, α(Cn(S′

n)) = p1, where p1 is the smallest divisor of n.

Proof First, note that, by Proposition 4.1, the size of each independent set in Cn(S′
n) is

at most p1. Second, we claim that every independent set in Cn(S′
n) can be extended to

an independent set of size p1. These two together imply that all maximal independent
sets in Cn(S′

n) have size p1, which shows that Cn(S′
n) is well-covered and gives us

α(Cn(S′
n)) = p1, where p1 is the smallest divisor of n.

What remains is to prove the claim. For this, let

I = {(
a1
1, . . . , a1

k

)
, . . . ,

(
a

1, . . . , a


k

)}

be an independent set in Cn(S′
n) of size 
. If 
 = p1, we are done. Thus, we assume

that 
 < p1. Since I is an independent set in Cn(S′
n), no two vertices in I are adja-

cent in Cn(S′
n). Hence, the vertices in I are mutually adjacent in Cn(Sn), and so,

by Lemma 2.8, they are mutually adjacent in C p
α1
1

(
Sp

α1
1

) × · · · × C p
αk
k

(
Sp

αk
k

)
. This

means that for every 1 ≤ i ≤ k, the vertices in Ii = {
a1

i , . . . , a

i

}
are mutually adja-

cent in C p
αi
i

(
Sp

αi
i

)
, and so, no two of them are adjacent in C p

αi
i

(
S′

p
αi
i

)
, which means

that Ii is an independent set in C p
αi
i

(
S′

p
αi
i

)
of size 
. Thus, for every 1 ≤ i ≤ k, by

Proposition 4.2, we may extend Ii to an independent set in C p
αi
i

(
S′

p
αi
i

)
of size pi , say

Îi = {
a1

i , . . . , a

i , a
+1

i , . . . , a pi
i

}
. Now, an argument similar to the one used in the

beginning of the proof shows that

Î = {(
a1
1, . . . , a1

k

)
, . . . ,

(
a

1, . . . , a


k

)
,
(
a
+1
1 , . . . , a
+1

k

)
, . . . ,

(
a p1
1 , . . . , a p1

k

)}

is an independent set in Cn(S′
n) of size p1, which is an extension of I . ��

We continue the paper by determining when the circulant graph Cn(S′
n) is Cohen–

Macaulay. Indeed, we show that it is always Cohen–Macaulay.

Theorem 4.4 Let n ≥ 2 be an integer. Then, the circulant graph Cn(S′
n) is Cohen–

Macaulay.

Before going into the proof of Theorem 4.4, let us make a comment which deserves
to be mentioned. As it is well-known, for chordal graphs, i.e., the graphs for which
their induced cycles should have exactly three vertices, the notions ofwell-coveredness
and Cohen–Macaulayness are equivalent. Therefore, for the circulant graphs Cn(S′

n)’s
which are chordal, we can obtain Theorem 4.4 from Proposition 4.3. But, actually,
this is not the case, since for n = 385, Cn(S′

n) is not a chordal graph. In order to see
this, consider U = {0, 5, 12, 23, 28}. Note that n = 5 × 7 × 11. This implies that
5, 7, 11, 28 ∈ S′

n , while 12, 16, 18, 23 /∈ S′
n . Therefore,

{0, 5}, {5, 12}, {12, 23}, {23, 28} and {28, 0}
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are edges of Cn(S′
n), and

{0, 12}, {0, 23}, {5, 23}, {5, 28} and {12, 28}

are not. Hence, the induced subgraph of Cn(S′
n) on U is a cycle with five vertices,

which shows that Cn(S′
n) is not a chordal graph.

We divide the proof of Theorem 4.4 into three parts. First, we prove it for n = pα ,
where p is a prime and α ≥ 1 is an integer. Second, we prove the theorem for
n = pαqβ , where p < q are two primes and α, β ≥ 1 are two integers. This will be
done in a series of steps. Finally, we prove the theorem for an arbitrary integer n ≥ 2
by generalizing the same trick in the second part.

Proof of Theorem 4.4 for n = pα , where p is a prime andα ≥ 1 is an integer By Propo-
sition 4.2,Cn(S′

n) is a disjoint union of some complete graphs, and so, by the Reisner’s
criterion, it is Cohen–Macaulay. ��

In order to do the second part, we need the following explanations and lemmas. Let
p and q be two arbitrary positive integers. For 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ q − 1, we
let Ai j ’s be some disjoint sets with the same size. Now, consider

Ri =
q−1⋃

j=0

Ai j (0 ≤ i ≤ p − 1)

and

C j =
p−1⋃

i=0

Ai j (0 ≤ j ≤ q − 1).

Let G be the graph with vertex set

V (G) =
p−1⋃

i=0

Ri

and the edge set

E(G) =
⎛

⎝
p−1⋃

i=0

E(K Ri )

⎞

⎠ ∪
⎛

⎝
q−1⋃

j=0

E(KC j )

⎞

⎠ ,

where KS denotes the complete graph on the vertex set S.

Lemma 4.5 If p ≤ q are two positive integers, then the graph G is well-covered with
α(G) = p.
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Proof We first construct a maximal independent set in G. In order to do this, we take
x0 ∈ R0 arbitrarily and without loss of generality we assume that x0 ∈ A00. Then, we
choose x1 ∈ R1\A10. Now, {x0, x1} is an independent set in G. Again, without loss
of generality, we may assume that x1 ∈ A11. Next, we choose x2 ∈ R2\(A20 ∪ A21).
Note that {x0, x1, x2} is again an independent set in G. As p ≤ q, we continue this
process to get x p−1 ∈ Ap−1 p−1 and the maximal independent set {x0, . . . , x p−1} in
G. Now, it is clear that all maximal independent sets in G are of this form and they all
have p elements. Therefore, G is well-covered with α(G) = p. ��

In the following lemma, we prove that the graph G for p < q is Cohen–Macaulay.
We set dim(G) = p + q and call it the dimension of G.

Lemma 4.6 If p < q are two positive integers, then the graph G is Cohen–Macaulay.

Proof We prove the lemma by induction on dim(G). If p = 1, then V (G) = R0 and
E(G) = E(K R0). Therefore, G = K R0 , which is Cohen–Macaulay. Thus, the lemma
holds true for dim(G) = 3. Let then p ≥ 2 and suppose that the assertion is true for
all graphs G ′ with the same structure as G and with dim(G ′) < p +q. By Lemma 4.5,
the graph G is well-covered, and also the induced subgraph of G on S = Cq−1 is
complete. Now, consider

R′
i =

q−2⋃

j=0

Ai j (0 ≤ i ≤ p − 1)

and

C ′
j =

p−2⋃

i=0

Ai j (0 ≤ j ≤ q − 1).

We show that G\NG [x] is Cohen–Macaulay for all x ∈ S. In order to do this, let
x ∈ S be given. Without loss of generality, we may assume that x ∈ Ap−1 q−1. Then,
NG [x] = Rp−1 ∪ Cq−1 and so G\NG[x] is a graph with the vertex set

V (G\NG [x]) =
p−2⋃

i=0

R′
i

and the edge set

E(G\NG [x]) =
⎛

⎝
p−2⋃

i=0

E(K R′
i
)

⎞

⎠ ∪
⎛

⎝
q−2⋃

j=0

E(KC ′
j
)

⎞

⎠ .

Thus, G\NG [x] has the same structure as G with dimension p + q − 2 < p + q. By
the induction hypothesis, we obtain G\NG [x] is Cohen–Macaulay.
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On the other hand, G\S is a graph with the vertex set

V (G\S) =
p−1⋃

i=0

R′
i

and the edge set

E(G\S) =
⎛

⎝
p−1⋃

i=0

E(K R′
i
)

⎞

⎠ ∪
⎛

⎝
q−2⋃

j=0

E(KC j )

⎞

⎠ .

Thus, G\S has also the same structure as G with dimension p + q − 1 < p + q. Thus
again, by the induction hypothesis, we obtain G\S is Cohen–Macaulay. Moreover,
since p < q, we have p ≤ q −1 and so Lemma 4.5 shows that α(G\S) = p = α(G).

Now, Lemma 2.7 implies that G is Cohen–Macaulay. ��
Proof of Theorem 4.4 for n = pαqβ , where p < q are two primes andα, β ≥ 1 are two
integers In order to prove the theorem in this case, it is enough to show that the circu-
lant graph Cn(S′

n) has the same structure as the above-mentioned graph G. We obtain
then, using Lemma 4.6, it is Cohen–Macaulay. For 0 ≤ i ≤ p −1 and 0 ≤ j ≤ q −1,
let

Ai j = {
x ∈ [n] | x ≡ i (mod p) and x ≡ j (mod q)

}
.

It is easy to see that the Ai j ’s are disjoint sets with the same size n/pq and form a
partition for [n]. Now, we may show that

Ri =
q−1⋃

j=0

Ai j = {
x ∈ [n] | x ≡ i (mod p)

}

and

C j =
p−1⋃

i=0

Ai j = {
x ∈ [n] | x ≡ j (mod q)

}
.

Then, Cn(S′
n) is exactly the graph with the vertex set

V (Cn(S′
n)) =

p−1⋃

i=0

Ri

and the edge set

E(Cn(S′
n)) =

⎛

⎝
p−1⋃

i=0

E(K Ri )

⎞

⎠ ∪
⎛

⎝
q−1⋃

j=0

E(KC j )

⎞

⎠ ,

which has the same structure as the above-mentioned graph G. ��
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We now generalize the above construction of the graph G. Let p1 < · · · < pm be
arbitrary positive integers. Suppose that 1 ≤ r ≤ m is given. We let Ai1,...,im ’s be
some disjoint sets with the same size. Now, consider

C (pr )
ir

=
⋃

t∈{1,...,m}\{r}

⎛

⎝
pt −1⋃

it =0

Ai1,...,it ,...,im

⎞

⎠ (0 ≤ ir ≤ pr − 1, 1 ≤ r ≤ m).

Let G be the graph with vertex set

V (G) =
pr −1⋃

ir =0

C (pr )
ir

=
m⋃

r=1

⎛

⎝
pr −1⋃

ir =0

Ai1,...,im

⎞

⎠

and the edge set

E(G) =
m⋃

r=1

⎛

⎝
pr −1⋃

ir =0

E
(

K
C(pr )

ir

)
⎞

⎠ ,

where KS denotes the complete graph on the vertex set S.

Lemma 4.7 The graph G is Cohen–Macaulay with α(G) = p1.

Proof The proof is same as the proof of Lemmas 4.5 and 4.6 by using induction on
p1 + · · · + pm . ��
Proof of Theorem 4.4 for an arbitrary integer n ≥ 2 In order to prove the theorem in this
general case, it is enough to show that the circulant graphCn(S′

n) has the same structure
as the above-mentioned graph G. We obtain then, using Lemma 4.7, it is Cohen–
Macaulay. We may write n = pα1

1 . . . pαm
m , where the pi ’s are distinct primes in such

a way that 2 ≤ p1 < · · · < pm and the αi ’s are positive integers. For 1 ≤ r ≤ m and
0 ≤ ir ≤ pr − 1, let

Ai1,...,im = {
x ∈ [n] | x ≡ ir (mod pr ) for all 1 ≤ r ≤ m

}
.

It is easy to see that the Ai1,...,im ’s are disjoint sets with the same size n/p1 . . . pm and
form a partition for [n]. Now, we may show that

C (pr )
ir

=
⋃

t∈{1,...,m}\{r}

⎛

⎝
pt −1⋃

it =0

Ai1,...,it ,...,im

⎞

⎠ = {
x ∈ [n] | x ≡ ir (mod pr )

}
.

For 0 ≤ i < j ≤ n − 1, let {i, j} ∈ E(Cn(S′
n)) be given. Then, |i − j | ∈ S′

n , and so
gcd( j − i, n) �= 1. Thus, j − i ≡ 0 (mod pr ) for some r , which implies that there
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exists 0 ≤ ir ≤ pr − 1 such that i, j ≡ ir (mod pr ). This means that i, j ∈ C (pr )
ir

,
thus {i, j} ∈ E(K

C(pr )
ir

) and hence

{i, j} ∈
m⋃

r=1

⎛

⎝
pr −1⋃

ir =0

E
(

K
C(pr )

ir

)
⎞

⎠.

The converse of the above observation is also true and thusCn(S′
n) is exactly the graph

with the vertex set

V (Cn(S′
n)) =

pr −1⋃

ir =0

C (pr )
ir

and the edge set

E(Cn(S′
n)) =

m⋃

r=1

⎛

⎝
pr −1⋃

ir =0

E
(

K
C(pr )

ir

)
⎞

⎠,

which has the same structure as the above-mentioned graph G. ��
Here, we completed the proof of Theorem 4.4. It is worth mentioning that this

theorem has an easy proof for even n’s which we give below.

Proof of Theorem 4.4 for an arbitrary even integer n By Proposition 4.3, α(Cn(S′
n)) =

2, and thus, dim�(Cn(S′
n)) = 1. On the other hand, for all 0 ≤ i ≤ n − 2, gcd

(|(i +
1) − i |, n

) = 1, which means that {i, i + 1} /∈ E(Cn(S′
n)), thus {i, i + 1} is a face of

�(Cn(S′
n)), or equivalently, is an edge of the 1-skeleton �(1)(Cn(S′

n)) of �(Cn(S′
n)).

Therefore, 0, 1, . . . , n −1 is a path in�(1)(Cn(S′
n)). This implies that�(1)(Cn(S′

n)) is
connected and so �(Cn(S′

n)) is. Now, Lemma 2.3 implies that �(Cn(S′
n)) is Cohen–

Macaulay and so Cn(S′
n) is, as required. ��

We continue the paper by studying the f -vector of �(Cn(S′
n)). When n is an even

integer, we may compute the f -vector of �(Cn(S′
n)) easily. Indeed, in this case,

since dim�(Cn(S′
n)) = 1, the f -vector is ( f−1, f0, f1). It is obvious that f−1 = 1

and f0 = n. For computing f1, we may write as follows, where ϕ is the Euler phi
function:

f1 = ∣∣E
(
Cn(S′

n)
)∣∣ = |E(Cn(Sn))| = 1

2

n−1∑

i=0

degCn(Sn)(i) = 1

2

n−1∑

i=0

ϕ(n) = n

2
ϕ(n).

Therefore, the f -vector of �(Cn(S′
n)) is

(
1, n, n

2ϕ(n)
)
. In the following proposition,

we compute the f -vector of �(Cn(S′
n)) in general. It is easy to check that when n is

an even integer, the proposition agrees with the above observation.
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Proposition 4.8 Let n ≥ 2 be an integer and p1 be the smallest divisor of n. Then, the
f -vector of �(Cn(S′

n)) is ( f−1, f0, f1, . . . , f p1−1), where for each 0 ≤ i ≤ p1, we
have

fi−1 =
(

n

p1 p2 . . . pk

)i

(i !)k−1
(

p1
i

)(
p2
i

)
. . .

(
pk

i

)
.

Proof By Proposition 4.3, α(Cn(S′
n)) = p1, and thus, dim�(Cn(S′

n)) = p1 − 1.
Therefore, the f -vector is ( f−1, f0, f1, . . . , f p1−1).Wenowcompute the components.

By Proposition 4.1, for every 0 ≤ j ≤ p1 − 1, the induced subgraph of Cn(S′
n)

on K j is a complete graph. This implies that to construct an independent set, we
have to choose only one element from each K j . Now, we are going to enumerate the
number of independent sets of size i . To construct an independent set I of size i ,
say starting from K0, we may choose each (a1, a2, . . . , ak) from this set. Hence, the
number of elements that we may choose from this set is equal to |K0| = n/p1. For
choosing (b1, b2, . . . , bk) as the second element of I from the other K j ’s, we must
have gcd(a j − b j , p j ) = 1 for every 1 ≤ j ≤ k. Without loss of generality, we
take K1. Therefore, b1 can be every element and so we have p1α1−1 choices for b1.
For choosing b2, we cannot deal with b2’s in the form of b2 = a2 + p2t . Therefore,
for b2’s, we have p2α2 − p2α2−1 choices. A similar argument shows that for all b j ’s
(3 ≤ j ≤ k), we have p j

α j − p j
α j −1 choices. Hence, all in all, we have

p1
α1−1(p2

α2 − p2
α2−1) . . .

(
pk

αk − pk
αk−1)

choices for (b1, b2, . . . , bk). For choosing (c1, c2, . . . , ck) as the third element of I
from the other K j ’s, we must have gcd(a j − c j , p j ) = gcd(b j − c j , p j ) = 1 for
every 1 ≤ j ≤ k. Without loss of generality, we take K2. Therefore, c1 can be every
element and so we have p1α1−1 choices for c1. For choosing c2, we cannot deal with
c2’s in the form of c2 = a2 + p2t and c2 = b2 + p2t ′. Therefore, for c2’s, we have
p2α2 − 2p2α2−1 choices. A similar argument shows that for all c j ’s (3 ≤ j ≤ k), we
have p j

α j − 2p j
α j −1 choices. Hence, all in all, we have

p1
α1−1(p2

α2 − 2p2
α2−1) . . .

(
pk

αk − 2pk
αk−1)

choices for (c1, c2, . . . , ck). Proceeding in this way, finally we may choose

p1
α1−1(p2

α2 − (i − 1)p2
α2−1) . . .

(
pk

αk − (i − 1)pk
αk−1)

elements as the i th element of I . Since for constructing independent sets of size i ,
we may start from each K j (instead of K0) and continue on to the other K j ’s, so the
number of independent sets of size i is equal to
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fi−1 =
(

p1
i

)
× n

p1
× p1

α1−1(p2
α2 − p2

α2−1) . . . (pk
αk − pk

αk−1)

× p1
α1−1(p2

α2 − 2p2
α2−1) . . . (pk

αk − 2pk
αk−1)

...

× p1
α1−1(p2

α2 − (i − 1)p2
α2−1) . . . (pk

αk − (i − 1)pk
αk−1).

Now, to deduce the closed-form formula for fi−1, we may polish the above expres-
sion as follows:

fi−1 =
(

p1
i

)
× n

p1
×

(
p1

α1−1 p2
α2−1 . . . pk

αk−1(p2 − 1) . . . (pk − 1)
)

×
(

p1
α1−1 p2

α2−1 . . . pk
αk−1(p2 − 2) . . . (pk − 2)

)

...

×
(

p1
α1−1 p2

α2−1 . . . pk
αk−1(p2 − (i − 1)) . . . (pk − (i − 1))

)

=
(

p1
i

)
× n

p1 p2 . . . pk
× (p2 . . . pk)

×
(

n

p1 p2 . . . pk
(p2 − 1) . . . (pk − 1)

)

×
(

n

p1 p2 . . . pk
(p2 − 2) . . . (pk − 2)

)

...

×
(

n

p1 p2 . . . pk
(p2 − (i − 1)) . . . (pk − (i − 1))

)

=
(

p1
i

)
×

(
n

p1 p2 . . . pk

)i

× (p2(p2 − 1)(p2 − 2)

. . . (p2 − (i − 1)))

...

× (pk(pk − 1)(pk − 2) . . . (pk − (i − 1)))

=
(

p1
i

)
×

(
n

p1 p2 . . . pk

)i

×
(

p2
i

)
(i !) . . .

(
pk

i

)
(i !)

=
(

n

p1 p2 . . . pk

)i

(i !)k−1
(

p1
i

)(
p2
i

)
. . .

(
pk

i

)
,

as required. ��
As an application of the above proposition, we obtain the following result about

the nonvanishing of the reduced Euler characteristic of �(Cn(S′
n)).
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Proposition 4.9 Let either n > 2 be an even integer or n = pα be a prime power
with α > 1. If � is the independence complex of the circulant graph Cn(S′

n), then
χ̃(�) �= 0.

Proof First, we suppose that n > 2 is an even integer, that is, n = 2k for some k > 1.
In this case, by the observation just before Proposition 4.8, we obtain that f−1 = 1,
f0 = n and f1 = n

2ϕ(n), and so

χ̃(�) = 1 − n + n

2
ϕ(n) = 1 − 2k + kϕ(2k) = k

(
1

k
− (

2 − ϕ(2k)
)
)

.

Now, k > 1 implies that 1
k is not an integer, while 2 − ϕ(2k) is an integer, thus

χ̃(�) �= 0.
Second, we suppose that n = pα is a prime power with α > 1. In this case, by

Proposition 4.8, we obtain that for every 0 ≤ i ≤ p, fi−1 = (p
i

)
pi(α−1), and so

χ̃(�) =
p−1∑

i=−1

(−1)i fi = −
p∑

i=0

(−1)i fi−1

= −
p∑

i=0

(
p

i

)
1p−i ( − pα−1)i = −(

1 − pα−1)p
.

Now, α > 1 implies that pα−1 > 1, thus χ̃ (�) �= 0. ��

There are nice properties about the nonvanishing of the reduced Euler characteristic
χ̃(�) of� due to a conjecture of Hoshino in his PhD thesis [11, Conjecture 5.38] (see
also [14]). Based on this point and Proposition 4.9, and also by using Theorem 4.4
and [6, Corollary 4.8], we can make the following observation: If either n > 2 is an
even integer or n = pα is a prime power with α > 1, then the regularity and depth of
the edge ring of �(Cn(S′

n)) is equal to the smallest divisor of n.
As the last result of this paper, we determine when the circulant graph Cn(S′

n) is
Gorenstein.

Theorem 4.10 The circulant graph Cn(S′
n) is Gorenstein if and only if n = 1, n = 4,

n = 6 or n = p, where p is a prime number.

Proof (⇒): For simplicity, we set � = �(Cn(S′
n)). If n = 1, then we are done. Thus,

we suppose that n ≥ 2, and we write n = pα1
1 . . . pαk

k , where the pi ’s are distinct
primes in such a way that 2 ≤ p1 < · · · < pk and the αi ’s are positive integers. If
k = 1 and α1 = 1, then n = p1 and again we are done. Hence, we suppose that either
k ≥ 2 or α1 ≥ 2. This implies that S′

n �= {0}, thus Cn(S′
n) has no isolated vertices,

and so � = core(�). Therefore, Theorem 2.4 implies that χ̃(�) = (−1)p1−1. We
claim that p1 = 2. This implies that χ̃ (�) = −1, and so, by Theorem 4.4, we obtain
n = n

2ϕ(n). Therefore, ϕ(n) = 2, which means that either n = 4 or 6, as required.
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What remains is to prove the claim. By Proposition 4.8, the f -vector of�(Cn(S′
n))

is ( f−1, f0, f1, . . . , f p1−1), where for each 0 ≤ i ≤ p1, we have

fi−1 =
(

n

p1 p2 . . . pk

)i

(i !)k−1
(

p1
i

)(
p2
i

)
. . .

(
pk

i

)

= n

i !
(

pα1−1
1 . . . pαk−1

k

)i−1
k∏

j=1

(p j − 1) . . .

k∏

j=1

(p j − i + 1).

Suppose, on the contrary, that p1 is odd. Therefore, χ̃(�) = 1, and so,

n − f1 + f2 − · · · + (−1)p1−1 f p1−1 = 2.

By letting fi−1 = n
i !ai−1, where

ai−1 = (
pα1−1
1 . . . pαk−1

k

)i−1
k∏

j=1

(p j − 1) . . .

k∏

j=1

(p j − i + 1) ∈ N,

the above equality can be written as

n −
( n

2!a1
)

+
( n

3!a2
)

− · · · + (−1)p1−1
(

n

p1!ap1−1

)
= 2,

which in turn is equivalent to

n

(
1 − a1

2! + a2
3! − · · · + (−1)p1−1 ap1−1

p1!
)

= 2

or

n
(
(p1!) − (3 × 4 × · · · × p1)a1 + (4 × 5 × · · · × p1)a2

− · · · + (−1)p1−1ap1−1

)
= 2(p1!).

This latter equality shows that n | 2(p1!), and so, n | (p1!), that is, pα1
1 . . . pαk

k | (p1!).
But for all j ≥ 2, one has p1 < p j and hence p j � (p1!). This implies that k = 1,
and so, n = pα1

1 , where, in this case, α1 must be at least 2. Hence, pα1−1
1 ≥ 3 and so

the complete graph K
p

α1−1
1

is not Gorenstein. But, by Proposition 4.2, C p
α1
1

(
S′

p
α1
1

)
is a

disjoint union of p1 complete graphs K
p

α1−1
1

, and thus C p
α1
1

(
S′

p
α1
1

)
is not a Gorenstein

graph by Lemma 2.5. This is a contradiction.
(⇐): Again we set � = �(Cn(S′

n)). If either n = 1 or n = p, where p is a prime
number, then S′

p = {0}, and thus C p(S′
p) is an independent set of p vertices. Hence,

core(�) = {∅}, and so by Theorems 2.2 and 2.4, � is Gorenstein. If either n = 4 or 6,
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then� is isomorphic to the one-dimensional sphere S
1, and thus it is again Gorenstein.

Thus, Cn(S′
n) is Gorenstein. ��

Finally, we close the paper by mentioning a point related to the Gorenstein property
and circulant graphs. By Theorems 3.6 and 4.10, the first set of Gorenstein circulant
graphs that we have found are the graphs Cn(Sn) for n = 1 and 2, and the second set
of Gorenstein ones are the graphs Cn(S′

n) for n = 1, 4, 6 and p, where p is a prime
number. Note that the independence number of these Gorenstein circulant graphs is
1, 2 or p. In [13], Rinaldo has given a characterization of Gorenstein circulant graphs
with independence number two.
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