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Abstract
We revisit the construction of elliptic class given by Borisov and Libgober for singular
algebraic varieties. Assuming torus action we adjust the theory to the equivariant local
situation. We study theta function identities having a geometric origin. In the case of
quotient singularities C

n/G, where G is a finite group the theta identities arise from
McKay correspondence. The symplectic singularities are of special interest. The Du
Val surface singularity An leads to a remarkable formula.
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The theory of theta functions is a classical subject of analysis and algebra. It had a
prominent role in 19th century mathematics, as one can see reading the monograph
about Algebra [28]. Nowadays, it seems that the intriguing combinatorics related to
theta functions has been put aside. Nevertheless, there are modern sources treating the
subject of theta functions in a wider context. For example, the Mumford three-volume
book [17] is devoted to the theta function. The mysterious pattern of Riemann relation
is described in the initial chapters. This pattern repeats on, and it is present in our
formulas described in Theorem 1.

At the same time from mid-1970s, the theta function found an application in alge-
braic topology, in particular, in the cobordism theory. The formal group laws generated
by elliptic curves and the associated elliptic genera, allowed to define elliptic coho-
mology by a Conner–Floyd-type theorem. The collection of articles in LNM 1326
and, in particular, [14] is a good reference for that approach. The article of Segal
written for the Bourbaki seminar [22] is an accessible survey of the beginnings of this
theory.

In the beginning of 2000s, theta function was applied by Borisov and Libgober
[2] to construct an elliptic genus of singular complex algebraic varieties. Totaro
[24] links this construction with previous work on cobordisms. The elliptic genus
is defined in terms of resolution of singularities, but it does not depend on the particu-
lar resolution. The elliptic genus is the degree (i.e., the integral) of some cohomology
characteristic class called the elliptic class, denoted by E��(−). That class is the main
protagonist of our paper. The elliptic class is defined in terms of the theta function
applied to the Chern roots of the tangent bundle of the resolution. Independence on
the resolution translates to some relations involving the theta function. For exam-
ple, the Fay trisecant relation [7,10] corresponds to a blowup of a surface at one
point.

The idea to study global invariants via contributions of singularities is com-
mon in mathematics and originates from Poincaré–Hopf theorem. It reappeared
in the work of Atiyah and Singer on the equivariant index theorem. In the pres-
ence of a torus action the Atiyah–Bott–Berline–Vergne localization techniques
apply. Each fixed point component gives a local summand of the global invari-
ant. The local equivariant Chern–Schwartz–MacPherson classes were studied in
[26] and the local contributions to the Hirzebruch class were described in [27].
The role of the local contributions to the elliptic class in the Landau–Ginzburg
model is demonstrated in [16]. Also, local computation is the key ingredient of
the work on elliptic classes of Schubert varieties in the generalized flag variety,
[13,21].

In the present paper, we adjust the theory of Borisov–Libgober to the local equiv-
ariant situation. The initial step was done by Waelder [25], but we believe that our
approach and formalism makes the theory accessible and convenient for further
application. Recently, the theta function has served as a basic brick in construc-
tion of diverse objects, such as representations of quantum groups [10], weight
function (in integrable systems) [20], and stable envelopes [1]. The works [13,21]
form a bridge between these theories and strictly geometric theory of characteris-
tic classes. Here we present the Borisov–Libgober elliptic class in a way which fits
to the context of the mentioned papers. In Sect.3.2, we also present a conceptual
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approach to the elliptic class as the equivariant Euler class in a version of ellip-
tic cohomology. This point of view appeared in [21]. We take an opportunity to
extend and clarify this approach. We explain the normalization constants, which
allow to place the elliptic class in the common formalism used in algebraic topol-
ogy.

Further we study the elliptic classes of quotient singularities. In the local context,
these are the quotients V /G, where V is a vector space and G ⊂ GL(V ) is a finite
subgroup. The quotient V /G is considered as a variety with the C

∗–action, coming
from the scalar multiplication on V . Occasionally, the quotient admits an action of
a larger torus. If G acts diagonally on V = C

n , then whole torus T = (C∗)n acts
on the quotient. The elliptic classes of global quotients were studied by Borisov and
Libgober in the paper on McKay correspondence [3]. Their main result is as follows.
Suppose that V is a complete variety, then the elliptic genus of X = V /G is equal
to the so-called orbifold elliptic genus. The later is defined as the degree of a certain
class, called the orbifold class, living on an equivariant resolution of V and defined in
terms of the action of the groupG. This is the main result of [3], but in the course of the
proof, it is checked that the orbifold class well behaves with respect to modifications
of the resolution of the pair (V ,G).

We wish to discuss the McKay correspondence showing examples. In its full gen-
erality the definitions are quite involving. We assume that V is a vector space with G
acting linearly, X = V /G. If G ⊂ SL(V ), then the canonical divisor of X is trivial.
Sometimes X admits a crepant resolution, i.e., a map Y → X from a smooth variety
with (in this case) trivial canonical bundle. McKay correspondence is a general rule
which says that geometric invariants of Y can be expressed in terms of group proper-
ties of G and its representation V . The equivariant version of McKay correspondence
for elliptic classes was established in [25, Theorem 7]). It becomes particularly appar-
ent when applied to the quotients of representations V /G, see [6, §6]. The original
proof given in [3] is based on the analysis of the toric singularities. Lemma 8.1 of
[3] states the strongest form of an identity involving the theta function, but its for-
mulation is considerably complicated. The formula becomes much simpler for the
symplectic quotients. For du Val singularities, it can be related to combinatorics of
Dynkin diagram. We would like to state explicitly what McKay correspondence says
for symplectic quotient singularities. Among other examples, we study symplectic
quotients of C

2, that is du Val singularities. Suppose Zn ⊂ SL2(C) consists of diago-
nal matrices diag(ξ k, ξ−k), ξ = e2π i/n . The equality of elliptic classes (computed via
resolution and the orbifold class) of C

2/Zn implies Theorem 1, which is an identity
involving Jacobi theta function. The formula specializes to the following simplified
form

nΔ(nx, z)Δ(−nx, z) = 1
n

n−1∑

k,�=0

Δ
( k−�τ

n + x, z
)
Δ
(

τ�−k
n − x, z

)
, (1)

where

Δ(a, b) = θτ (a + b)θ ′
τ (0)

θτ (a)θτ (b)
.
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Similar identities can be obtained for various quotient singularities. Any quotient
singularity resolution gives rise to a theta identity. But except a few cases, the
resulting formulas have complexities not allowing to present them in a compact
form.

The example of An−1 singularity given above is particularly appealing. The related
theta function identity is interesting on its own. In addition, the elliptic class is self-dual,
in the sense that if we exchange the “equivariant parameter” x with the “dynamical
parameter” z the class only changes its sign. A similar effect of duality appears in the
work on stable envelopes, [19].

The identities we consider here involve the Jacobi theta function θτ , but can be
specialized (taking τ → i∞) to some trigonometric identities. One of these is the
following one:

1

n

n−1∑

k=0

1

1 − 2 cos( 2kπn )T + T 2
= 1 − T 2n

(
1 − T 2

)
(1 − T n)2

.

We encourage the reader to give an elementary proof. It seems that the above formula
cannot be reduced to standard trigonometric identities.

The second author would like to thank Jarosław Wiśniewki for multiple conversa-
tions on the quotient singularities and for his good spirit in general.

1 Basic functions

1.1 Theta function

Let us introduce the notation

e(x) = e2π ix .

For υ, τ ∈ C, im(τ ) > 0, let q0 = e(τ/2) = eπ iτ . We define the theta function θτ (υ)

as in [4]:

θτ (υ) = 1

i

∞∑

n=−∞
(−1)nq

(n+ 1
2 )2

0 e((2n + 1)υ/2)

= 2
∞∑

n=0

(−1)nq
(n+ 1

2 )2

0 sin((2n + 1)πυ),

see [28, §24 (4)] or [4, Ch. V.1]. According to the Jacobi product formula [4, Ch V.6]

θτ (υ) = 2q
1
4
0 sin(πυ)

∞∏

l=1

(1 − q2l0 )
(
1 − q2l0 e(υ)

)(
1 − q2l0 / e(υ)

)
. (2)
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In [3], the variable q = q20 = e2π iτ is used, it also fits to the convention of [20,21].
Therefore, further we will express our formulas in that variable.

θτ (υ) = 2q
1
8 sin(πυ)

∞∏

l=1

(1 − ql)
(
1 − ql e(υ)

)(
1 − ql/ e(υ)

)
. (3)

Here the symbol q
1
8 simply means e(τ/8) = eπ iτ/4. The function theta θτ is odd

θτ (−υ) = −θτ (υ),

and it satisfies the quasi-periodic identities

θτ (υ + 1) = −θτ (υ),

θτ (υ + τ) = −q−1/2 e(−υ) θτ (υ). (4)

Moreover,

θτ+1(υ) = √
i θτ (υ),

where
√
i = eπ i/4,

θ−1/τ
(

υ
τ

) =
√

τ
i e
(

υ2

2τ

)
θτ (υ).

The variable τ is treated as parameters, and we will omit it later. It is convenient to
use the multiplicative notation for variables. Let

ϑ(x) = x1/2(1 − x−1)

∞∏

�=1

(1 − q�x)(1 − q�/x)

= x1/2(1 − x)−1 (x; q)∞ (x−1, q)∞.

Here

(x; q)∞ =
∞∏

�=0

(1 − q�x) = (1 − x)(1 − qx)(1 − q2x) . . .

is the q-Pochhammer symbol. The function ϑ is defined on the double cover of C
∗,

since we have x1/2 in the formula. We have

θ(υ) = const ϑ(e(υ)), const = 1
i q

1
8 (q; q)∞ (5)

The constant term of θ is irrelevant for us. In the formula for the elliptic class, we
prefer to use ϑ rather than θ notation. The function θ can be treated as a section of the
line bundle OE ([0]) over the elliptic curve E = C/〈1, τ 〉 defined by τ .

123



706 Journal of Algebraic Combinatorics (2021) 53:701–727

Remark 1 Wolfram–Mathematica package has implemented the Jacobi theta function
with the following convention:

θτ (υ) = i EllipticTheta[1, πυ, q0],

where q0 = eπ iτ . In MAGMA package

θτ (υ) = JacobiTheta(q0, πυ).

The identities discussed in this paper were checked numerically to make sure that the
exponents and the conventions agree.

1.2 The function1�(a, b) and ı�(a, b)

In the definition of elliptic characteristic classes, the quotient of the form


τ(a, b) = θ ′
τ (0) θτ (a + b)

θτ (a) θτ (b)

appears. The normalizing factor (5), which is independent of υ, cancels out. This
factor is omitted, e.g., in [1,13,20,21]. The meromorphic function 
τ is odd


τ(−a,−b) = −
τ (a, b) ; (6)

it satisfies the following quasi-periodic identities:


τ (a, b) = 
τ(b, a),


τ (a + 1, b) = 
τ (a, b), (7)


τ(a + τ, b) = e(−b)
τ (a, b). (8)

Moreover,


τ+1(a, b) = 
τ (a, b),


−1/τ (a, b) = τ e
( ab

τ

)

τ (a, b).

The function 
τ defines a section of a bundle over E2.
We prefer the multiplicative notation. We will write δ( A

B , C
D ) instead of 
(a −

b, c − d):

θ(a − b) = const ϑ( A
B ), 1

2π iΔ(a − b, c − d) = δ( A
B , C

D )

when

A = e(a) = e2π ia, B = e(b) = e2π ib, C = e(c) = e2π ic, D = e(d) = e2π id .
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The function δ is well defined on C
∗ × C

∗ since the fractional powers cancel out. It
has the following quasi-periodic properties

δ(q A, B) = B−1δ(A, B), δ(A, qB) = A−1δ(A, B). (9)

2 The An−1 identity

Resolutions of quotient singularities give rise to certain identities for theta function.
We will explain this mechanism in the subsequent sections, but first we would like to
give an example of the cyclic symplectic quotient C

2/Zn , i.e., the singularity An−1.
It leads to the following interesting identity:

Theorem 1 Let n > 0 be a natural number. Let t1, t2, μ1, and μ2 be indeterminate.
The following two meromorphic functions in four variables (and τ ) are equal:

(∗) An(t1, t2, μ1, μ2) =
n∑

k=1

δ

(
tn−k+1
1

tk−1
2

, μk
1μ

n−k
2

)
δ

(
tk2

tn−k
1

, μk−1
1 μn−k+1

2

)
,

(∗∗) Bn(t1, t2, μ1, μ2) = 1

n

n−1∑

k=0

n−1∑

�=0

(
μ2
μ1

)�
δ
(
e
( k−�τ

n

)
t1, μ

n
1

)
δ
(
e
(

τ�−k
n

)
t2, μ

n
2

)
.

In particular, when we specialize the identity to the case t1 = t−1
2 = t , μ1 = μ2, and

setting h = μn
1, we obtain

n δ(tn,h)δ(t−n,h) = 1
n

n−1∑

k,�=0

δ
(
e
( k−�τ

n

)
t,h
)
δ
(
e
(

τ�−k
n

)
t−1,h

)
,

which is the identity (1) written in the multiplicative notation. To visualize the sum
(*), we can apply the following quiver, which is the Goreski–Kottwitz–MacPherson
(GKM) graph of the minimal resolution of the quotient singularity An−1. The quiver
(oriented graph) is the following:

– n vertices indexed by V = {1, 2, . . . , n},
– n + 1 arrows indexed by “weights”. For a vertex k ∈ V , there is one arrow
outgoing with the weight out(k) = (n − k, k) and one incoming with the weight
in(k) = (n − k + 1, k − 1). The external arrows have loose ends.

(n,0)
−−−→ 1

(n−1,1)
−−−−−−→ 2

(n−2,2)
−−−−−−→ . . .

(2,n−2)
−−−−−−→ n − 1

(1,n−1)
−−−−−−→ n

(0,n)

−−−→ (10)

Let

n = (n, n), t = {t1, t−1
2 }, t(a,b) = ta1 t

−b
2 , µ = {μ1, μ2}, µ(a,b) = μa

1μ
b
2.
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Then

(∗) =
∑

k∈V
δ(tin(k),µn−out(k)) · δ(t−out(k),µn−in(k)).

The second sum (**) is clearly the summation over the lattice points contained in a
parallelogram

Λ = { kn − �
n τ ∈ C

∣∣ k ∈ {0, 1, . . . , n − 1}, � ∈ {0, 1, . . . , n − 1}}.

The set Λ is in a bijection with the n-torsion points of E = C/〈1, τ 〉. Note that in
(∗) the variables of the same lower indices are mixed in arguments of δ, while in (∗∗)

they are separated.

Example 1 For n = 2, we have

(∗) δ(t21 , μ1μ2)δ(t2/t1, μ
2
2) + δ(t1/t2, μ

2
1)δ(t

2
2 , μ1μ2)

(∗∗)
1

2

(
δ(t1, μ

2
1) δ(t2, μ

2
2)

+ δ(−t1, μ
2
1) δ(−t2, μ

2
2)

+ δ(t1q
−1/2, μ2

1) δ(t2q
1/2, μ2

2)

+ δ(−t1q
−1/2, μ2

1) δ(−t2q
1/2, μ2

2)
)
.

Note that for t1 = t2 only (∗∗) makes sense since δ(x, y) has a pole at x = 1. In the
additive notation, the formula reads

(∗) 
(2t1, μ1 + μ2)
(−t1 + t2, 2μ2) + 
(t1 − t2, 2μ1)
(2t2, μ1 + μ2),

(∗∗)
1

n

(t1 + k

n − τ �
n ) · 
(t2 − k

n + τ �
n )
)

= 1

2

(

(t1, 2μ1)
(t2, 2μ2)

+ 
(t1 + 1
2 , 2μ1)
(t2 − 1

2 , 2μ2)

+ 
(t1 − 1
2τ, 2μ1)
(t2 + 1

2τ, 2μ2)

+ 
(t1 + 1
2 − 1

2τ, 2μ1)
(t2 − 1
2 + 1

2τ, 2μ2)
)
.

Theorem 1 is a consequence of the equality of elliptic classes: according to [3], the
class computed from the resolution and the orbifold elliptic class. In the next sections,
we will recall the necessary definitions and transform them into a more convenient
form, specific for symplectic singularities. The proof of Theorem 1 is given in §9.
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3 Elliptic class

3.1 Smooth variety

Suppose that X is a smooth complex variety. Then the elliptic class in cohomology is
defined by the formula

E��0(X) =
dim X∏

k=1

xk
θ(xk − z)

θ(xk)
∈ H∗(X)[[q, z]],

where xk’s are the Chern roots of T X . In the multiplicative notation,

E��0(X) =
dim X∏

k=1

xk
ϑ(ξkh)

ϑ(ξk)
∈ H∗(X)[[q, z]],

where ξk = exk , h = e(−z). (In the literature, the indeterminate h is denoted by h or
by �, which should rather be e2π i�. We want to keep the plain h to denote elements of
a finite group acting on X .) The normalized elliptic class is defined by

E��(X) =
(

ϑ ′(1)
ϑ(h)

)dim X E��0(X) = eu(T X)

dim X∏

k=1

δ(exk ,h). (11)

Here eu(T X) denotes the Euler class in H∗(X; Q). The constant ϑ ′(1)
ϑ(h)

appearing in
the definition of Δ is chosen to have

lim
x→0

(
xδ(ex ,h)

) = 1.

(We note that for the normalization used in [2] the analogous limit is equal to 1
2π i .) The

multiplicative notation has a deeper sense. Instead of the elliptic class in cohomology,
we can consider “elliptic bundle” in the K-theory; see [3, Formula (3)].

Example 2 The elliptic nonequivariant genus is defined as the integral of the elliptic
class. For the projective line, it is equal to

Ell(P1) :=
∫

P1
E��(P1) = lim

t→1

(
δ(t,h) + δ(t−1,h)

)
= 2

ϑ ′(h)

ϑ(h)
.

3.2 Interpretation of the elliptic class as the equivariant Euler class in elliptic
cohomology

Naturally, the elliptic class belongs to a version of equivariant elliptic cohomology
ET×C∗(X). We present below an explanation. We assume that E is an equivariant,
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complex-oriented generalized cohomology theory, with a map Θ to equivariant coho-
mology extended by a formal parameter q, such that the Euler class in E of a line
bundle L is mapped to the theta function:

Θ : ET(X) → μT(X; Q) ⊗ C((q))

euE
T
(L) �→ 2π i

θ ′(0) θ
(
c1(L)
2π i

)
= 1

ϑ ′(1) ϑ
(
ec1(L)

)
.

For the notion of the orientation and Euler class in generalized cohomology theories,
see [23, Chapter 5], [8, §42]. A version of the theta function as a choice for the
Euler class (or equivalently the choice of the related formal group law) appears in the
literature, see [22, p.197] and in [24]. For our purposes, it is enough to take as the
equivariant elliptic cohomology the usual (completed) Borel equivariant cohomology
ET(−) = μ̂T(−; Q) ⊗ C((q)) with the formal group law F(x, y) = θ(θ−1(x) +
θ−1(y)). Suppose a torus T (possibly T is trivial) acts on X . We consider a bigger
torus T̃ = T × C

∗, where C
∗ acts on X trivially. The bundle T X is an T̃-equivariant

bundle with the C
∗ action via the scalar multiplication. Formally, we write T X ⊗ h,

while T X denotes the tangent bundle with the trivial action of C
∗. Let

z = − c1(h)
2π i ∈ H ∗̃

T
({pt}), h = e−z .

The elliptic class of X is defined as the elliptic Euler class of the equivariant bundle
T X⊗h. The elliptic genus of X is defined as the pushforward to the point of euE

T̃
(T X⊗

h). By the generalized Riemann–Roch theorem [8, 42.1.D], the pushforward in E can
be replaced by the pushforward of the cohomology class

eu
T̃
(T X)

Θ(euE
T̃

)
· Θ
(
euE

T̃
(T X ⊗ h)

)
=

∏dim X
k=1 xk∏dim X

k=1 ϑ(exk )
·
dim X∏

k=1

ϑ(exkh)

= eu
T̃
(T X) ·

dim X∏

k=1

ϑ(exkh)

ϑ(exk )
∈ μ

T̃
(X; Q) ⊗ C((q)).

Normalization (11) by the factor
(

ϑ ′(1)
ϑ(h)

)dim X
might be interpreted as computing the

“virtual” Euler class of the bundle

T X ⊗ h − h⊕ dim X .

The price we have to pay is that we invert q. The result belongs to Ĥ ∗̃
T
(X; Q)((q)).

It is natural to write the analogous transformation ΘK to K-theory. Nevertheless,
the requirement euE (L) �→ ϑ(L) ∈ KT(−) ⊗ C((q)) does not make sense, since in
the definition of ϑ the square root of the argument appears. On the other hand, the
formula

euK (L) δ(L,h) = (1 − L−1) δ(L,h)

123
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doesmake sense. Therefore, the (image of the) elliptic class is defined in the equivariant
K-theory. If the fixed point x ∈ XT is isolated, then the localized classes is given by
the formula

ΘK (euE
T
(T X ⊗ h − h⊕ dim X )

)
|x =

dim X∏

k=1

ϑ(ξk)δ(ξk,h),

where ξk’s are the Grothendieck roots of T X . The result is understood formally in a
completion of the ring R(T) ⊗ C((q)).

The elliptic cohomology as a generalized cohomology theory was constructed in
several setups, still the construction of an equivariant version does not seem to be
satisfactory. Of course, rationally, the theory is much easier. In the modern approach,
the elliptic cohomology ring ET(X) is replaced by a scheme, and the Euler class is a
section of some line bundle over that scheme; see [11], [9, §7.2], [29, §3.2].

3.3 Elliptic class of a singular variety admitting a crepant resolution

The elliptic class of a singular variety was defined by Borisov and Libgober. In their
original paper [3], they define a cohomology class for a suitable resolution of singular-
ities Y → X . The classes agree whenever one resolution is dominated by another. The
pushforward of that class to X defines a homology class of the singular variety itself,
which does not depend on the choice of a resolution. The equivariant version of the
theory works equally well: It is treated in [6,21,25]. We will assume that a torus T is
acting on X and Y and the resolution map f : Y → X is equivariant. For convenience
suppose that X is equivariantly embedded in a smooth ambient space M and the set
of fixed points MT is finite. Let us assume that the fixed point set YT is finite as well.
Then using Lefschetz–Riemann–Roch localization theorem for the pushforward (see,
e.g., [5, Th. 5.11.7], [21, Prop. 2.7]), we can express the elliptic characteristic class

as the sum of the terms E��T(X)|x
eu(x,M)

depending on the local data coming from the fixed

points YT. If the resolution is crepant, then the localized elliptic class of X restricted
to a fixed point x ∈ XT satisfies

E��T(X)|x
eu(x, M)

=
∑

x̃∈ f −1(x)

E��T(Y )|x̃
eu(x̃,Y )

=
∑

x̃∈ f −1(x)

dim Y∏

k=1

δ(twi (x̃),h), (12)

where w1(x̃), w2(x̃), . . . , wdim Y (x̃) are the weights of the torus action on Tx̃Y and
eu(x, M) is the product of the Chern roots of TxM .

Remark 2 The original notation, given by Borisov and Libgober, is additive and uses
an indeterminate z. Our h translates to e(−z). Also the equivariant variables t =
(t1, t2, . . . , tn) should be understood as the exponents of the generators of H2

T
(pt), or

the elements of the representation ring R(T).
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3.4 The relative elliptic class

If the resolution f : Y → X is not crepant, then the formula (12) for the ellip-
tic class should be corrected by the discrepancy divisor. It is natural to consider
the pairs (X , DX ) from the beginning, where DX is a Weil Q-divisor, such that
KX + DX is Q-Cartier. Then E��T(X , DX ) is defined as f∗E��T(Y , DY ) when-
ever f ∗(KX + DX ) = KY + DY and the pair (Y , DY ) is a resolution of (X , DX ).
The formula for E��T(Y , DY ) makes sense only when the coefficients of DY are
not equal to 1, and to show independence on the resolution Borisov and Lib-
gober assume that the coefficients are smaller then 1 (equivalently, that the pair
(X , DX ) is Kawamata log-terminal). We give the formula for E��T(Y , DY ) in the
equivariant case with isolated fixed point set. We assume that in some equivariant
coordinates

DY = {za11 za22 . . . zann = 0}

and the weight of the coordinate zk is equal to wk for k = 1, 2, . . . , n = dim Y . Then

E��T(Y , DY )|x̃
eu(x̃,Y )

=
n∏

k=1

δ(twk ,h1−ak ). (13)

The symbol δ(twk ,h1−ak ) is understood formally. It is a Laurent power series belong-
ing to a suitable extension of the representation ring R(T × C

∗) = R(T)[h±1], or via
the Chern character to the completion of H∗(BT)[z], see [6,21] for further explana-
tions.

If the fixed point set YT is not finite, as it happens for the singularity D4, then
the summation runs over the components of the fixed points. In that case one has to
apply Atiyah–Bott–Berline–Vergne localization theorem in its full form. In concrete
cases, one can find a neighborhood of the fixed component on which a bigger torus is
acting with finitely many fixed points. In the case of D4, it is possible to proceed that
way.

We can extend the point of view presented in Sect.3.2. Locally, we compute the
equivariant elliptic Euler characteristic of the bundle T X twisted by h in some power,
not in the homogeneous manner, but the twisting depends on the direction. The expo-
nents are encoded in the divisor DY . The relative elliptic class is the image of the Euler
class of the virtual bundle

dim Y⊕

k=1

ξk ⊗ h1−ak −
dim Y⊕

k=1

h1−ak ,

where ξk’s are the Grothendieck roots of Tx̃Y adapted to the divisor DY . Tomake sense
of that formula, we extend the coefficients by the roots of line generators. Equivalently,
we replace the torus T by its finite cover. The localized elliptic classes considered in
[21] belong to that ring.
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4 Resolution of singularities and theta identities

Before discussing theta identities related to the quotient singularities, let us give exam-
ples of identities which can be deduced from the invariance of the elliptic class with
respect to the change of the resolution.

4.1 Blowup and the Fay trisecant relation

Let X = C
n , DX =∑n

i=1 ai Di , where Di = {zi = 0}. Let Y be the blowup of C
n at

0. The exceptional divisor is denoted by E � P
n−1. Then

DY =
n∑

i=1

ai D̃i +
(

n∑

i=1

ai − n + 1

)
E

where D̃i is the strict transform of Di . The torus T = (C∗)n acts coordinate-wise
on X . There are n fixed points of T acting on the blow-up Y , and they belong to the
exceptional divisor. At the point [1 : 0 : · · · : 0], the characters of the action are the
following:

t1 in the normal direction,
t j
t1

for j = 2, . . . , n in the tangent directions.

At the remaining fixed points the formulas differ by a permutation of variables. We
compute the local equivariant elliptic class applying the formula (13). By Lefschetz–
Riemann–Roch [5, Th. 5.11.7] for the blow-down map f : Y → X , we obtain the
formula for the pushforward

f∗(E��(Y ))|0
eu(0, Cn)

=
n∑

i=1

(
δ
(
ti ,h

n−∑n
j=1 a j

) ·
∏

j �=i

δ
( t j
ti
,h1−a j

))
.

This sum is equal to the expression computed directly on X , i.e., to the product of the
δ functions. Setting μi = h1−ai and substituting in the above formula, we arrive to
the following identity.

Theorem 2 For n ≥ 2, we have
n∏

i=1

δ
(
ti , μi

) =
n∑

i=1

(
δ
(
ti ,
∏n

j=1 μ j
) ·
∏

j �=i

δ
( t j
ti
, μ j

))
. (14)

The identity (14) for n = 2, is the three term identity given in [21, Example 2.9],
which agrees with [20, formula (2.6)]. When written in the additive notation, after the
substitution

t1 = a − d, t2 = c − d, μ1 = c + d, μ2 = b − c

andmultiplication by the common denominator the identity takes the form of the Fay’s
trisecant identity (see [10], [18, §5.2]).
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θ(a + c)θ(a − c)θ(b + d)θ(b − d)

= θ(a + b)θ(a − b)θ(c + d)θ(c − d)

+ θ(a + d)θ(a − d)θ(b + c)θ(b − c). (15)

For arbitrary n, the formula (14) can be transformed to a symmetric form in the
following way: Set

ti = xi
x0

, μi = ξi

ξi−1
for i = 1, 2 . . . n.

Then the first factor of the RHS of (14) is equal to

δ
(
ti ,
∏n

j=1 μ j

)
= δ

(
xi
x0

,
ξn

ξ0

)
= −δ

(
x0
xi

,
ξ0

ξn

)
.

The identity (14) can be rewritten as

n∑

i=0

∏

j = 0, 1, . . . , n
j �= i

δ

(
x j
xi

,
ξ j

ξ j−1

)
= 0. (16)

Here ξ−1 = ξn .

4.2 Braid relation

The following expressions are equal:

δ

(
t2
t1

,
μ3

μ2

)
δ

(
t3
t2

,
μ3

μ1

)
δ

(
t2
t1

,
μ2

μ1

)
+ δ

(
t1
t2

,h

)
δ

(
t3
t1

,
μ3

μ1

)
δ

(
t2
t1

,h

)
, (17)

δ

(
t3
t2

,
μ2

μ1

)
δ

(
t2
t1

,
μ3

μ1

)
δ

(
t3
t2

,
μ3

μ2

)
+ δ

(
t2
t3

,h

)
δ

(
t3
t1

,
μ3

μ1

)
δ

(
t3
t2

,h

)
, (18)

[21, §9]. Geometrically, the above expressions come from two natural resolutions of
the singularity

z31(z31 − z21z32) = 0

describing the boundary of the big cell in the complete flag variety GL3(C)/B inter-
sected with the opposite cell, see [27, Ex. 16.1]. The equality is equivalent to the four
term identity [20, eq. (2.7)].

Strangely, the Braid relation for the group Sp2(C) is trivial and for G2 it can be
deduced from SL3(C).
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4.3 Lehn–Sorger example

Let G → Sp2(C) ⊂ GL4(C) be the example described in [12,15]. Here G is the
bi-tetrahedral group. The linear space V is the direct sumW ⊕W ∗, whereW is one of
two-dimensional non-self-conjugate representations of G. The quotient (W ⊕W ∗)/G
admits two crepant resolutions. The computation of the tangent weights can be found
in [12, Th. 4.5]. The equivariant elliptic class computed from these resolutions give the
same result, but the expressions for the elliptic class differ by the switch of variables.
After subtraction of the identical summands on both sides, the resulting identity can
be written as:

F(t1, t2) = F(t2, t1),

where

F(t1, t2) = δ
(
t1
t2

,h
)

δ

(
t31
t2

,h

)
δ
(
t22 ,h

)
δ

(
t22
t21

,h

)

+δ
(
t21 ,h

)
δ

(
t41
t22

,h

)
δ
(
t2
t1

,h
)

δ

(
t32
t31

,h

)

+δ

(
t31
t32

,h

)
δ

(
t21
t22

,h

)
δ

(
t32
t1

,h

)
δ

(
t42
t21

,h

)
. (19)

Our formula is nothing but plugging in the exponents (of t-variables) given by [12,
Th. 4.5]. This example is continued in Sect.7.2.

5 The orbifold elliptic class

The orbifold elliptic class is defined in the presence of an action of a finite group G.
Again, for a singular equivariant pair, it is defined as the image of the orbifold elliptic
class of a resolution:

E��orb(X , DX ,G) = f∗E��orb(Y , DY ,G).

Let us quote the original definition of [3, Def. 3.2] in a precise form. Let (Y , DY ) be a
Kawamata log-terminal G-normal pair (cf [3, Def. 3.1]) with DY = −∑� d�E�. We
define orbifold elliptic class of the triple (Y , DY ,G) as an element of H∗(Y ) (or the
Chow group) by the formula

E��orb(Y , DY ,G) := 1

|G|
∑

g,h,gh=hg

∑

Z⊂Y g,h

(iY Z )∗
( ∏

k: λZ
k =νZ

k =0

xk

)

×
∏

k

θ
( xk
2π i + λZ

k − τνZ
k − z

)

θ
( xk
2π i + λZ

k − τνZ
k

) e2π iν
Z
k z

×
∏

�

θ(
e�
2π i + εZ� − ζ Z

� τ − (d� + 1)z)

θ
( e�
2π i + εZ� − ζ Z

� τ − z
) θ(−z)

θ(−(d� + 1)z)
e2π id�ζ

Z
� z .

123



716 Journal of Algebraic Combinatorics (2021) 53:701–727

Here Z ⊂ Y g,h is an irreducible component of the fixed set of the commuting elements
g and h and iZ : Z → Y is the corresponding embedding. The restriction of TY to Z
splits as a sumof one-dimensional representations onwhich g (respectively h) actswith
the eigenvalues e(λZ

k ) (resp. e(νZ
k )), λZ

k , νZ
k ∈ Q ∩ [0, 1). The Chern roots of (TY )|Z

are denoted by xk . In addition, e� = c1(E�) and e(εZ� ), e(ζ Z
� )with εZ� , ζ Z

� ∈ Q∩[0, 1)
are the eigenvalues of g and h acting onO(E�) restricted to Z if E� contains Z and is
zero otherwise.

Let us assume that the torus action commutes with the action of G. The formula for
the T-equivariant orbifold elliptic class simplifies significantly when the fixed point
set is discrete. For a normal crossing divisor situation with isolated fixed points, we
can assume that (at the fixed points) the divisor classes coincide with the Chern roots.
Then, in the multiplicative notation and after the correction by the factor (2π i)dim Y ,
the local formula for the orbifold class takes the form

E��T

orb(Y , DY ,G)

eu(x̃,Y )
=

= 1

|G|
∑

g,h,gh=hg

n∏

k=1

δ
(
e(λg,h

k − ν
g,h
k τ)twk , h1−ak

)
h(ak−1)νg,hk (20)

= 1

|G|
∑

g,h,gh=hg

n∏

k=1

δ
(

ζ
g,h
k q−ν

g,h
k twk , h1−ak

)
h(ak−1)νg,hk , (21)

where ζ
g,h
k = e(λg,h

k ) for k = 1, 2, . . . , dim Y are the eigenvalues of g acting on
(TY )|Y g,h . The fixed point sets Y g,h are considered locally, and therefore, we do not
use Z as the superscript of eigenvalues, but the pair (g, h). The main result of [3] states
that

Theorem 3 ([3], Theorem 5.3) Let (X; DX ) be a Kawamata log-terminal pair which
is invariant under an effective action of G on X. Let ψ : X → X/G be the quotient
morphism. Then

ψ∗E��orb(X , DX ,G) = E��(X/G, DX/G),

provided that ψ∗(KX/G + DX/G) = KX + DX .

For the equivariant version, see [6,25]. If X is a vector space with a linear action of
a finite group G commuting with T, then the T-equivariant version of the equality
above is equivalent to the equality of Laurent power series

E��T

orb(X , DX ,G)|0
eu(0, X)

= E��T(X/G, DX/G)|ψ(0)

eu(ψ(0), M)
.

If DX/G = 0 and Y → X/G is a resolution, then the right-hand side is given by (21)
and the left-hand side is the sum over the fixed points YT of the expressions given in
the formula (13). If the resolution is crepant, then the formula becomes simpler, the
summands are of the form (12).
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Interpretation of the orbifold elliptic class in the spirit of Sect.3.2 is somehow
ambiguous. The conjugate elements h ∈ G give the same contribution to the sum
(20). Therefore this sum can be reorganized, so that we sum over the conjugacy classes
[h] ∈ Conj(G) and g belongs to the centralizer C(h):

E��T

orb(Y , DY ,G)

eu(x̃,Y )
=

=
∑

[h]∈Conj(G)

1

|C(h)|
∑

g∈C(h)

n∏

k=1

δ
(

ζ
g,h
k q−ν

g,h
k twk , h1−ak

)
h(ak−1)νg,hk . (22)

In the limit with q → 1, we obtain the formula [6, Th. 13, Cor. 14], which can be
interpreted as the summation over components of the extended quotient

⊔

[h]∈Conj(G)

Xh/C(h).

For the elliptic orbifold class, this interpretation is only partial: The formula depends
on the normal bundle of Xh in X . The normal factor becomes trivial only in the limit,
due to [6, equation (21)]. The summand corresponding to h = id (the identity) is equal
to

1

|G|
∑

g∈G

n∏

k=1

δ
(

ζ
g
k t

wk , h1−ak
)

,

where ζ
g
k = ζ

g,id
k for k = 1, . . . n are the eigenvalues of g acting on Tx̃Y . The formula

can be treated as the averaged elliptic class of (Y , DY ). If Y = V is a vector space,
ak = 0, twk = t , then the formula is a deformation of the expression for the classical
Molien series, see [6, §9]. Precisely, it is the weighted dimension of the invariants of
the “elliptic representation”:

⎛

⎝hdim V /2
⊗

n≥1

( ∧

−qn−1h−1

V ∗ ⊗
∧

−qnh

V ⊗ Sqn−1V ∗ ⊗ Sqn V
)
⎞

⎠
G

.

This elliptic representation only differs from [3, Formula (3)] by the factor S1V ∗ =
Sym(V ∗) playing the role of the inverse of K-theoretic Euler class. The remaining
summands of the formula (22) for h �= id are more complicated.

6 Orbifold elliptic class of symplectic singularities

Let us concentrate on the case of symplectic quotient singularities. Let V = C
2n

be endowed with the standard symplectic structure and let G ⊂ Spn(C) be a finite
subgroup. Then the eigenvalues λ

g,h
k and ν

g,h
k come in pairs. We can assume that
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ν
g,h
k+n =

{
0 if ν

g,h
k = 0

1 − ν
g,h
k if ν

g,h
k > 0.

and similarly for λ
g,h
k . For ν

g,h
k > 0 the pair of factors can be transformed:

δ
(
ζ
g,h
k q−ν

g,h
k twk ,h1−ak

)
h(ak−1)νg,hk

·δ
(
ζ
g,h
n+kq

−ν
g,h
n+k twn+k ,h1−an+k

)
h(an+k−1)νg,hn+k =

= δ
(
ζ
g,h
k q−ν

g,h
k twk ,h1−ak

)
· δ
(
(ζ

g,h
k )−1qν

g,h
n+k−1twn+k ,h1−an+k

)
·

·h(ak−1)νg,hk +(an+k−1)(1−ν
g,h
k ). (23)

By (9), we obtain

δ
(
ζ
g,h
k q−ν

g,h
k twk ,h1−ak

)
· δ
(
(ζ

g,h
k )−1qν

g,h
k twn+k ,h1−an+k

)
·

·h1−an+k · h(ak−1)νg,hk +(an+k−1)(1−ν
g,h
k ) =

= δ
(
ζ
g,h
k q−ν

g,h
k twk ,h1−ak

)
· δ
(
(ζ

g,h
k )−1qν

g,h
k twn+k ,h1−an+k

)
· hν

g,h
k (ak−an+k ).

(24)

The same holds for ν
g,h
k = 0.

If the torus acts via the scalar multiplication and the divisor is empty (i.e., ak = 0),
then formula (24) reduces to

δ
(
ζ
g,h
k q−ν

g,h
k t,h

)
· δ
(
(ζ

g,h
k )−1qν

g,h
k t,h

)

or equivalently setting λ = λ
g,h
k − ν

g,h
k τ we obtain the factor

Φ(λ) := δ (e(λ)t,h) · δ (e(−λ)t,h) (25)

If the divisor is empty, and T = (C∗)2 acts via the scalar multiplication on each
summand in V = W ⊕ W ∗ separately, then we obtain the factor

Ψ (λ) := δ (e(λ)t1,h) · δ (e(−λ)t2,h) . (26)

The elliptic class of this kind of singularity has a symmetry property:

Remark 3 Suppose V = W ⊕ W ∗, G ⊂ GL(W ), and T = (C∗)2 acts via the scalar
multiplication on each summand, as in the example Sect.4.3. Then the elliptic class of
V /G is a symmetric function with respect to the coordinate characters t1, t2. Indeed,
since δ(a, b) = −δ(a−1, b−1) the factor (26) in the orbifold elliptic class has the
property

Ψ (λ)(t1, t2,h) = Ψ (λ)(t−1
2 , t−1

1 ,h−1). (27)

123



Journal of Algebraic Combinatorics (2021) 53:701–727 719

Therefore,

E��T

orb(V ,G,∅)

eu(0, V )
(t1, t2,h) = E��T

orb(V ,G,∅)

eu(0, V )
(t−1
2 , t−1

1 ,h−1) .

In the expression (13) for the elliptic class coming from a resolution, there is no shift
of variables therefore

E��T(V /G,∅)

eu([0], M)
(t−1
2 , t−1

1 ,h−1) = E��T(V /G,∅)

eu([0], M)
(t2, t1,h) .

By Theorem 3, we obtain the conclusion (27). The symmetry may be easily deduced
geometrically.

7 Examples

7.1 The singularity D4

The singularity D4 is the quotient of C
2 by the bi-dihedral group of 8 elements which

is isomorphic to the quaternionic group generated by the matrices

i =
(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
and k = i j =

(
0 i
i 0

)
.

We consider the one-dimensional torus T = C
∗ acting via the scalar multiplication.

7.1.1 The elliptic class computed via resolution

The following quiver represents the resolution of the singularity D4

↖
4 •

2↖
P
1 2−→ • 4−→

2↙
4 •
↙

The internal arrows represent the exceptional divisors with nontrivial torus action.

The divisor P
1 is fixed pointwise by C

∗. The external arrows represent the normal
directions pointing out from the exceptional divisor at the isolated fixed points. The
number at each arrow stands for weight of the action along the divisor. The local
equivariant elliptic class is given by the formula

123



720 Journal of Algebraic Combinatorics (2021) 53:701–727

E��(X)|[0]
eu([0]) = 3δ(t−2,h) · δ(t4,h) +

∫

P1

E��T(Y )|P1

eu(NP1)
. (28)

Here the integral is the localized elliptic genus integrated along the fixed compo-
nent, NP1 denotes the normal bundle. It can be computed as in Example 1 artificially
extending the torus: There exists a neighborhood of the fixed component which admits
a two-dimensional torus action having only two fixed points. This neighborhood is
isomorphic to the neighborhood of the exceptional divisor for the singularity A1, and
therefore, the integral is the specialization of the sum (**) of Example 1:

∫

P1

E��T(Y )|P1

eu(NP1)
= 1

2

(
Φ(0) + Φ

( 1
2

)+ Φ
(− 1

2τ
)+ Φ

( 1
2 − τ 1

2

))
, (29)

where Φ(λ) is defined by (25).

7.1.2 The computation of the orbifold elliptic class

The sub-sum of (21) indexed by the pairs (g, 1) is equal to

S1 = Φ(0) + Φ
(− 1

2

)+ 6Φ
(− 1

4

)
.

The sub-sum of (21) indexed by the pairs (g,−1) is equal to

S−1 = Φ
(− 1

2τ
)+ Φ

( 1
2 − 1

2τ
)+ 6Φ

( 1
4 − 1

2τ
)
.

The remaining six possibilities h ∈ {±i,±j,±k} give

Si = Φ
(− 1

4τ
)+ Φ

( 1
4 − 1

4τ
)+ Φ

( 1
2 − 1

4τ
)+ Φ

( 3
4 − 1

4τ
)
.

Therefore,

E��T

orb(C
2,∅,G)|0

eu(0, C2)
= 1

8 (S1 + S−1 + 6Si) .

After simplification, we obtain

6
8

(
Φ
( 1
4

)+ Φ
( 1
4 − 1

4τ
)+ Φ

( 1
4 − 1

2τ
)+ Φ

( 1
4 − 3

4τ
)+ Φ

(− 1
2τ
)+ Φ

( 1
2 − 1

2τ
))

− 3
8

(
Φ(0) + Φ

( 1
2

)+ Φ
(− 1

2τ
)+ Φ

( 1
2 − τ 1

2

)) = 3δ(t−2,h) · δ(t4,h).

The formula can be further transformed: Since Φ(λ) = Φ(1 + τ − λ), we can write
6Φ( 14 − 1

4τ) = 3Φ( 34 − 3
4τ) + 3Φ( 14 − 1

4τ). We break in two other terms with
coefficients 6 and obtain (dividing by 3) a remarkable formula
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δ(t−2,h) · δ(t4,h) = 1
8

3∑

k,�=0

(−1)(k+1)(�+1) Φ
( k
4 − �

4τ
)
,

where Φ(λ) is given by (25). This is a nontrivial relation involving theta function.

7.2 Lehn–Sorger example continued

We compute the orbifold elliptic class for the example considered in Sect.4.3.
The Lehn–Sorger group G ⊂ GL2(C) = GL(W ) is generated by

h1 = −1+i
√
3

2

( 1+i
2 − 1−i

2
1+i
2

1−i
2

)
, h2 =

(
i 0
0 −i

)
.

It is important to know that

h31 = h22 = −id ∈ Z(G), C(h1) = C(h21) = 〈h1〉 � Z6, C(h2) = 〈h2〉 � Z4.

The conjugacy classes of h ∈ G with the logarithms of the eigenvalues are listed
below.

h |C(h)| (ν1, ν2) logarithms of the eigenvalues of g ∈ C(h) : (λ1, λ2)

id 24 (0, 0) (0, 0), ( 12 ,
1
2 ), 4 × ( 16 ,

1
2 ), 4 × ( 13 , 0), 4 × ( 23 , 0),

−id 24 ( 12 ,
1
2 ) 4 × ( 56 ,

1
2 ), 6 × ( 14 ,

3
4 )

h1 6 ( 16 ,
1
2 )

h21 6 ( 13 , 0) (0, 0), ( 16 ,
1
2 ), ( 13 , 0), ( 12 ,

1
2 ), ( 23 , 0), ( 56 ,

1
2 )

h41 6 ( 23 , 0)

h51 6 ( 56 ,
1
2 )

h2 4 ( 14 ,
3
4 ) (0, 0), ( 14 ,

3
4 ), ( 12 ,

1
2 ), ( 34 ,

1
4 )

Each quadruple (λ1, λ2.ν1, ν2) contributes the summand

Ψ (λ1 + τν1) · Ψ (λ2 + τν2)

to E��T

orb(C
4,G,∅)/eu(0, C

4). It is counted with the weight 1/C(h). The formula
for Ψ is given in (26).

On the other hand, applying the computation of the tangentweights of the resolution
presented in [12, Th. 4.5], we find that

E��T(C4/G,∅)

eu([0], M)
= F0(t1, t2) + F0(t2, t1) + F(t1, t2),
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where

F0(t1, t2)

= δ

(
t1
t52

,h

)
δ

(
t1
t32

,h

)
δ
(
t42 ,h

)
δ
(
t62 ,h

)
+ δ

(
t21
t42

,h

)
δ
(
t1
t2

,h
)

δ
(
t22 ,h

)
δ

(
t52
t1

,h

)

and F(t1, t2) is given by (19). The equality of elliptic genera implies an identity for
theta functions. The explicit expanded form is too long to present it here.

8 Diagonal quotient

8.1 The quotientC
m/Zn

Let Zn act on C
m via the scalar multiplication by the n-th root of unity. The quotient

X = C
m/Zn has an isolated singularity and admits a desingularization via blowup at

the origin. The resolution Y is isomorphic to the total space of the bundleO(−n) over
P
m−1. The torusT = (C∗)m acts onC

m coordinate-wise and the action commuteswith
Zn . Setting DX = 0, we find that DY = π∗KX − KY is supported by the exceptional
divisor P

m−1

DY = (
1 − m

n

)
P
m−1.

Therefore, the localized equivariant elliptic class is equal to

E��(X)[0]
eu([0], M)

=
∫

Pm−1
δ(ec

T

1 (O(−n)),hm/n)E��(Pm−1). (30)

By the localization theorem for the full torus, we obtain

E��(X)[0]
eu([0], M)

= 1

n

m∑

i=1

⎛

⎝δ
(
tni ,hm/n)∏

j �=i

δ
(
t j
ti
,h
)
⎞

⎠ . (31)

The orbifold elliptic class is equal to

E��orb(C
m,∅, Zn)0

eu(0, Cm)
=

n−1∑

k,�=0

(
h

−m�
n

m∏

i=1

δ
(
e
( k
n − �

n τ
)
ti ,h

)
)

. (32)

Again (31)=(32) is a nontrivial identity for the theta function. This equality form = 1
is mentioned in [3, Cor. 8.2].

8.2 Mixing variable types

Assume that m = n. It was observed in [16] while analyzing the Landau–Ginzburg
model, that if we restrict the action to the one-dimensional torus and set the equivariant
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variable t = h−1/n (note that C
∗/Zn acts effectively on X = C

n/Zn) then we obtain
the formula for the elliptic genus of the Calabi–Yau hypersurface inHCY ⊂ P

n−1. Let
us transform this calculation to our notation. In the K-theory, [TP

n−1] = [nO(1)] −
[O], hence

E��(Pn−1) = xn δ(ex ,h)n,

where x = c1(O(1)). Let

u = ch(O(1)) = ex ∈ H∗(Pn−1)

be the exponent of the nonequivariant Chern class. Then

E��(X)[0]
eu([0], M)

=
∫

Pn−1

E��T(Y )|Pn−1

eu(NPn−1))

=
∫

Pm−1
xnδ((t/u)n,h)δ(u,h)n =

∫

Pm−1
xn ϑ((t/u)nh)ϑ ′(1)

ϑ((t/u)n)ϑ(h)
δ(u,h)n

= t :=h−1/n=
∫

Pm−1
xn ϑ(u−n)ϑ ′(1)

ϑ(u−nh−1)ϑ(h)
δ(u,h)n =

∫

Pm−1
xn ϑ(un)ϑ ′(1)

ϑ(unh)ϑ(h)
δ(u,h)n

=
(

ϑ ′(1)
ϑ(h)

)2 ∫

Pm−1
xnδ(un,h)−1δ(u,h)n =

(
ϑ ′(1)
ϑ(h)

)2
Ell(HCY ).

When we consider unreduced elliptic genera, then we get rid of the factor
(

ϑ ′(1)
ϑ(h)

)2
. It

is interesting to observe that the integral can be expressed by a residue:
∫

Pn−1

E��T(Y )|Pn−1

eu(NPn−1)
=
∫

Pn−1
xnδ(t/ex ,h)δ(ex ,h)n

= Coefficient of xn−1 in xnδ(t/ex ,h)δ(ex ,h)n = Resx=0
(
δ(t/ex ,h)δ(ex ,h)n

)

= Resu=1
(
δ(t/u,h)δ(u,h)n/u

)
.

9 Proof of Theorem 1

Let T = (C∗)2 be the torus acting on C
2 coordinate-wise. Denote the coordinates on

C
2 by z1, z2. Let Zn ⊂ SL2(C)∩T be the subgroup generated by diag(e( 1n ), e(− 1

n )).
The action of T passes to the quotient X = C

2/Zn . The minimal resolution of X is a
toric variety having n fixed points joined by the chain of one-dimensional orbits of T.
The GKM graph of Y is given in (10). The external edges have loose ends since Y is
not compact. They correspond to the strict transforms of the divisors coming from X ,
namely D1 = {z1 = 0}/Zn and D2 = {z2 = 0}/Zn . Suppose DX = a1D1 + a2D2 is
the divisor given by the function f = za11 za22 . The divisor DY is supported by the strict
transforms and D̃1, D̃2 and the exceptional divisor. At the fixed point corresponding

to the vertex k , the toric coordinate functions are u1 = zn−k+1
1

zk−1
2

and u2 = zk2
zn−k
1

. The

monomial f is equal to
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za11 za22 = u
a1
n k+ a2

n (n−k)

1 u
a1
n (k−1)+ a2

n (n−k+1)
2 .

Therefore, the contribution of the fixed point k to the elliptic class is equal to

δ

(
zn−k+1
1

zk−1
2

,h
1−
( a1
n k+ a2

n (n−k)
))

δ

(
zk2

zn−k
1

,h
1−
( a1
n (k−1)+ a2

n (n−k+1)
))

.

Setting μi = h
1−ai
n , we obtain the formula (*). The second formula describes the

orbifold elliptic class by application of (24). By Theorem 24, the expressions for the
above elliptic classes are equal.

10 Self-duality of An−1 singularity

As it has been shown in Sect.8.2 mixing the equivariant variables ti with the variable
h leads to interesting results. The variable h modified by the parameters depending
on the divisor multiplicity sometimes plays a role similar to equivariant variables. In
[19,21] the parameters depending on line bundles are called dynamical parameters
and in [1]—the Kähler variables. It is shown in [19] that exchanging the equivariant
variables with dynamical parameters for elliptic classes of the Schubert varieties in
the complete flag variety leads to a mirror self-symmetry. We will show that the An-
singularities are self-symmetric in a similar sense.

The formula (**) of Theorem 1 clearly does not look like being (anti)symmetric
with respect to exchange h- and t-variables. On the other hand:

Proposition 1 The expression (*) of Theorem 1 is antisymmetric with respect to the
change of variables

t1 ↔ μ1, t2 ↔ μ−1
2 .

that is

An(μ1, μ
−1
2 , t1, t

−1
2 ) = −An(t1, t2, μ1, μ2).

Proof Each summand of (*) after the substitution takes the form

δ

(
μn−k+1
1 μk−1

2 ,
tk1

tn−k
2

)
δ

(
1

μn−k
1 μk

2
,

tk−1
1

tn−k+1
2

)

= −δ

(
μn−k+1
1 μk−1

2 ,
tk1

tn−k
2

)
δ

(
μn−k
1 μk

2,
tn−k+1
2

tk−1
1

)
=

= −δ

(
tk1

tn−k
2

, μn−k+1
1 μk−1

2

)
δ

(
tn−k+1
2

tk−1
1

, μn−k
1 μk

2

)
.

Setting k′ = n − k + 1, we obtain exactly the summand of the original formula with
the minus sign. ��
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Corollary 1 We have

n−1∑

k=0

n−1∑

�=0

(
μ2
μ1

)�
δ
(
e
( k−�τ

n

)
t1, μ

n
1

)
δ
(
e
(

τ�−k
n

)
t2, μ

n
2

)

= −
n−1∑

k=0

n−1∑

�=0

(t1t2)
−�δ

(
e
( k−�τ

n

)
μ1, t

n
1

)
δ
(
e
(

τ�−k
n

)
μ−1
2 , t−n

2

)
.

This effect does not appear in general. It is due to a special form of the action of the
torus on the resolution of An−1 singularity. For example, the symplectic subtorus acts
via the same character along the exceptional divisors.

11 Hirzebruch class—the limit with q → 0

The limit q → 0 corresponds to τ → i∞. We set y = e(z) = h−1. Then

lim
τ→i∞

θ(υ + ντ − z)

θ(υ + ντ)
=

⎧
⎪⎨

⎪⎩

y−1/2 if − 1 < ν < 0

y−1/2 1−y e(−υ)
1−e(−υ)

if ν = 0

y1/2 if 0 < ν < 1,

or equivalently

lim
q→0

ϑ(t h qν)

ϑ(t qν)
=

⎧
⎪⎨

⎪⎩

h1/2 if − 1 < ν < 0

h1/2 1−h−1t−1

1−t−1 if ν = 0

h−1/2 if 0 < ν < 1,

see [3, proof of Prop. 3.13] for the proof of the first two limits, and use (8) to deduce
the third one.

Let Tj = t−1
j for j = 1, 2. The equality of unreduced equivariant elliptic classes

of An−1 singularity with DX = ∅ specializes to the equality of rational functions

(∗)∞ = y−1
n∑

k=1

1 − y
tk−1
2

tn−k+1
1

1 − tk−1
2

tn−k+1
1

1 − y
tn−k
1
tk2

1 − tn−k
1
tk2

,

(∗∗)∞ = y−1 1

n

n−1∑

k=0

1 − y e( kn )t−1
1

1 − e( kn )t−1
1

· 1 − y e(− k
n )t−1

2

1 − e(− k
n )t−1

2

+ (n − 1).

By elementary transformations, the sum (∗)∞ can be written as

(∗ ∗ ∗)∞ = y−1(1 − y)(1 − y(t1t2)
−1)

1 − (t1t2)−n

(1 − (t1t2)−1)(1 − t−n
1 )(1 − t−n

2 )
+ n.
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Setting t1 = t2 = T−1, we obtain a trigonometric identity

1

n

n−1∑

k=0

1 − 2 cos( 2kπn )y T + y2T 2

1 − 2 cos( 2kπn )T + T 2
= (1 − y)

(
1 − yT 2

) 1 − T 2n

(
1 − T 2

)
(1 − T n)2

+ y.

In particular, for y = 0

1

n

n−1∑

k=0

1

1 − 2 cos( 2kπn )T + T 2
= 1 − T 2n

(
1 − T 2

)
(1 − T n)2

.

The equality of expressions (∗)∞, (∗∗)∞ and (∗ ∗ ∗)∞ was already noticed in [6,
§5.5].
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