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Abstract
We generalize the concept of partial permutations of Ivanov and Kerov and introduce
k-partial permutations. This allows us to show that the structure coefficients of the
center of the wreath product Sk � Sn algebra are polynomials in n with nonnegative
integer coefficients. We use a universal algebra Ik∞, which projects on the center
Z(C[Sk � Sn]) for each n. We show that Ik∞ is isomorphic to the algebra of shifted
symmetric functions on many alphabets.
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1 Introduction

For a positive integer n, we denote by Sn the symmetric group on the set [n] :=
{1, 2, . . . , n}. The cycle type of a permutation ω ∈ Sn is the partition of n obtained
from the lengths of the cycles in the decomposition of ω as product of disjoint cycles.
It is well known that the conjugacy class of a permutation x ∈ Sn is the set of all
permutations y that have the same cycle type as x . The center of the symmetric group
algebra, usually denoted Z(C[Sn]), is the algebra over C generated by the conjugacy
classes of the symmetric group Sn . The family (Cλ)λ is indexed by the partitions of n
and defined by

This research is supported by Narodowe Centrum Nauki, Grant Number 2017/26/A/ST1/00189.

B Omar Tout
otout@impan.pl

1 Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, 00-656 Warszawa, Poland
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Cλ :=
∑

ω

where the sum runs over all the permutations ω ∈ Sn with cycle type λ being a linear
basis for Z(C[Sn]). The structure coefficients cρ

λδ are the nonnegative integers defined
by the following product in Z(C[Sn])

CλCδ =
∑

ρ partition of n

cρ
λδCρ.

The basic way to compute these coefficients is to fix a permutation z of cycle type ρ

and count the pairs (x, y) such that x has cycle type λ, y has cycle type δ and xy = z.
This method was used by Katriel and Paldus in [4] to obtain the complete expression
for the product of the class of transpositions C(2,1n−2) with an arbitrary class Cδ.

However, this method is not appropriate when we consider more complicated classes.
In [2], Farahat and Higman showed that the coefficients cρ

λδ are polynomials in n when
the partitions λ, δ and ρ are fixed partitions, completed with parts equal to 1 to get
partitions of n. By introducing partial permutations in [3], Ivanov and Kerov gave a
combinatorial proof to this result. They built a combinatorial algebra which projects
onto the center of the symmetric group algebra Z(C[Sn]) for each n. They showed
that this algebra is isomorphic to the algebra of shifted symmetric functions.

In [10], we introduced a group of block permutations, denoted Bk
kn, which is

isomorphic to the wreath product Sk � Sn . We showed that its conjugacy classes
can be indexed by families of partitions indexed by the partitions of k, and we
proved, using the general framework given in [9], that the structure coefficients
of Z(C[Bk

kn]) are polynomials in n under certain conditions. When k = 1, B1
n

is the symmetric group Sn and if k = 2, B2
2n is the hyperoctahedral group

Hn . Thus, our outcome in [10] can be seen as a generalization of the result of
Farahat and Higman in [2] and our result in [9] giving a polynomiality property
for the structure coefficients of the center of the hyperoctahedral group alge-
bra.

In [11], Wang studied the centers of group algebras of wreath products G � Sn, for
any finite group G. He proved using the Farahat–Higman approach that the structure
constants are polynomials in n. The goal of this paper is to give a proof using the
Ivanov–Kerov approach to the polynomiality property of the structure coefficients
of Z(C[Bk

kn]). For this reason, we generalize the concept of partial permutations
introduced by Ivanov and Kerov in [3]. We define the term of k-partial permutations.
These are block permutations defined on appropriate sets. When k = 1, a 1-partial
permutation will be a partial permutation in the sense defined by Ivanov and Kerov.
Using k-partial permutations, we build a combinatorial algebra Ik∞ which projects
onto the center of the group Bk

kn algebra for each n. We give two filtrations on Ik∞, and
we show that it is isomorphic to the algebra of shifted symmetric functions on ℘(k)
alphabets, where ℘(k) is the number of partitions of the integer k.

In light of Wang’s result in [11], it is natural to ask whether the Ivanov–Kerov
method can be applied to G � Sn, for an arbitrary finite group G. Apparently, the
approach we consider in this paper for Sk can be carried out for any finite group
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G. However, some more effort may be needed, especially for Sect. 5. We will try to
address this challenge in another paper if possible.

The paper is organized as follows. In Sect. 2, we give necessary definitions of
partitions and we review the results concerning the conjugacy classes of the group Bk

kn
presented in [10]. Then, we introduce the notion of k-partial permutation in Sect. 3.
We study some actions of the group Bk

kn on the set of k-partial permutations of n, and
we build our main tool the combinatorial algebra Ik∞ which projects on Z(C[Bk

kn])
for each n. Next, in Sect. 4, we prove our main result, Theorem 4.1, that gives a
polynomiality property in n for the structure coefficients of the algebra Z(C[Bk

kn]). In
addition, we give two filtrations on the algebra Ik∞ andwe provide explicit expressions
for the structure coefficients in special cases of k = 1, k = 2 and k = 3. In the last
section, we show that the algebra Ik∞ is isomorphic to the algebra Ak∗ of shifted
symmetric functions on ℘(k) alphabets.

2 Conjugacy classes of the wreath product of symmetric groups

In [10], we introduced the groupBk
kn and we showed that it is isomorphic to the wreath

product Sk �Sn of the symmetric group Sk by the symmetric group Sn . In this section,
we will review all necessary definitions and results concerning this group.

2.1 Partitions

A partition λ is a weakly decreasing list of positive integers (λ1, . . . , λl) where λ1 ≥
λ2 ≥ . . . ≥ λl ≥ 1. The λi are called the parts of λ; the size of λ, denoted by |λ|, is
the sum of all of its parts. If |λ| = n, we say that λ is a partition of n and we write
λ � n. The number of parts of λ is denoted by l(λ). We will also use the exponential
notation λ = (1m1(λ), 2m2(λ), 3m3(λ), . . .), where mi (λ) is the number of parts equal
to i in the partition λ. In case there is no confusion, we will omit λ from mi (λ) to
simplify our notation. If λ = (1m1(λ), 2m2(λ), 3m3(λ), . . . , nmn(λ)) is a partition of n,
then

∑n
i=1 imi (λ) = n. We will dismiss imi (λ) from λ when mi (λ) = 0; for example,

we will write λ = (12, 3, 62) instead of λ = (12, 20, 3, 40, 50, 62, 70). If λ and δ are
two partitions, we define the union λ∪δ and subtraction λ\δ (if exists) as the following
partitions:

λ ∪ δ = (1m1(λ)+m1(δ), 2m2(λ)+m2(δ), 3m3(λ)+m3(δ), . . .).

λ\δ = (1m1(λ)−m1(δ), 2m2(λ)−m2(δ), 3m3(λ)−m3(δ), . . .) if mi (λ) ≥ mi (δ) for any i .

A partition is called proper if it does not have any part equal to 1. The proper partition
associated with a partition λ is the partition λ̄ := λ\(1m1(λ)) = (2m2(λ), 3m3(λ), . . .).

If λ is a partition of r < n, we can extend λ to a partition of n by adding n− r parts
equal to one and the new partition of n will be denoted as λn :

λn := λ ∪ (1n−|λ|).
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2.2 Conjugacy classes of the symmetric groupSn

The cycle type of a permutation of Sn is the partition of n obtained from the lengths
of the cycles that appear in its decomposition into a product of disjoint cycles. For
example, the permutation (2, 4, 1, 6)(3, 8, 10, 12)(5)(7, 9, 11) of S12 has cycle type
(1, 3, 42). In this paper, we will denote the cycle type of a permutation ω by ct(ω). It
is well known that two permutations of Sn belong to the same conjugacy class if and
only if they have the same cycle type. Thus, the conjugacy classes of the symmetric
group Sn can be indexed by partitions of n. If λ = (1m1(λ), 2m2(λ), 3m3(λ), . . . , nmn(λ))

is a partition of n, we will denote by Cλ the conjugacy class of Sn associated with λ :

Cλ := {σ ∈ Sn| ct(σ ) = λ}.

The reader should remark that we use regular font and boldface, in the notation for
conjugacy classes, to distinguish between a set and its formal sum of elements. The
cardinality of Cλ is given by:

|Cλ| = n!
zλ

,

where

zλ :=
n∏

r=1

rmr (λ)mr (λ)!

2.3 Conjugacy classes of the groupBk
kn

We recall the definition of the group Bk
kn as given in [10]. If i and k are two positive

integers, we denote by pk(i) the following set of size k :

pk(i) := {(i − 1)k + 1, (i − 1)k + 2, . . . , ik}.

The set pk(i)will be called a k-tuple. The group Bk
kn is the subgroup of Skn formed

by permutations that send each set of the form pk(i) to another with the same form:

Bk
kn := {w ∈ Skn; ∀ 1 ≤ r ≤ n, ∃ 1 ≤ r ′ ≤ n such that w(pk(r)) = pk(r

′)}.

The order of the group Bk
kn is equal to

|Bk
kn| = (k!)nn!

In particular, B1
n is the symmetric group Sn and B2

2n is the hyperoctahedral group
Hn on 2n elements. In fact, as shown in [10], Bk

kn is isomorphic to the wreath product
Sk � Sn .
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For a permutation ω ∈ Bk
kn and a partition ρ = (ρ1, . . . , ρl) of k, we will con-

struct the partition ω(ρ) as follows. First decompose ω as a product of disjoint cycles
C1,C2, . . . ,Cr . Consider the subcollection of cycles {Ci1,Ci2 , . . . ,Cil }, such that
Ci1 contains ρ1 elements of a certain k-tuple pk(i), Ci2 contains ρ2 elements of the
same k-tuple pk(i), etc. Now add the part m to ω(ρ) if m is the number of k-tuples
that form the cycles {Ci1,Ci2 , . . . ,Cil }.
Example 2.1 Consider the following permutation, written in two-line notation, ω of
B3
18

(
1 2 3 | 4 5 6 | 7 8 9 | 10 11 12 | 13 14 15 | 16 17 18
12 10 11 | 13 14 15 | 7 8 9 | 1 2 3 | 5 4 6 | 17 18 16

)
.

We put the sign | after each three elements to emphasize that we are working in the
case k = 3. The decomposition of ω into a product of disjoint cycles is:

ω = (1, 12, 3, 11, 2, 10)(4, 13, 5, 14)(6, 15)(7)(8)(9)(16, 17, 18).

The first cycle (1, 12, 3, 11, 2, 10) contains all the elements of p3(1)l; thus, it con-
tributes toω(3). In it, there are two 3-tuples, namely p3(1) and p3(4).Thus, we should
add a part 2 to the partitionω(3). In the sameway, the cycle (16, 17, 18)will add a part
1 to ω(3) to become the partition (2, 1). By looking at the cycles (4, 13, 5, 14)(6, 15),
we see that 4 and 5 belong to the same cycle while 6 belongs to the other; thus,
these cycles will contribute to ω(2, 1). Since these cycles are formed by the two 3-
tuples p3(2) and p3(5), we have ω(2, 1) = (2). The remaining cycles (7)(8)(9) give
ω(1, 1, 1) = (1).

Definition 2.2 By a family of partitions, we will always mean a family of partitions
� = (�(λ))λ indexed by the partitions λ of k. The size of �, denoted by |�|, is the
following sum:

|�| :=
∑

λ�k
|�(λ)|.

If |�| = n, we say that � is a family of partitions of n.

Definition 2.3 If ω ∈ Bk
kn, define type(ω) to be the following family of partitions

type(ω) := (ω(ρ))ρ�k .

In [10], we showed the following two important results:

1. Let ω ∈ Bk
kn and pω be the permutation of n defined by pω(i) = j whenever

ω(pk(i)) = pk( j). Then, we have:

⋃

ρ�k
ω(ρ) = ct(pω) and

∑

ρ�k
|ω(ρ)| = n.
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2. The conjugacy classes of the group Bk
kn are indexed by families of partitions of n,

and the associated conjugacy class for a given family of partitions � is:

C� := {ω ∈ Bk
kn such that type(ω) = �}.

In addition,

|C�| = n!(k!)n
Z�

where

Z� :=
∏

λ�k
z�(λ)z

l(�(λ))
λ .

3 The algebra of k-partial permutations

In [3], Ivanov and Kerov introduced a useful tool called partial permutation to give
a combinatorial proof to the polynomiality property of the center of the symmetric
group algebra obtained by Farahat and Higman in [2]. They showed that the algebra
of partial permutations that are invariant under some action of the symmetric group
is isomorphic to the algebra of shifted symmetric functions. In [10], we used the
general framework built in [9] to generalize the result of Farahat and Higman to
wreath products of symmetric groups. We proved the polynomiality property for the
structure coefficients of the center of the group Bk

kn algebra. The goal of this section
is to generalize the concept of partial permutations in order to obtain a combinatorial
proof for this result.

3.1 k-partial permutations

The definition of the group Bk
kn can be extended to any set formed by a disjoint union

of k-tuples as follows. Suppose we have a set d that is a disjoint union of some k-tuples

d =
r⊔

i=1

pk(ai ),

where ai is a positive integer for any 1 ≤ i ≤ r . We define the group Bk
d to be the

following group of permutations:

Bk
d := {ω ∈ Sd | ∀1 ≤ i ≤ r , ∃1 ≤ j ≤ r with ω(pk(ai )) = pk(a j )},

where Sd is the group of permutations of the set d. In other words, the group Bk
d

consists of permutations that permute the blocks of the set d.
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Definition 3.1 Let n be a nonnegative integer. A k-partial permutation of n is a pair
(d, ω) where d ⊂ [kn] is a disjoint union of some k-tuples and ω ∈ Bk

d .

The concept of k-partial permutation can be seen as a generalization of the concept
of a partial permutation defined by Ivanov and Kerov in [3]. In fact, when k = 1, a
1-partial permutation is a partial permutation as defined in [3]. We will denote by Pk

kn
the set of all k-partial permutations of n. It is clear that the cardinality of the set Pk

kn
is

|Pk
kn| =

n∑

r=0

(
n

r

)
(k!)r r ! =

n∑

r=0

(n � r)(k!)r ,

where (n � r) := n(n − 1) · · · (n − r + 1) is the falling factorial.

Definition 3.2 If (d, ω) is a k-partial permutation of n, we define:

1. supp(ω) to be the support of ω. That is the minimal union of k-tuples of d on
which ω does not act like the identity.

2. ωn to be the permutation of the set [kn] obtained from ω by natural extension
(extension by identity).

Example 3.3 Consider the 3-partial permutation (d, ω) of n = 6, where d = p3(1) ∪
p3(2) ∪ p3(4) ∪ p3(6) and

ω =
(
1 2 3 | 4 5 6 | 10 11 12 | 16 17 18
12 10 11 | 4 5 6 | 16 18 17 | 1 2 3

)
.

We have supp(ω) = p3(1) ∪ p3(4) ∪ p3(6) and

ω6 =
(
1 2 3 | 4 5 6 | 7 8 9 | 10 11 12 | 13 14 15 | 16 17 18
12 10 11 | 4 5 6 | 7 8 9 | 16 18 17 | 13 14 15 | 1 2 3

)
.

The notion of type defined for the permutations of Bk
kn can be extended to the

k-partial permutations of n. If (d, ω) is a k-partial permutation of n, we define its
type λ = (λ(ρ))ρ�k to be the type of the permutation ω. For example, the cycle
decomposition of the 3-partial permutation given in the above example is

(1, 12, 17, 2, 10, 16)(3, 11, 18)(4)(5)(6)

and its type is formed by ω(2, 1) = (3) and ω(13) = (1).

3.2 Action ofBk
kn on the setPk

kn

There is a natural product of k-partial permutations of n given in the following defi-
nition.
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Definition 3.4 If (d1, ω1) and (d2, ω2) are two k-partial permutations of n, we define
their product as follows:

(d1, ω1)(d2, ω2) = (d1 ∪ d2, ω1ω2),

where the composition ω1ω2 is made after extending both ω1 and ω2 by identity to
d1 ∪ d2.

It is clear that the setPk
kn equipped with the above product of k-partial permutations

is a semigroup. That is, the product is associative with identity element, the k-partial
permutation (∅, 1∅), where 1∅ is the trivial permutation of the empty set. The group
Bk
kn acts on the semigroup Pk

kn by the following action:

σ · (d, ω) = (σ (d), σωσ−1),

for any σ ∈ Bk
kn and (d, ω) ∈ Pk

kn . We will use the term conjugacy class to denote
an orbit of this action, and we will say that two elements of Pk

kn are conjugate if they
belong to the same orbit. Two k-partial permutations (d1, ω1) and (d2, ω2) of n are in
the same conjugacy class if and only if there exists a permutation σ ∈ Bk

kn such that
(d2, ω2) = (σ (d1), σω1σ

−1). That is |d1| = |d2| and type(ω1) = type(ω2). Thus, we
have the following proposition.

Proposition 3.5 The conjugacy classes of the action of the group Bk
kn on the setPk

kn of
k-partial permutations of n can be indexed by families � = (�(λ))λ�k with |�| ≤ n
and for such a family, its associated conjugacy class is:

C�;n := {(d, ω) ∈ Pk
kn such that |d| = k|�| and type(ω) = �}.

We recall that a partition is called proper if it does not have any part equal to 1.

Definition 3.6 A family of partitions� is called proper if the partition�(1k) is proper.

If � is a proper family of partitions with |�| ≤ n, we define �n to be the family
of partitions � except that �(1k) is replaced by �(1k) ∪ (1n−|�|). It is clear that
|�n| = n.

Consider now the following surjective homomorphism ψ that extends k-partial
permutations of n to elements of Bk

kn :

ψ : Pk
kn → Bk

kn
(d, ω) �→ ωn,

where ωn is defined in Definition 3.2. Let � be a family of partitions with |�| ≤ n
and fix a permutation x ∈ C�n

, where C�n
is the conjugacy class in Bk

kn associated
with the family of partitions �n . The inverse image of x by ψ is formed by all the
k-partial permutations (d, ω) of n that satisfy the following two conditions:

d ⊃ supp(x) and ω coincides with x on d.
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Since supp(ω) consists of |�| − m1(�(1k)) k-tuples, there are

(
n − |�| + m1(�(1k))

m1(�(1k))

)

elements inψ−1(x).All of these elements are inC�;n , and we recover all the elements
of C�;n when x runs through all the elements of C�n

. Thus, we get the following
proposition.

Proposition 3.7 If � is a family of partitions with |�| ≤ n, then:

|C�;n| =
(
n − |�| + m1(�(1k))

m1(�(1k))

)
|C�n

|.

The action of the group Bk
kn on the set Pk

kn of k-partial permutations of n can be
extended linearly to an action of Bk

kn on the algebra C[Pk
kn]. The homomorphism ψ

can also be extended by linearity to become a surjective homomorphism between the
algebras C[Pk

kn] and C[Bk
kn]. For any σ ∈ Bk

kn and (d, ω) ∈ Pk
kn , we have:

ψ(σ · (d, ω)) = ψ(σ(d), σωσ−1) = σωσ−1
n = σωnσ

−1 = σ · ωn = σ · ψ(d, ω).

Let Ik
kn be the sub-algebra of C[Pk

kn] generated by formal sums of the conjugacy
classes C�;n, then we have ψ(Ik

kn) = Z(C[Bk
kn]), where Z(C[Bk

kn]) is the center of
the group algebra C[Bk

kn] and by Proposition 3.7,

ψ(C�;n) =
(
n − |�| + m1(�(1k))

m1(�(1k))

)
C�n

,

for any family of partitions � with |�| ≤ n.

3.3 The algebraIk∞

LetC[Pk∞] denote the algebra generated by all the k-partial permutations with a finite
support. Any element a ∈ C[Pk∞] can be canonically written as follows:

a =
∞∑

r=0

∑

d

∑

ω∈Bk
d

ad,ω(d, ω), (1)

where the second sum runs through all the sets d that are unions of r k-tuples and
ad,ω ∈ C for any (d, ω). Denote by Projn the natural projection homomorphism of
C[Pk∞] on C[Pk

kn], that is if a ∈ C[Pk∞] is canonically written as in (1), then

Projn(a) =
n∑

r=0

∑

d

∑

ω∈Bk
d

ad,ω(d, ω),
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where the second sum is now taken over all the sets d ⊂ [kn] that are unions of r
k-tuples. The pair (C[Pk∞],Projn) is the projective limit of the family (C[Pk

kn])n≥1

equipped with the morphisms Projnm : C[Pk
kn] → C[Pk

km] defined on the basis
elements of C[Pk

kn] by

Projnm(d, ω) :=
{

(d, ω) if d ⊆ [km]
0 otherwise

whenever m ≤ n.

Let Bk∞ denote the infinite group of finite permutations permuting k-tuples. That
means that any x ∈ Bk∞ is a permutation that permutes only finitely many k-tuples,
i.e. it has a finite support. The action of Bk

kn onC[Pk
kn] can be generalized to an action

of Bk∞ on the algebraC[Pk∞]. In concordance with our notations, let us denote Ik∞ the
sub-algebra of all finite linear combinations of the orbits of this action. In other words,
Ik∞ is generated by the elementsC�, indexed by families of partitions and defined by

C� =
∑

(d,ω)

(d, ω),

where the sum runs over all k-partial permutations (d, ω) ∈ Pk∞ such that d is a union
of |�| k-tuples and ω has type �. It would be clear that Projn(Cλ) = 0 if |�| > n
while if |�| ≤ n,

Projn(C�) = C�;n .

4 Structure coefficients of the center ofBk
kn group algebra

In this section, we present our main result in Theorem 4.1, a polynomiality property in
n for the structure coefficients of the center of the Bk

kn group algebra. To show it, we
describe the structure coefficients of the algebra Ik∞ and then apply the composition
of the morphisms ψ ◦ Projn defined in the previous section.

Let � and 
 be two proper families of partitions with |�|, |
| ≤ n. In the algebra
Ik∞, we can write the product C�C
 as a linear combination of the basis elements,
that is

C�C
 =
∑

�

c�
�
C�, (2)

where � runs through some families of partitions and c�
�
 are nonnegative integers

independent of n. In what follows, there are arguments that show that c�
�
 are nonneg-

ative integers. The reader may refer also to [7, Proposition 1.3] for a complete proof
about this fact. If we apply Projn to this equality, we get the following identity in Ik

kn :

C�;nC
;n =
∑

�

c�
�
C�;n .
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Since � and 
 are proper, by applying ψ to this equality we obtain using Propo-
sition 3.7 the following identity in the center of the group Bk

kn algebra:

C�n
C
n

=
∑

�

c�
�


(
n − |�| + m1(�(1k))

m1(�(1k))

)
C�n

.

The sum over all the families of partitions in the above equation can be turned into
a sum over all the proper families of partitions if we sum up all the partitions that give
C�n

. In fact, the only families of partitions which will contribute to the coefficient of
C�n

are the following

�r = (�r (ρ))ρ where �r (1k) = �(1k) ∪ (1r ) with 0

≤ r ≤ n − |�| and �r (ρ) = �(ρ) if ρ �= (1k).

It will be easy to verify that �0 is the only proper family of partitions among them
and that

|�r | = |�0| + r , m1(�
r (1k)) = r and

(
n − |�r | + m1(�

r (1k))

m1(�
r (1k))

)
=

(
n − |�0|

r

)
.

Thus, equivalently the above equation can be written as

C�n
C
n

=
∑

�

( n−|�|∑

r=0

c
�|�|+r
�


(
n − |�|

r

))
C�n

,

where the sum now runs over all proper families of partitions. The sums over � in the
above equations are finite. That means there is a finite number of partition families �

appearing in each equation. To see this, one needs to understand what is the form of
the families of partitions � that may appear in Eq. (2).

For fixed three families of (not necessarily proper) partitions �, 
 and �, the
coefficient c�

�
 in Eq. (2) counts the number of pairs of k-partial permutations(
(d1, ω1), (d2, ω2)

) ∈ C� × C
 such that

(d1, ω1) · (d2, ω2) = (d, ω)

where (d, ω) ∈ C� is a fixed k-partial permutation from a specific conjugacy class.
We should remark that when multiplying (d1, ω1) by (d2, ω2), the permutation ω1ω2
acts on at most k|�|+ k|
| elements. This means that each family of partitions � that
appears in the sum of Eq. (2) must satisfy the following condition:

max(|�|, |
|) ≤ |�| ≤ |�| + |
|. (3)

In other words, we have showed that the function deg : Ik∞ → N defined on the
basis elements of Ik∞ by deg(C�) = |�| is a filtration on Ik∞. Another filtration of
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the algebra Ik∞ will be given in Proposition 4.3. We are able now to state the main
theorem of this paper.

Theorem 4.1 Let �,
 and � be three proper families of partitions satisfying
max(|�|, |
|) ≤ |�| ≤ |�| + |
|. For any integer n ≥ |�|, we have

c
�n
�n
n

=
n−|�|∑

r=0

c
�|�|+r
�


(
n − |�|

r

)
,

where c
�|�|+r
�
 are nonnegative integers independent of n.

By Eq. (3), the integers r in the above theorem satisfy the following inequality,
which leads us to the next corollary

r ≤ |�| + |
| − |�|.

Corollary 4.2 Let �,
 and � be three proper families of partitions satisfying

max(|�|, |
|) ≤ |�| ≤ |�| + |
|. The structure coefficient c�n
�n
n

is a polynomial in
n with nonnegative integer coefficients and of degree at most |�| + |
| − |�|.

The result in Corollary 4.2 was first given in [10] as an application of the general
framework for the structure coefficients of the centers of finite group algebras built in
[9].

Filtrations allow us to have more information about the families of partitions � that
appear in the expression of the product C�C
 in the algebra Ik∞. The first filtration
on Ik∞ was given by deg . In the next proposition, we give another one.

Proposition 4.3 The function deg
′ : Ik∞ → N defined on the basis elements of Ik∞ by

deg
′
(C�) = |�| + m1(�(1k))

is a filtration.

Proof Let (d1, ω1) and (d2, ω2) be two k-partial permutations and suppose that:

d1 =
r⋃

i=1

pk(ai ) and d2 =
s⋃

j=1

pk(b j )

for some integers ai and b j . Denote by A, B, H , K , G, L, T and F the following
sets:

A = {ai such that 1 ≤ i ≤ r}, B = {b j such that 1 ≤ j ≤ s},
H = {ai ∈ A\B such that ω1 acts as identity on pk(ai )},
K = {ai ∈ A ∩ B such that ω1 acts as identity on pk(ai )},
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G = {b j ∈ B\A such that ω2 acts as identity on pk(b j )},
L = {b j ∈ A ∩ B such that ω2 acts as identity on pk(b j )},
T = {x ∈ A ∩ B such that ω1 and ω2 act as identities on pk(x)}

and

F = {y ∈ (A ∩ B)\T such that ω1 and ω2 act as inverses on pk(y)}.

It would be easy to see that |T |+|F | ≤ |A∩B|, and from this, we obtain the following:

deg
′
(d1 ∪ d2, ω1ω2) = |A\B| + |B\A| + |A ∩ B| + |H | + |G| + |T | + |F |

≤ |A\B| + |A ∩ B| + |H | + |K |︸ ︷︷ ︸
deg

′
(d1,ω1)

+ |B\A| + |A ∩ B| + |G| + |L|︸ ︷︷ ︸
deg

′
(d2,ω2)

.

The result follows. ��
In [3], the authors propose many filtrations that may be generalized to our case.

We turn now to make some computations. In the following three examples, we give
explicit expressions of products of conjugacy classes for the cases k = 1, k = 2 and
k = 3, respectively.

Example 4.4 Let k = 1. Since (1) is the only partition of one, the algebra I1∞ is
generated by partitions. For instance, C(2) is the set of all 1-partial permutations that
have type (2) or equivalently the set of all partial permutations with cycle type (2). In
I1∞, we have, for example,

C(2)C(2) = C(12) + 3C(3) + 2C(22)

and

C(2)C(3) = 2C(1,2) + 4C(4) + C(2,3).

The first equation appears in [3] and the second appears in [7]. Apply nowψ ◦Projn on
the above two expressions to get the following results in the center of the symmetric
group algebra Z(C[Sn]]) :

C(1n−2,2)C(1n−2,2) = n(n − 1)

2
C(1n) + 3C(1n−3,3) + 2C(1n−4,22) for any n ≥ 4,

and

C(1n−2,2)C(1n−3,3) = 2(n − 2)C(1n−2,2) + 4C(1n−4,4) + C(1n−5,2,3) for any n ≥ 5.

Example 4.5 There are only two partitions of 2, namely (12) and (2). Thus, the ele-
ments generating I2∞ are indexed by families of partitions � = (�(12),�(2)). Take,

123



402 Journal of Algebraic Combinatorics (2021) 53:389–412

for instance,� = ((1), (2)); then,C((1),(2)) is the set of all 2-partial permutations with
type ((1), (2)). For example, ({3, 4, 7, 8, 9, 10}, (3, 7, 4, 8)(9)(10)) ∈ C((1),(2)). We
have the following two complete expressions in I2∞ :

C(∅,∅)C(∅,(1)) = C(∅,(1)) (4)

and

C(∅,(2))C(∅,(2)) = 2C((12),∅) + 2C(∅,(12)) + 2C(∅,(22)) + 3C((3),∅). (5)

For example, the first coefficient 2 in the right-hand side of the above equation is
due to the fact that there are only two pairs (x, y) ∈ C(∅,(2)) × C(∅,(2)) that satisfy
xy = ({1, 2, 3, 4}; (1)(2)(3)(4)). Namely, (x, y) can be one and only one of the
following pairs:

(({1, 2, 3, 4}; (1, 4, 2, 3)
)
,
({1, 2, 3, 4}; (1, 3, 2, 4)

))

or

(({1, 2, 3, 4}; (1, 3, 2, 4)
)
,
({1, 2, 3, 4}; (1, 4, 2, 3)

))
.

Apply now ψ ◦ Projn for the above two expressions to get the following results in
the center of the hyperoctahedral group algebra Z(C[B2

2n]) :

C((1n),∅)C((1n−1),(1)) = C((1n−1),(1)) for any n ≥ 1

and for any n ≥ 4

C((1n−2),(2))C((1n−2),(2))=n(n − 1)C((1n),∅)+2C((1n−2),(12))+2C((1n−4),(22))+3C((1n−3,3),∅).

The first equation comes with no surprise since C((1n),∅) is the identity class.

Example 4.6 (13), (2, 1) and (3) are the only three partitions of 3. Thus, I3∞ is
generated by elements indexed by triplets of partitions. We will suppose that the
first corresponds to the partition (13), the second corresponds to (2, 1) and the
third corresponds to (3). For instance, C(∅,(1),(1)) contains the 3-partial permutation({4, 5, 6, 13, 14, 15}; (4, 5)(6)(13, 15, 14)

)
. In I3∞, we have the following two com-

plete products:

C(∅,(1),(1))C(∅,∅,(1)) = 2C(∅,(1),(12)) + 2C((1),(1),∅) + 3C(∅,(1),(1))

and

C(∅,(1),(1))C(∅,(1),∅) = 2C(∅,(12),(1)) + 3C((1),∅,(1)) + 4C(∅,(12),∅) + 6C(∅,∅,(12)).
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For example, the coefficient 3 in the above first equation comes from the fact that:

(1, 2)(3)(7, 8, 9) = (1, 2)(3)(7, 9, 8) · (7, 9, 8)

= (1, 3)(2)(7, 8, 9) · (1, 2, 3)

= (2, 3)(1)(7, 8, 9) · (1, 3, 2).

If we apply now ψ ◦ Projn on the above equations, we get the following explicit
expressions in the center of the group algebra C[B3

3n]. For n ≥ 2 :

C((1n−2),(1),(1))C((1n−1),∅,(1)) = 2C((1n−3),(1),(12))+2(n − 1)C((1n−1),(1),∅)+3C((1n−2),(1),(1))

and for n ≥ 3 :

C((1n−2),(1),(1))C((1n−1),(1),∅) = 2C((1n−3),(12),(1)) + 3(n − 1)C((1n−1),∅,(1))

+ 4C((1n−2),(12),∅) + 6C((1n−2),∅,(12)).

5 Irreducible characters ofBk
kn and symmetric functions

In [3], Ivanov and Kerov showed that the algebra I1∞ is isomorphic to the algebra of
shifted symmetric functions which we shall denote asA1∗. The goal of this section is
to prove that in general for any fixed positive integer k, the algebra Ik∞ is isomorphic
to an algebra of shifted symmetric functions on many alphabets denoted by Ak∗. We
start first by recalling the result of Ivanov and Kerov in [3]. Then, we show a similar
result in the case k = 2 (hyperoctahedral group) before considering the general case.

5.1 Case k = 1: the symmetric groupSn

The irreducible Sn-modules are indexed by partitions of n. For λ � n, we will denote
by V λ its associated irreducible Sn-module and by χλ its character. The algebraA1 of
symmetric functions has many basis families indexed by partitions. Among them are
the power sum functions (pλ)λ and the Schur functions (sλ)λ. The transition matrix
between these two bases is given by the following formula of Frobenius:

pδ =
∑

ρ
|ρ|=|δ|

χ
ρ
δ sρ, (6)

where χ
ρ
δ denotes the value of the character χρ on any permutation of cycle type δ.

A shifted symmetric function f in infinitely many variables (x1, x2, . . .) is a family
( fi )i>1 that satisfies the following two properties:

1. fi is a symmetric polynomial in (x1 − 1, x2 − 2, . . . , xi − i).
2. fi+1(x1, x2, . . . , xi , 0) = fi (x1, x2, . . . , xi ).
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The set of all shifted symmetric functions is an algebra which we shall denote asA1∗.
It has many basis families indexed by partitions. In [6], Okounkov and Olshanski gave
a linear isomorphism ϕ : A1 → A1∗. For any partition λ, the images of the power sum
function pλ and the Schur function sλ by ϕ are the shifted power symmetric function
p#λ and the shifted Schur function s∗

λ. By applying ϕ to the Frobenius relation given
in Eq. (6), we get:

p#δ =
∑

ρ
|ρ|=|δ|

χ
ρ
δ s

∗
ρ. (7)

If f ∈ A1∗ and if λ = (λ1, λ2, . . . , λl) is a partition, we denote by f (λ) the value
fl(λ1, λ2, . . . , λl). By [6], any shifted symmetric function is determined by its values
on partitions. The vanishing characterization of the shifted symmetric functions given
in [6] states that s∗

ρ is the unique shifted symmetric function of degree at most |ρ| such
that

s∗
ρ(λ) =

{
(|λ|�|ρ|)
dim λ

f λ/ρ if ρ ⊆ λ

0 otherwise
(8)

where (|λ| � |ρ|) := |λ|(|λ| − 1) · · · (|λ| − |ρ| + 1) is the falling factorial and f λ/ρ is
the number of skew standard tableaux of shape λ/ρ. Using the following branching
rule for characters of the symmetric groups

χλ
ρ∪(1|λ|−|ρ|) =

∑

ν;|ν|=|ρ|
f λ/νχν

ρ , (9)

one can verify using Formulas (7) and (8) that

p#δ (λ) =
{

(|λ|�|δ|)
dim λ

χλ
δ|λ| if |λ| ≥ |δ|

0 otherwise

If k = 1, the algebra I1∞ constructed in the previous section has a basisCλ indexed

by partitions.Now letλ be any partition and consider the composition F1
λ := χλ

dim λ
◦ψ◦

Proj|λ| ofmorphisms,where dim λ denotes the dimension of the irreducibleSn-module
V λ. The reader may refer to [7, Proposition 1.34] or [8, Section 4.2] for a complete

proof that χλ

dim λ
is an algebra morphism from Z(C[Sn]) to C. If δ is a partition such

that |δ| > |λ|, then F1
λ (Cδ) = 0 since the projection is zero in this case. Suppose now

that |λ| ≥ |δ|, we have the following equalities:

(
χλ

dim λ
◦ ψ ◦ Proj|λ|

)
(Cδ) = χλ

dim λ

((|λ| − |δ| + m1(δ)

m1(δ)

)
Cδ|λ|

)

=
(|λ| − |δ| + m1(δ)

m1(δ)

) |λ|!
zδ|λ| dim λ

χλ
δ|λ|=

1

zδ

(|λ| � |δ|)
dim λ

χλ
δ|λ| . (10)
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This implies that F1
λ (Cδ) = z−1

δ p#δ (λ) and that the map F1 : I1∞ → A1∗ defined on
the basis elements of I1∞ by

F1(Cδ) = z−1
δ p#δ

is an isomorphism of algebras. This result was first shown by Ivanov and Kerov in [3,
Theorem 9.1]. It can be used to obtain the multiplication table of p#δ inA1∗ from that
ofCδ in I1∞. For example, the two equations given in Example 4.4 imply the following
two equalities in A1∗

p#(2) p
#
(2) = 2p#

(12) + 4p#(3) + p#
(22)

and

p#(2) p
#
(3) = 6p#(1,2) + 6p#(4) + p#(2,3).

5.2 Case k = 2: the hyperoctahedral groupB2
2n

The conjugacy classes as well as the irreducible representations of the hyperoctahedral
group B2

2n are indexed by bipartitions of n. These are pairs of partitions (λ1, λ2)

satisfying |λ1| + |λ2| = n, where λ1 (resp. λ2) corresponds to the partition (12) (resp.
(2)) of 2. To simplify our notations, (λ1, λ2) � n will be used to say that (λ1, λ2) is a
bipartition of n. If (λ1, λ2) � n, then the size of the conjugacy class and the dimension
of the irreducible representation associated with (λ1, λ2) are given, respectively, by
the following formulas:

|C(λ1,λ2)| = 2nn!
z(λ1,λ2)

= 2nn!
2l(λ1)zλ12l(λ2)zλ2

(11)

and

dim(λ1, λ2) = n!dim λ1

(|λ1|)!
dim λ2

(|λ2|)! . (12)

If α = (α1, α2, · · · , αr ) is a partition of n, define

p+
α (x, y) := p+

α1
p+
α1

· · · p+
αr

and p−
α (x, y) := p−

α1
p−
α1

· · · p−
αr

where for any k ≥ 1

p+
k =

∑

i≥1

(xki + yki ) and p−
k =

∑

i≥1

(xki − yki ).

If (δ1, δ2) is a bipartition, we define the following two functions on two alphabets:

p(δ1,δ2)(x, y) := p+
δ1

(x, y)p−
δ2

(x, y) and s(ρ1,ρ2)(x, y) := sρ1(x)sρ2(y).
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These are the generalizations of the power sum symmetric function and the Schur
function to two alphabets, and they form linear bases for the algebraA2 of symmetric
functions on two alphabets. If (δ1, δ2) � n, the following formula in A2 is analogous
to Formula (6) of Frobenius, see [5, page 178] and [1]:

p(δ1,δ2)(x, y) =
∑

(ρ1,ρ2)�n
χ

(ρ1,ρ2)

(δ1,δ2)
s(ρ1,ρ2)(x, y),

where χ
(ρ1,ρ2)

(δ1,δ2)
denotes the value of the irreducible character χ(ρ1,ρ2) of B2

2n evaluated
on a permutation with 2-set type (δ1, δ2). In the same way as we did in the previous
section, we define the algebraA2∗ of shifted functions in two alphabets and we have:

p#(δ1,δ2)(x, y) =
∑

(ρ1,ρ2)�n
χ

(ρ1,ρ2)

(δ1,δ2)
s∗
(ρ1,ρ2)

(x, y). (13)

Example 5.1 If δ1 = δ2 = (1), we have the following equation:

( ∑

i�1

xi +
∑

i�1

yi
)(∑

i�1

xi −
∑

i�1

yi
) = χ

((2),∅)
((1),(1))s(2)(x) + χ

((1),(1))
((1),(1)) s(1)(x)s(1)(y)

+χ
(∅,(2))
((1),(1))s(2)(y) + χ

((12),∅)
((1),(1))s(12)(x) + χ

(∅,(12))
((1),(1))s(12)(y),

where

s(1)(x) =
∑

i�1

xi ,

s(12)(x) =
∑

1≤i< j

xi x j

and

s(2)(x) =
∑

i�1

x2i +
∑

1�i1<i2

xi1xi2 .

By comparing both sides, we deduce thatχ((2),∅)
((1),(1)) = 1, χ((1),(1))

((1),(1)) = 0, χ(∅,(2))
((1),(1)) = −1,

χ
((12),∅)
((1),(1)) = 1 and χ

(∅,(12))
((1),(1)) = −1.

The characters χ
(ρ1,ρ2)

(δ1,δ2)
can be expressed in terms of the characters of the symmetric

group as follows, see [1, Formula (4.2)]:

χ
(ρ1,ρ2)

(δ1,δ2)
=

∑

u,v

(−1)|{ j :v j=−}|χρ1
αuv

χ
ρ2
βuv

(14)

where the sum ranges over all vectors

u = (u1, u2, . . . , ul(δ1)) ∈ {−,+}l(δ1) and v = (v1, v2, . . . , vl(δ2)) ∈ {−,+}l(δ2),
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and where αuv (resp. βuv) is the composition consisting of the parts (δ1)i of δ1 with
ui = + (resp. ui = −) followed by the parts (δ2) j of δ2 with v j = + (resp. v j = −).
As an application, we can recover the results of Example 5.1. For instance,

χ
((2),∅)
((1),(1)) =

∑

(u,v)∈{(+,+)}
(−1)|(u,v):v=−}|χ(2)

αuv
χ∅

βuv
= χ

(2)
(12)

= 1,

and

χ
((1),(1))
((1),(1)) =

∑

(u,v)∈{(−,+),(+,−)}
(−1)|(u,v):v=−}|χ(1)

αuv
χ

(1)
βuv

= χ
(1)
(1) χ

(1)
(1) − χ

(1)
(1) χ

(1)
(1) = 0.

Proposition 5.2 If (ρ1, ρ2) � n and (δ1, δ2) � r with r ≤ n, then:

χ
(ρ1,ρ2)

(δ1,δ2)n
=

∑

(ν1,ν2)�r
χ

(ν1,ν2)
(δ1,δ2)

(
n − r

|ρ1| − |ν1|
)
f ρ1/ν1 f ρ2/ν2 , (15)

and

(n � r)
dim(ρ1, ρ2)

χ
(ρ1,ρ2)

(δ1,δ2)n
= p#(δ1,δ2)(ρ1, ρ2). (16)

Proof The first result is a consequence of Formulas (9) and (14). Multiplying Eq. (15)
by (n�r)

dim(ρ1,ρ2)
yields:

(n � r)
dim(ρ1, ρ2)

χ
(ρ1,ρ2)

(δ1∪(1n−r ),δ2)
=

∑

(ν1,ν2)�r

|ρ1|!|ρ2|!
(n − r)! dim ρ1 dim ρ2

χ
(ν1,ν2)
(δ1,δ2)

(
n − r

|ρ1| − |ν1|
)
f ρ1/ν1 f ρ2/ν2

=
∑

(ν1,ν2)�r
χ

(ν1,ν2)
(δ1,δ2)

(|ρ1| � |ν1|)
dim ρ1

f ρ1/ν1
(|ρ2| � |ν2|)

dim ρ2
f ρ2/ν2

=
∑

(ν1,ν2)�r
χ

(ν1,ν2)
(δ1,δ2)

s∗ν1 (ρ1)s
∗
ν2

(ρ2) ( by characterization (8))

= p#(δ1,δ2)(ρ1, ρ2) ( by Eq.(13)) ��
If (ρ1, ρ2) � n and (δ1, δ2) � r , applying the composition F2

(ρ1,ρ2)
:= χ(ρ1,ρ2)

dim (ρ1,ρ2)
◦

ψ ◦ Projn of morphisms to the basis element of I2∞ indexed by the bipartition (δ1, δ2)

yields zero; if r > n and if r ≤ n, we have:

F2
(ρ1,ρ2)

(C(δ1,δ2)) = χ(ρ1,ρ2)

dim (ρ1, ρ2)

((
n − r + m1(δ1)

m1(δ1)

)
C(δ1,δ2)n

)

=
(
n − r + m1(δ1)

m1(δ1)

)
n!2n

z(δ1,δ2)n dim(ρ1, ρ2)
χ

(ρ1,ρ2)

(δ1,δ2)n

=
(
n − r + m1(δ1)

m1(δ1)

)
n!2n

z
(δ1,δ2)

2n−r (n−r+m1(δ1))!
m1(δ1)!

dim(ρ1, ρ2)
χ

(ρ1,ρ2)

(δ1,δ2)n
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= 2r

z(δ1,δ2)

(n � r)
dim(ρ1, ρ2)

χ
(ρ1,ρ2)

(δ1,δ2)n

= 2r

z(δ1,δ2)
p#(δ1,δ2)(ρ1, ρ2). (17)

This implies the following theorem.

Theorem 5.3 The linear map F2 : I2∞ −→ A2∗ defined by

F2(C(δ1,δ2)) = 2|δ1|+|δ2|

z(δ1,δ2)
p#(δ1,δ2)

is an isomorphism of algebras.

This isomorphism allows us to obtain the multiplication table of p#(δ1,δ2) in A2∗

from the multiplication table of C(δ1,δ2) in I2∞. For instance, the equations given in
Example 4.5 give us:

p#(∅,∅) p
#
(∅,(1)) = p#(∅,(1))

and

p#(∅,(2)) p
#
(∅,(2)) = p#

((12),∅)
+ p#

(∅,(12)) + p#
(∅,(22)) + 4p#((3),∅).

5.3 The general case

We refer to [5, Appendix B] for the results of the representation theory of wreath
products presented in this section. Let (Pr (Cλ))r≥1,λ�k be a family of independent
indeterminates over C. For each λ � k, we may think of Pr (Cλ) as the r th power sum
in a sequence of variables xλ = (xiλ)i≥1. Let us denote byAk the algebra over C and
with algebraic basis the elements Pr (Cλ)

Ak := C[Pr (Cλ); r ≥ 1, λ � k].

If ρ = (ρ1, ρ2, · · · , ρl) is an arbitrary partition and λ � k, we define Pρ(Cλ) to be
the product of Pρi (Cλ),

Pρ(Cλ) := Pρ1(Cλ)Pρ2(Cλ) · · · Pρl (Cλ).

The family (P�)� indexed by families of partitions, where

P� :=
∏

λ�k
P�(λ)(Cλ),
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forms a linear basis for Ak . If we assign degree r to Pr (Cλ), then

Ak =
⊕

n≥0

Ak
n

is a gradedC-algebrawhereAk
n is the algebra spanned by all P� where |�| = n.Recall

that Z� has been defined at the end of Sect. 2.3. The algebraAk can be equipped with
a Hermitian scalar product defined by

< f , g >=
∑

�

f�ḡ�Z�

for any two elements f = ∑
� f�P� and g = ∑

� g�P� of Ak . In particular, we
have:

< P�, P� >= δ�,�Z�,

where δ�,� is the Kronecker symbol.
If γ is a partition of k and r ≥ 1, define

Pr (χ
γ ) :=

∑

λ�k
z−1
λ χ

γ
λ Pr (Cλ),

where χ
γ
λ is the value of the character χγ on one element of the conjugacy class Cλ.

By the orthogonality of the characters of Sk,

< χγ , χδ >:= 1

k!
∑

g∈Sk

χγ (g)χδ(g) =
∑

ρ�k
z−1
ρ χγ

ρ χδ
ρ = δγ,δ,

we can write

Pr (Cλ) =
∑

γ�k
χ

γ
λ Pr (χ

γ ).

We may think of Pr (χγ ) as the r th power sum in a new sequence of variables yγ =
(yiγ )i≥1 and denote by sρ(χγ ) the schur function sρ associated with the partition ρ

on the sequence of variables (yiγ )i≥1. Now, for any family of partitions �, define

S� :=
∏

λ�k
s�(λ)(χ

λ).

The family (S�)� indexed by the families of partitions is an orthonormal basis ofAk,

see [5].
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Let γ be a partition of k and consider V γ , the irreducible Sk-module associated
with γ. The group Bk

kn acts on the n
th tensor power T n(V γ ) = V γ ⊗ V γ · · · ⊗ V γ as

follows:

ω.(v1 ⊗ v2 ⊗ · · · ⊗ vn) := ω1vp−1
ω (1) ⊗ ω2vp−1

ω (2) ⊗ · · · ⊗ ωnvp−1
ω (n)

,

where ω ∈ Bk
kn, v1, v2, . . . , vn ∈ V γ and ωi ∈ Sk is the normalized restriction of ω

on the block p−1
ω (i). If we denote by ηn(χ

γ ) the character of this representation of
Bk
kn then, by [5, Equation (8.2), page 176], if ω ∈ Bk

kn we have:

ηn(χ
γ )(ω) =

∏

ρ�k
(χγ

ρ )l(ω(ρ)).

For any partition μ of m and for any partition γ of k, define

Xμ(χγ ) := det(ημi−i+ j (χ
γ )).

Byextending this definition to families of partitions,weobtain the full list of irreducible
characters of Bk

kn . If � is a family of partitions, define

X� :=
∏

ρ�k
X�(ρ)(χρ).

For any two families of partitions � and 
, let us denote by X�

 the value of the

character X� on any of the elements of the conjugacy class C
. By [5, page 177], we
have the following three important identities

X�

 = < S�, P
 >,

S� =
∑

�

Z−1
� X�

� P�

and

P� =
∑

�

X�
�S�,

where the sums run over families of partitions.
Let � be a family of partitions and consider the composition Fk

� := X�

dim�
◦ ψ ◦

Proj|�| of morphisms. We would like to see how Fk
� acts on the basis elements of

Ik∞. If 
 is a family of partitions such that |
| > |�|, it would be clear then that
Fk

�(C
) = 0. Suppose now that |�| ≥ |
|, we have the following equalities:
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( X�

dim�
◦ ψ ◦ Proj|�|

)
(C
) = X�

dim�

((|�| − |
| + m1(
(1k))

m1(
(1k))

)
C
|�|

)

=
(|�| − |
| + m1(
(1k))

m1(
(1k))

) |�|!(k!)|�|

Z
|�| dim�
X�


|�|

= (k!)|
|

Z


(|�| � |
|)
dim�

X�

|�| . (18)

This suggests that if we consider the algebra of shifted symmetric functions Ak∗
isomorphic to Ak with basis the shifted functions P#


 defined by

P#

 :=

∏

ρ�k
P#


(ρ)(Cρ)

and we set

P#

(�) :=

∏

ρ�k
P#


(ρ)(Cρ)(�(ρ)),

for any family of partitions �, then we obtain the following result.

Theorem 5.4 The linear map Fk : Ik∞ −→ Ak∗ defined by

Fk(C
) = (k!)|
|

Z


P#



is an isomorphism of algebras.
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